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	 In this study, we apply laser and infrared sensors to a wheeled mobile robot 
(WMR) for simultaneous localization and mapping (SLAM).  The robot utilizes a laser 
measurement sensor to detect obstacles and identify unknown environments.  Fuzzy 
theory and the iterative closest point (ICP) algorithm are applied to control design.  
The proposed control scheme can control the WMR movement along walls and avoid 
obstacles.  In addition, the k-dimensional (k-D) tree is used to reduce the computation 
time and achieve real-time positioning.  By calculating the rotation and translation 
matrices among different sets of measured points, distance and angle information of the 
moving robot can be recorded.  Furthermore, the worst point rejection method is applied 
to delete less corresponding points that can prevent the ICP process convergence to a 
local optimum.

1.	 Introduction

	 The wheeled mobile robot (WMR) is the most used carrier in mobile robot 
applications.  It has some good properties such as high-speed mobility, easy control, and 
energy storage capacity.(1,2)  Simultaneous self-positioning, environment map building, 
path planning, and obstacle avoidance are essential abilities for autonomous mobile 
robots.  With the installation of various sensors or tools, mobile robots can be applied 
to multipurpose applications such as home services, medical care, entertainment, space 
exploration, military, and industrial automation.  In this study, we focus on unknown 
environment exploration.  Precise position estimation is one of the core issues in 
simultaneous localization and mapping (SLAM) research.  In ref. 3, the sensor network 
provided an effective method for a mobile robot to adapt to changes and guided it across 
a geographical network area.  To enhance the performance, a charge-coupled device 
camera and artificial landmarks were used for self-localization.(4)  Hwang and Song(5)  
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examined the monocular-vision-based SLAM of a mobile robot using an upward-looking 
camera.  Gallegos and Rives(6) described a composite sensor approach that combined the 
information given by an omnidirectional camera and a laser range finder to efficiently 
solve the indoor SLAM problem.  Most of the studies applied image processing to obtain 
feature points; the process was complex and time-consuming.  Another drawback is that 
most visual sensors are sensitive to the light source, and the brightness will affect the 
result of image processing and its accuracy.  The positioning systems currently known 
and widely used are laser scanning positioning systems, odometer calculation positioning 
systems, image video positioning systems, and ultrasonic sensing systems.  In this study, 
the laser measurement sensor is used owing to its high accuracy, high receiving rate, and 
wide scanning range.  Moreover, the laser is not affected by light and is very suitable for 
indoor usage.  It has sufficient time for position calculation in real time using the iterative 
closest point (ICP) algorithm(7) and achieves positioning in an unknown environment.  
Fuzzy theory is applied to control the movement of the WMR.

2.	 System Setup

	 A WMR called Ihomer(2) is used in the entity test, as shown in Fig. 1(a).  The control 
scheme mainly uses a laser measurement sensor SICK-LMS100, which is placed on top 
of the WMR, to detect the unknown environment around the WMR.  Two wheels are 
located at the left and right sides under the body of the WMR and are driven by two 18 
V DC motors.  Two small casters are located at the rear and front under the body of the 
WMR.  They support the balance and movement of the WMR.  The encoders, which are 
located at the sides of the wheels, provide the measured value of the body movement.  
The receivers of the LMS100 measure the object distance and help collect information 
that is used for building the map and wall-following.  Dynamic analysis of the moving 
distance and turning angle of the WMR can be found in ref. 4.  The WMR is located on 
the Cartesian coordinate system (global coordinate system) with no lateral or sliding 
movement, as shown in Fig. 1(b).

Robot body

Left wheel

Heading direction

Caster

Right wheel

Lateral direction

Caster

X

Y

Fig. 1.	 (Color online) (a) Ihomer wheeled mobile robot with LMS100 laser sensor and (b) WMR 
coordinate diagram.

(a) (b)
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3.	 Control Design

3.1	 Wall-following
	 There are two common inputs of the proposed fuzzy controller for speed and angle 
control, which are the detected distances dr and r, where r is r = dfr cos(45°) − dr, as 
shown in Fig. 2.
	 The input variable for the distance dr is SR_r, and the fuzzy values are very near, 
near, medium, far, and very far.  Fuzzy values of the input r are large negative, negative, 
medium, positive, and large positive.  The output variable for turning angle is TA, and 
the fuzzy values are TR3, TR2, TR1, TZ, TL1, TL2, and TL3, which represent the angles 
turn right very large, turn right large, turn right, go forward, turn left, turn left large, and 
turn left very large, respectively.  Fuzzy speed is selected on the basis of distance factor.  
Some examples of the control rules for turning angle are shown in Table 1.

3.2	 Improved simultaneous localization and mapping
	 When accessing the door of an unexplored room, the control system starts to record 
the coordinates and angles, which are calculated using the ICP algorithm.  The ICP uses 
two different curves from LMS100 as inputs, and the outputs are rotation and translation 
matrices.  The curves are sets of 180 points from 0 to 180°.  The characteristics can be 
used to find the modified rotation and translation matrix to revise the imprecise data 

LMS 100 dr r < 0

dfr

LMS 100 dr r = 0

dfr

LMS 100 dr r > 0

dfr

Fig. 2.	 (Color online) Schematic view of r.

Table 1
Fuzzy logic rule table.

  r LN N M P LP
SR_r
VN TL3 TL1 TZ TZ TZ
N TL2 TR1 TZ TZ TZ
M TL2 TL1 TZ TZ TZ
F TL2 TL1 TZ TR1 TR1
VF TL2 TL1 TZ TR2 TR3
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from the robot encoder.  There are three disadvantages of the ICP algorithm.  The first 
one is that the computation time of the ICP algorithm is very long to be used in real 
time.  To reduce the computation time in the process and achieve real-time positioning, 
the k-dimensional (k-D) tree(8) is applied to this study.  The second disadvantage is the 
accumulated error.  When the turning angle and environment changing rate are both 
small, a strategy of reducing the number of reads(9) is applied to obtain the rotation angle 
and displacement.  The third problem is that the ICP algorithm usually converges to a 
local optimum.  To avoid this situation, in this study, we apply strategies of increasing 
the initial angle and worst point rejection(10) to map building when the turning angle of 
the WMR and the environment changing rate are both large.

3.2.1	Iterative closest point algorithm
	 The ICP is often used to reconstruct 2D or 3D surfaces from different scans.  It 
iteratively revises the translation and rotation, and minimizes the distance between the 
points of two different curves.  In general, the ICP uses two different curves as inputs, 
and the outputs are rotation and translation matrices.  The characteristics can be used 
to find the modified rotation and translation matrix to revise the incorrect data from the 
encoder of the robot.  The ICP algorithm is described as follows.(7)

Step 1: Define the data model of data shape (P) and model shape (X) as

	 Pi = Pxi

Pyi i = 1 ···  n
  Xi = Xxi

Xyi i = 1  ···  k
.	 (1)

Here, n and k are the total numbers of data.  The data measured by the LMS100 is a 
set of distance r and angle θ.  Record a distance every 0.5° from −45 to 225°.  At each 
iteration, 180 points are retrieved, from 0 to 180°.  Then, use eq. (2) to translate polar 
coordinates to Cartesian coordinates.

	
DXx
DXy

= ri cos θi
ri sin θii

i 	 (2)

After data processing, set a threshold value, which is the stopping condition of the ICP.  
If the mean square error is greater than the threshold value, then continue to repeat the 
process at each iteration.  The threshold is the mean square error calculated using X and 
a new data shape (updated P).  When the process achieves convergence and the mean 
square error is less than the threshold, stop the calculation process.
Step 2: After initial setting, find the correspondence between two sets of P and X.  The 
corresponding relationship is the shortest distance between corresponding points in the 
ICP algorithm.  Find the minimum distance from the point pi on X.  The corresponding 
point ai is stored in A shape.  The corresponding relationship is calculated as d mini = 
min d(pi, X)i=1,...,n.
Step 3: The geometric transformation matrix consists of two types of rotation and 
translation matrices.  First, calculate the center of mass.  pi and ai are points of P and A, 
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respectively.  Np and Na are numbers of P and A, respectively.  By using the following 
equations, the rotation angle and displacement between the two data can be obtained as

	 µp =
1

Np

Np

i =1
pi , µa =

1
Na

Nα

i =1
a i.	 (3)

With the center of mass, calculate the cross covariance matrix between P and A.

	 Σpa =
1

Np

Np

i =1
pi − µp (a i − µa ) =

1
Np

Np

i =1
pi aT

i − µp µT
a)( T 	 (4)

The cyclic components of the antisymmetric matrix Bij = [Σpa − (Σpa)T]ij are used to form 
the column vector ∆ = [B23 B31 B12]T.  This vector is then used to form the 4 × 4 matrix.

	 Q Σpa =
tr Σpa ∆T

∆ Σpa + Σpa
T
− tr Σpa I3

	 (5)

Here, I3 is the 3 × 3 identity matrix.  The unit eigenvector q = [q0 q1 q2 q3]T corresponding 
to the maximum eigenvalue of the matrix Q(Σpa) is selected as the optimal rotation.  

	 R =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
2 − q2

1

	 (6)

The optimal translation vector is given by

	 T = μa − R(qR)μp .	 (7)

Step 4: 
D is the data shape (P) and m is the number of iterations.

	 Dm+1 = Dm ∙ R + T	 (8)

The changes in displacement and angle at each iteration can be obtained.  Then, add the 
changes in displacement and angle individually.  When the process achieves convergence 
and the mean square error is less than the threshold, the final displacement and angle are 
the displacement and angle between two different curves.
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3.2.2	k-D tree
	 One of the most well-known data structures suitable for the ICP algorithm is the 
k-D tree.(8)  The k-D tree can reduce the computation time and find the significant 
corresponding point.  It is a space-partitioning data structure for organizing points in 
a k-D space.  The k-D tree is a binary tree in which every node is a k-D point.  Every 
nonleaf node can be considered as implicitly generating a splitting hyperplane that 
divides the space into two parts, known as half-spaces.  Points to the left of this 
hyperplane are represented by the left subtree of that node, and points to the right of the 
hyperplane are represented by the right subtree.  The hyperplane direction is chosen in 
the following manner: every node in the tree is associated with one of the k dimensions, 
with the hyperplane perpendicular to the axis of that dimension.  Two experiments are 
carried out to compare the computation time.  The results are shown in Table 2.  The 
computation time obtained by using the k-D tree with ICP is shorter than that without the 
k-D tree.  Its computation time is less than the SLAM’s sampling time of 0.5 s; thus, real-
time positioning can be achieved.
 
3.2.3	Reducing the number of reading cycles
	 Reducing the number of reading cycles(9) means a smaller number of alignments 
and less accumulated error.  Consecutive data is not used since 1 s of computation time 
cannot tell the difference between the original ICP and the less-reading-cycle ICP.  Here, 
a 20-s test is performed.  Let the WMR continuously move straight forward for 20 s.  The 
moving distance of the WMR measured is 197.82 cm, and that calculated using the less-
reading-cycle ICP is 196.12 cm, as shown in Fig. 3, where the red dotted line is the track 
of the WMR, the blue dotted lines are the calculated results, and the solid black lines are 
the actual walls.

3.2.4	Worst point rejection
	 When the WMR turns at a large rotation angle, delete the points that do not 
correspond to the model shape.(10)  Points that do not correspond make the ICP process 
converge to a local optimum.  Thus, the predicted angle is used.  The predicted angle is 
in accordance with the turning angle, and then carry out some fine tuning to fit the actual 
condition.  The deleted points are according to the predicted angle and one point at each 0.5°.  
For example, if there are 20 points at 10°, we delete some points at the tail of the data 
shape and the head of the model shape.  Figure 4 shows the comparison of the original 
ICP and the ICP with the worst point rejection.  In the test, the WMR, i.e., the red dot on 
the map, turns left at 90°.

Table 2
Computation times of two experiments.
Method Closest point Overall computation time
ICP 1.19 s 1.33 s
ICP with k-D tree 0.13 s 0.38 s
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4.	 Experimental Results

	 The improved SLAM strategy was tested in different environments.  One of the 
experimental results is shown in Fig. 5.  The left part of the figure is the real situation of 
the WMR and the right part is the map of the scanned environmental data and the path 
calculated using the ICP algorithm, where the red lines are the WMR’s moving path, and 
the yellow points are environmental data.  Without the weighting process, the map can be 
obtained as the dashed line in Fig. 6(a).  Compared with the real contour of the unknown 

Fig. 3.	 (Color online)  Results of using (a) original ICP and (b) less-reading-cycle ICP.

Fig. 4.	 (Color online) Results of (a) ICP and (b) ICP with worst point rejection.

(a) (b)

(a) (b)
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environment, the average error is 3.8 cm.  Furthermore, with the weighting process that 
gives more weight to the old data and the weights are descending with the new data, the 
result is shown in Fig. 6(b).  The average error decreases to 1.6 cm.  In this experiment, 
the WMR took 2 min and 6 s to complete the exploration using the improved SLAM 
strategy.

5.	 Conclusions

	 In this study, a control scheme based on an improved SLAM strategy and fuzzy logic 
theory is proposed to control a mobile robot for building an unknown environment map.  
In this research, we apply a laser measurement sensor to mark obstacles and positions.  
According to the laser measurement sensor’s location and the detected distance between 
the sensor and the object, map building can be completed after the environmental 

-300 -250 -200 -150 -100 -50 0 50 100
-100

-50

0

50

100

150

200

250

300

X(cm)

Y
 (c

m
)

Topographic map of the original environment
The estimated map of the unknown space

-300 -250 -200 -150 -100 -50 0 50 100
-100

-50

0

50

100

150

200

250

300

X (cm)

Y
 (c

m
)

Topographic map of the original environment
The estimated map of the unknown space

Fig. 6.	 (Color online) Results of curve fitting (a) without and (b) with weighting process.
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Fig. 5.	 (Color online) Unknown environment exploration.
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exploration is finished.  The task of building an unknown environment map can be 
accomplished without using visual images.  In previous studies, the SLAM based on 
visual sensors is sensitive to the light source that affects the accuracy of the image 
process.  In this study, the laser sensor is not affected by light; even in a dark room, it still 
works properly.  Real-time PC-based control of the WMR on wall-following and map 
building is performed successfully.  Moreover, in this study, a modified ICP algorithm is 
presented.  It uses the k-D tree to reduce the computation time, less-reading-cycle ICP  to 
reduce the number of alignments and the accumulated error, and the worst point rejection 
method to delete less corresponding points and prevent the ICP process convergence to 
a local optimum.  Experiments show that the average error is less than 2 cm, which is 
better than the results of most of the previous studies.
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