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	 In this study, micro-electromechanicals (MEMS) system sensors were used to extract 
physical signals from a machine tool.  A performance assessment was carried out using 
fuzzy logic theory.  This, in turn, was used to judge the ownership of various signals.  
It then defined the level that each ownership group belonged to in order to determine 
whether the performance was broken or not.  If normal, the system determined specified 
rules for such normality.  During the process of extracting the vibration and noise 
signals, the system used Fourier transform to analyze any changes made to each signal in 
the frequency field, and then principal component analysis was used to decrease the data 
dimensions.  We then evaluated the work status of the machine tool on the basis of the 
signal features.  Furthermore, we built a feature math model from the recorded signals 
using a back propagation neural network and further determined the abnormal items 
using an error function.  Finally, we obtained a diagnostic feature for the performance 
of the machine tool using physical signals through diagnostic reports from a human-
machine interface.  The machine tool diagnostic system is able to provide maintenance 
personnel with a proper way of responding quickly to any reduction in the output from 
the machine tool so as to avoid further damage.

1.	 Introduction

1.1	 Background
	 With industry changes and increased market demands, in addition to the development 
of high-efficiency and high-precision machine tool hardware in recent years, the 
developmental focus of machine tool providers has moved towards intelligent machine 
tools.  The development of intelligent software is the most critical technology for 
machine tool diagnostic among all that is currently available provided by software 
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vendors.  The most significant development in intelligent machine tools is the monitoring 
of machine performance.  For example, the prediction of the failure of components or 
performance aging leads to early precautionary maintenance processes, which reduces 
additional costs or loss of credit caused by such failures.  When a machine is operating, 
it vibrates, and such vibration under normal operation tends to be minimal.  With 
aging, the degree of vibration may increase up to the point of failure.  Determining 
the amount of physical signals for an excellent or extraordinary feature is carried out 
using the machine’s collection of physical signals, followed by an analysis conducted 
by professionals, so as to judge the reason(s) for the abnormality behind the amount of 
mechanical physical signals.  As a result of the various levels of knowledge, experience, 
and methods of analysis adopted by each expert, there may be a huge gap among 
assessment results, thereby affecting any timely intervention on the machines involved.

1.2	 Motives
	 Generally speaking, the ideal machine tool has no vibrations, noise or increase in 
temperature during operation.  Its energy will be applied to processing and operating 
entirely without loss.  However, such a condition is not applicable in practical use owing 
to wear on parts and components during operation.  This leads to partial dissipation 
in the form of vibration, noise, and thermal energy inside the machine tool.  Such 
conditions might worsen with increased operational time, thereby causing damage 
and the ultimate failure of the machine, even potentially achieving a state in which the 
machine is irreparable.  Thus far, the primary methods used for machine diagnostic 
are categorized as: (1) artificial tests, where engineers judge each part of a machine 
through visual, auditory, and tactile perception.  Such a method is highly subjective and 
might lead to mistaken judgment due to inexperience on the part of the examiner; and 
(2) instrumental diagnostic, such as the use of a spectrum analyzer.  Such instruments 
are expensive because of operator costs and may not be applicable or appropriate for 
the long-term monitoring of a single machine.  To help processing firms obtain greater 
efficiency, resulting from less labor in the maintenance process, the lowering of service 
costs due to damage, and the prevention of declines in productivity due to accidental 
damage, performance diagnostic of machine tools will likely become a focus of study in 
the future.  For this reason, in this study, a machine tool diagnostic system (MTDS) was 
developed.  
	 This system was used to analyze physical phenomena that caused a reduction in 
performance through the use of a signal processing method where current performance 
was evaluated.  In addition, the current state of the machine was evaluated, and a health 
feature function model was developed through statistical and artificial intelligence 
analyses of current channels for potential failure so that necessary measures could 
be taken to further improve the reliability and productivity of the machines under 
consideration.

1.3	 Literature review
	 In signal processing, Whittaker proposed the Nyquist sampling theorem in 1915 to 
avoid signal aliasing, which occurs frequently in signal sampling and leads to signal 
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distortion.  These effective principles related to sampling guidelines have been effective 
for many years and will likely remain so.(1)  In 1965, Cooley and Tukey published a fast 
algorithm in the discrete Fourier in the “Mathematics of Computation”, which is called 
the fast Fourier.(2)  Its value lies in butterfly computing architectures that reduce the 
amount of multiplication required to meet immediate processing requirements for many 
engineering tasks.  The study of the fast Fourier applies to the analysis for the stationary 
signal collected by MEMS sensors, which is mainly because the fast Fourier expresses 
overall intensity wherein the frequency of the stationary signal will not vary with time.  
In previous studies, some scholars used spectral analysis methods on a fixed-speed motor 
and considered the peak of a specific frequency as a feature.  In 1986, Jolliffe proposed 
principal component analysis (PCA) where eigenvalues and eigenvectors were used 
to reduce the data dimension and were applied in a variety of mathematical models 
successfully.(3)

	 In performance evaluation and diagnostic theory, Luo and Zeng studied the diagnostic 
method for vibration signals in bearing damage in 2008.  They predicted that bearing 
damage occurred at different points.  They then used the bearing vibration signals 
emitted during operation to analyze and determine the operating condition of the ball 
bearings by signal measurement and processing techniques; however, the findings only 
suggested an upward trend of the amplitude of each frequency.(4)

	 In 2009, Wu and Kuo used discrete wavelet conversion (DWC) and artificial neural 
network to distinguish and compare the types of fault occurring in vehicle engines.(5)  
Discrete wavelet analysis was used to reduce the complexity of the eigenvectors, and 
then the artificial neural network technique was used to differentiate between them.  
The results demonstrated that fault diagnostic is effective and can be used on various 
automotive engines, further confirming that an artificial neural network can be an 
effective tool for fault classification.(3)

	 In 2003, Li et al. used PCA to reduce the data dimensions and neural network to 
complete the classification of information, further applying them in the current data of 
drilling processes successfully.(6)  The experimental data showed that PCA can reduce the 
data dimensions effectively, and that the recognition rate behind such neural network is 
up to 93%.  Some other researchers applied Fourier and neural network based methods 
for machine diagnosis and prediction based on historical data matrix.(7–10)

2.	 Back Propagation Neural Network for MTDS

	 The neural network is a combination of a large number of simple arithmetic units 
connecting to a network.  It has the basic ability to learn, memorize, and generalize.(11–16)  
Among the many types of neural network, the back propagation neural network is the 
core of all the others and has the following four advantages: (1) function approximation: 
train the input vector and correspondent output vector to a model and establish function 
approximation; (2) model identification: link an undetermined output vector with an 
input vector, thereby achieving the effect of discrimination; (3) classification: define and 
classify the type of input vector; and (4) data compression: reduce the dimension of the 
input vector for convenient transfer and storage.
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	 Given all the features and advantages above, our study adopted the back propagation 
neural network as the structure.  The framework of the back propagation neural network 
is multilayer perception (MLP).  The learning algorithm that is commonly used is error 
back propagation (EBP).  Thus, they were combined as a back propagation neural 
network.  Figure 1 shows a framework of the back propagation network in this study.(5,6)

3.	 System Structure of MTDS

3.1	 System structure
	 In order to solve the common problems that occur in machines, more than one sensor 
should be installed on it, with consideration of convenience as well as cost.  In this study, 
we used micro-electromechanical systems (MEMS), a MEMS triaxial accelerometer, 
a temperature sensor, and a MEMS microphone as the sensors to measure vibration, 
temperature, and noise, respectively.  The connection of MEMS sensors is shown in Fig. 2.

3.2	 Spindle design and position of sensor
	 The driving means was divided into four categories, namely, (1) gear, (2) belt, (3) 
direct link, and (4) a link built into the motor.  A traditional miniature machine, based 
on a gear and belt that computerized numerical control (CNC) machines currently use 
in the market, is based on a direct link and a link is built into the motor.  Among which, 
the direct link constitutes the primary driving manner.  Therefore, it is discussed here.  

Fig. 1.	 (Color online) Framework of back propagation neural network in this study.
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Take a spindle as an example.  In order to obtain real-time monitoring and a variety of 
physical signal data from a spindle, under the ideal condition of this study, three grooves 
were designed to erect physical signal sensors such as an accelerometer, a temperature 
sensor, and a microphone.  

4.	 Experimental Results and Discussion

4.1	 Hardware specification of the experiment
	 In this experiment, a miniature integrated processing machine was the example in 
the laboratory.  A MEMS triaxial accelerometer, a MEMS microphone, and a MEMS 
temperature sensor were installed on the spindle sleeve as in the structure shown in 
Fig. 3.  Then, the data from the connected battery and extract card were transferred to 
a computer through the signal data extract card.  Finally, the analysis and diagnosis of 
health were provided by the machine diagnostic system.  Table 1 shows the specifications 
of the spindle motor.  Table 2 shows the specifications of the servo motor.

4.2	 Experiment: interposed performance test of spindle tool
	 A common problem occurred on the machine shown in Table 3.  The tool that is 
interposed on the spindle side often caused excessive vibration of the machine owing 
to motor failure of the turret or sensing error of the extreme switch, resulting in an 
extraordinary quality of processing.  For this reason, this experiment categorized the 
spindle in terms of the tool’s interposing manner, where the normal interposed tool and 
extraordinary interposed tool were classified as abnormal performance.  Figure 4 shows a 
comparison of the normal interposed and extraordinary interposed tools.  Table 3 shows 
the setting of category of abnormal performance in experiment No. 1.

CNC machine tool

Triaxial accelerometer Microphone Temperature
sensor

X-axis Y -axis Z-axis

A/D converter

Personal computer

Fig. 2.	 (Color online) Connection of MEMS sensors.
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Table 1
Specification of spindle motor.
Brand YASKAWA
Model No. SGMAV-10A
Rated rotation speed 3000 rpm
Maximum instant speed of rotation 6000 rpm
Rated torque 3.18 N·m
Instant maximum torque 9.55 N·m

Table 2
Specification of servo axle motor.
Brand YASKAWA
Model No. SGMJV-04A
Rated rotation speed 3000 rpm
Maximum instant speed of rotation 6000 rpm
Rated torque 1.27 N·m
Instant maximum torque 4.46 N·m

Table 3
Setting of category of abnormal performance in experiment No. 1.
Status setting Category setting of performance abnormality.
Normal The tool is adhered to the head of the spindle.
General The tool is distanced from the head of the spindle by 3 cm.
Extraordinary The tool is distanced from the head of the spindle by 5 cm.

Fig. 3.	 (Color online) Structure of machine diagnostic system.
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4.3	 Performance evaluation of interposing status of spindle tool
	 We set the normally interposed tool and the loosened interposed tool at the spindle 
motor IDLE at 1000 RPM.  Then, we set the sampling frequency in the extracting 
program as 100 Hz and the sampling value as 1024 points.  Finally, the attribution 
function model was built by extracting the XYZ triaxial physical signal of vibration, 
sound wave, and temperature.  In order to validate the effect of the performance of the 
system designed for machine tools in this study, both categories of performance were 
extracted thrice, and the physical signal was extracted once at random between normal 
and abnormal performances, according to the sample of fuzzy logic theory.  The mean 
of the physical signal sample with normal performance served as the standard value, 
whereas that with abnormal performance served as the critical value.  Table 4 shows the 
experimental environment setting of performance evaluation for the interposed spindle 
tool.

Fig. 4.	 (Color online) Comparative result of (a) normal interposed tool and (b) extraordinary 
interposed tool.

(a) (b)

Table 4
Experimental environment setting of performance evaluation for interposed spindle tool.
Rotation speed of spindle motor 1000 rpm
Sampling frequency 100 Hz
Sampling point 1024 samples
Category of extracting signal XYZ triaxial vibration, sound wave, temperature
Number of extracted groups of normal signal 3 groups
Number of extracted groups of abnormal signal 3 groups
Fuzzy logic sample Each per normal and abnormal signals
Waiting test Two groups of normal and abnormal signals
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Table 7
Performance evaluation and test result of interposed spindle tool.
Performance No. Performance Attribution Level Success/Fail
Test #1 Normal 0.97 1–2 ○
Test #2 Normal 0.92 1–2 ○
Test #3 Extraordinary 0.18 4–5 ○
Test #4 Extraordinary 0.24 4–5 ○

Table 5
Example of performance evaluation for interposed spindle tool.
Measured item Standard value Critical value

Vibration
X 0.244448 0.24433
Y 0.240111   0.242042
Z 0.244897   0.246669

Acoustic 0.105008 0.10129
Temperature 0.098707 0.09886

Table 6
Performance evaluation level classification of interposed spindle tool.

Level Degree of 
membership

Vibration Acoustic TemperatureX Y Z
1 1   0.244448 0.240111   0.244897   0.105008   0.098707
2      0.75   0.244419 0.240594 0.24534   0.104079   0.098745
3    0.5   0.244389 0.241077   0.245783   0.103149   0.098784
4    0.5 0.24436 0.241559   0.246226 0.10222   0.098822
5 0 0.24433 0.242042   0.246669 0.10129 0.09886

	 The classification of attribution function and level was completed by fuzzy logic 
theoretical computation.  Table 5 shows the exapmle of performance evaluation for the 
interposed spindle tool.  Table 6 shows the performance evaluation level classification of 
the interposed spindle tool.
	 We applied another four groups of physical feature signals to the built attribution 
function and level classification table to realize the performance of these four groups 
of signals that were awaiting evaluation.  Such a mechanism will be helpful to the unit 
operator’s evaluation of the current state of the machine.  Table 7 shows the performance 
evaluation and test result of the interposed spindle tool.

4.4	 Success rate of healthy evaluation experiment
	 For the experiment, we set up the triaxial accelerometer on the spindle.  Three models 
of sensors were deployed for testing.  The experiment was separated into three channels 
using 2400 models for training out the framework and then evaluating the status of 
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the running spindle.  Three types of fault were tested in this experiment, including the 
increase of spindle speed with twofold and threefold position bias.  When the fault 
signal is revealed, the diagnostic function will enable the root cause of the fault to be 
determined immediately.  As shown in Table 8, the diagnostic success rate is determined 
on the basis of the amount of testing signals.  The average diagnostic time of this 
framework proposed in this research is 1.11 s.

5.	 Conclusions

	 In this study, a MEMS sensor was used to extract physical signals from a machine 
tool.  A performance assessment was carried out using fuzzy logic theory.  It showed the 
ownership of the verified signals and then defined the level that each group of ownership 
belonged to and also showed whether the performance was normal or not.  If normal, 
the system determined specified rules for such normality.  In the process of extracting 
signals of vibration and noise, the system used Fourier transform to analyze any changes 
made on each signal in the frequency field.  Then, PCA was used to decrease the data 
dimensions; we evaluated the work status of the machine tool from the features of the 
signals.  Furthermore, we built a feature math model from recorded signals using fuzzy 
logic theory, determining any abnormal item.  Lastly, we accomplished the diagnostic 
of the performance of the machine tool using physical signals through diagnostic 
reports from a human-machine interface.  The MTDS was able to provide maintenance 
personnel with the proper way to respond to diagnostic results in order to avoid any 
damage leading to the reduction in the output from the machine tool.

Table 8
Success rate of healthy evaluation experiment.
Channel Test number Performance status Test times Success times Success

#1

Testing #1 Normal 200 200 100%
Testing #2 Fault 200 200 100%
Testing #3 Fault 200 200 100%
Testing #4 Fault 200 200 100%

#2

Testing #1 Normal 200 200 100%
Testing #2 Fault 200 200 100%
Testing #3 Fault 200 200 100%
Testing #4 Fault 200 200 100%

#3

Testing #1 Normal 200 200 100%
Testing #2 Fault 200 200 100%
Testing #3 Fault 200 200 100%
Testing #4 Fault 200 200 100%

Note: Success rate = (Success times) / (Test times)
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