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	 A Holter monitor is an ambulatory device for continuous and long-term 
electrocardiography (ECG) monitoring for various clinical purposes.  Information on a 
patient’s physical activity improves the clinical interpretation of ECG data.  In this study, 
we propose a static posture and dynamic activity classification algorithm with a Holter-
mounted accelerometer.  This algorithm separates an acceleration signal into static 
gravity and dynamic activity acceleration.  The static gravity is used to calculate a tilt 
angle, which discriminates static posture intuitively.  The dynamic acceleration is also 
used to classify dynamic activity.  The proposed algorithm was implemented and tested 
in a Holter monitor.  Its functional feasibility was shown for six healthy subjects.  The 
Holter monitor was attached to the chest, front beltline, and lateral beltline alternatively.

1.	 Introduction

	 A Holter monitor is an ambulatory device for continuous and long-term 
electrocardiography (ECG) monitoring for various clinical purposes.(1–5)  For appropriate 
interpretation of Holter data, a patient’s handwritten records, i.e., a diary of daily living 
activities and events, are necessary.  However, this manual record keeping is cumbersome 
and easily missed for some patients.(2)

	 Meanwhile, micro-electromechanical systems (MEMS) sensors, particularly 
accelerometers, have been used for human motion detection.(2,4,6–9)  A MEMS-based 
accelerometer provides advantages such as low cost and small size.  The accelerometer 
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senses acceleration, which includes dynamic activity and earth gravity.  Usually, these 
quantities are separated to provide useful information.(4)  Activity acceleration can be 
used to detect the physical activity level.  Gravity can be projected onto the sensor axis 
to provide the tilt angle.  The tilt angle corresponds to human posture.(9)  It was shown 
that an accelerometer in a Holter monitor can feasibly improve the interpretation of heart 
rate response to activity.(2)

	 Particularly, a method was proposed for activity classification and energy expenditure 
estimation with acceleration data and ECG from a Holter monitor.(4)  It defined activity 
in a well-structured manner, suggested a good idea for detecting activity changes, and 
proposed a reasonable experimental protocol.  However, it treated the acceleration 
signal itself but did not utilize tilt angles that provide more intuitive information.  It also 
focused on activity changes but not on the activity state itself, and this makes the activity 
classification algorithm somewhat complicated.
	 In this study, we propose an algorithm to classify static posture and dynamic activity 
with a Holter-mounted accelerometer.  The acceleration signal is low-pass-filtered to 
obtain the static gravity term from which a tilt angle is calculated.  The static gravity 
is then subtracted from the acceleration signal to obtain dynamic activity acceleration.  
The tilt angle and activity acceleration are used to classify static postures and dynamic 
activities.  The proposed algorithm was implemented and tested in a Holter monitor.  
Its functional feasibility was shown for six healthy subjects.  Since there are several 
alternative body locations where a Holter monitor is attached, these locations are 
considered in the experimental design. 

2.	 Materials and Experiments

2.1	 Holter monitor
	 The proposed algorithm targeted a Holter monitor (Event Recorder CE-100, Bionet 
Co., Ltd., Korea).  This device has a three-axis ±6 g accelerometer (LIS344ALH, ST 
Microelectronics, Geneva, Switzerland), an MSP430 series microprocessor (Texas 
Instruments, USA), and a Bluetooth module.  The microprocessor samples the 
accelerometer signal and sends binary data through the Bluetooth module at 100 Hz.

2.2	 Activity classification algorithm
	 The proposed algorithm starts with averaging the raw signal from the accelerometer 
with a moving window size of 8 cycles, to attenuate any singular data.  The static gravity 
term is separated from the acceleration signal with low-pass filter (a 4th Butterworth 
filter with a cutoff frequency of 2 Hz).(4)  With this static gravity, a tilt angle is calculated 
using trigonometry.
	 The activity acceleration, i.e., the dynamic term in the acceleration, is calculated by 
subtracting the static gravity from the total acceleration.(4)  Using Euclidean norms of the 
tilt angles |θ| and activity accelerations (ax, ay, and az), human body activity is classified.  
The activity is classified into a static state or dynamic state as shown in Fig. 1.  The static 
state is categorized into sitting, lying, and standing postures.  The dynamic state includes 
activities such as walking, running, and fast running.(4)

	 Since activity acceleration is almost zero in the static states, the static states and 
dynamic states can be distinguished with an activity acceleration threshold.  The 
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threshold is reasonably decided on the basis of the smallest activity acceleration in 
dynamic activities.  If the activity acceleration is larger than this threshold (ath_walk), this 
state corresponds to walking, running, or fast running, in increasing order of activity 
level.  If the activity acceleration is greater than the ath_walk threshold but less than the ath_run 
threshold, then the state is detected as walking.  In this manner, the other dynamic states, i.e., 
running and fast running, can be discriminated.(4)

	 If the activity acceleration is less than the ath_walk threshold, this state corresponds to 
a static state (sitting, lying, or standing).  It is clear that the tilt angle is very small in a 
standing posture and close to 90° in a lying posture.  In a preliminary study, the tilt angle 
in a sitting posture showed some value that was different but not significant from those 
in the standing posture.  In a similar manner to dynamic activities, sitting, lying, and 
standing postures can be distinguished using thresholds θth_sit and θth_lie.
	 In this study, the proposed algorithm was executed every 10 ms.  Since there are 
rapid transitional changes in the tilt angle and activity acceleration during state changes, 
the final stage corresponding to the state classification part executes every 0.5 s for the 
averaged tilt angle and activity acceleration.  Moreover, since there could be 1-shot false 
detection due to a transitional change of the classified state over an extended time, the 
classified state is confirmed if it remains unchanged for four consecutive times.  This 
means that the proposed algorithm classifies the activity state every 2.0 s.

2.3	 Experimental protocol
	 In this experiment, six healthy subjects aged 20–31 (four males and two females) 
participated.  The experimental procedure was explained to the subjects, and they all 
signed an informed consent declaration before participation.  Static and dynamic tests 
were designed.(4) In the static test, each subject stood for 5 s, sat for 7 s, stood again for 

Fig. 1.	 Flowchart for activity classification with acceleration and tilt angle.
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7 s, sat again for 7 s, and lied down for 7 s.  The dynamic test was conducted with the 
subjects on a treadmill.  In the dynamic test, each subject accelerated up to 4 km/h for 5 
s, walked for 5 s, accelerated up to 7 km/h for 5 s, ran for 5 s, accelerated up to 10 km/h 
for 5 s, and ran fast for 5 s.  The Holter monitor was attached with an elastic band to the 
chest, front beltline, and lateral beltline.  For each of these three attachment positions, 
static and dynamic tests were repeated 20 times for each subject.
	 Raw acceleration signal, calculated tilt angle, activity acceleration, and classified 
activity state were transmitted to a PC and saved as a file.  The saved data were opened 
and displayed with MATLAB (MATLAB 7.12, Mathworks, USA).  Actual activity states 
were identified subjectively from the data display considering the experimental protocol.  
The classified activity states were compared with the actual states.  Activity for a period 
of 5 s was counted as one unit in the classification accuracy calculation.

3.	 Results

	 Figure 2 shows a portion of the results of a dynamic test.  This corresponds to a 
sequence of standing, walking, running, and fast running, as shown in the third and 
fourth panes from the top, which correspond to the detected and confirmed states for four 
consecutive detected states.  The states 1, 4, 5, and 6 correspond to standing, walking, 
running, and fast running activities, respectively.  This sequence of states matches with 
the experimental protocol and this means that the actual activity states can be identified 
subjectively following the protocol.  In this particular case, the 1-shot transitional false 
classification at about 9 s in the single classification was not seen in the confirmed 
classification.  However, there exists a consistent time delay. 

Fig. 2.	 A dynamic activity classification.
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	 Figure 3 shows a portion of a static test.  This corresponds to a sequence of standing, 
sitting, standing, sitting, and lying postures.  The state numbers 1, 2, and 3 correspond to 
standing, sitting, and lying postures, respectively.  The tilt angle range is larger, and the 
activity acceleration range is smaller than those in the dynamic test.
	 When the Holter monitor was attached to the chest, nine standing/sitting postures 
were misclassified as lying posture as shown in Table 1.  Two lying postures were 
confused with standing/sitting posture.
	 Two walking activities and seven fast running activities were detected wrongly for 
the front beltline attachment as shown in Table 2.  The state numbers of standing/sitting 
and lying states are smaller for the front and lateral attachments than those in the chest 
attachment.  The reason for this was that a subject skipped those activities.
	 One lying state and six walking states were detected erroneously with the lateral 
beltline attachment as shown in Table 3.
	 The activity state classification accuracy was over 94% for any combination of 
activity type and attachment location as shown in Table 4.  For over half of the cases, the 
accuracy was 100%.

Fig. 3.	 A static posture classification.

Table 1
Confusion matrix for chest attachment.

Detected

Actual
Standing/

sitting Lying Walking Running Fast
running

Standing/sitting 351     2     0     0     0
Lying     9 118     0     0     0
Walking     0     0 120     0     0
Running     0     0     0 120     0
Fast running     0     0     0     0 120
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4.	 Conclusions

	 In this study, an algorithm to classify static posture and dynamic activity with a 
Holter-mounted accelerometer was presented.  The acceleration signal was separated into 
a static gravity term and a dynamic acceleration term.  Tilt angle was calculated from 
the gravity term using trigonometry and used to detect static posture intuitively.  The 
activity acceleration is used to classify dynamic activity.  The proposed algorithm was 
implemented and tested in a Holter monitor.  Its functional feasibility was verified for 
six healthy subjects.  The activity state classification accuracy was over 94% and even 
showed 100% for over the half cases for any combination of activity type and attachment 
location.

Table 4	
Activity state classification accuracy for each attachment location (%).

Chest Front beltline Lateral beltline
Standing/sitting   97.5 100.0 100.0
Lying   98.3 100.0   99.2
Walking 100.0   98.3   95.0
Running 100.0 100.0 100.0
Fast running 100.0   94.2 100.0

Table 2
Confusion matrix for front beltline attachment.

Detected

Actual
Standing/

sitting Lying Walking Running Fast
running

Standing/sitting 320     0     2     0     0
Lying     9 120     0     0     0
Walking     0     0 118     0     0
Running     0     0     0 120     7
Fast running     0     0     0     0 113

Table 3	
Confusion matrix for lateral beltline attachment.

Detected

Actual
Standing/

sitting Lying Walking Running Fast
running

Standing/sitting 320     1     5     0     0
Lying     9 119     0     0     0
Walking     0     0 114     0     0
Running     0     0     1 120     0
Fast running     0     0     0     0 120
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	 The classification accuracy for the sitting posture was not sufficiently compared with 
other static postures, even though it was not detailed in this study.  The sitting posture 
was misclassified as standing posture in several cases.  However, this low accuracy seems 
reasonable since the tilt angle difference between sitting posture and standing posture is 
very small.  This indicates that there is a limitation in discriminating between these two 
postures only with an accelerometer.  This problem could be solved with an additional 
barometric pressure sensor, even though this was not available in this study.(10,11)  A 
barometric pressure sensor is known to be able to provide an absolute estimation of 
elevation, which could discriminate the sitting posture from the standing posture.
	 In future studies, the reason for the relatively low accuracy in some cases needs to 
be identified.  A barometric pressure sensor will be utilized to detect the sitting posture.  
These are anticipated to help improve the classification accuracy.  With a barometric 
pressure sensor, it will be possible to detect additional activity such as stairway walking, 
which is an important activity in Holter monitoring application.  Also, the activity 
classification algorithm needs to be integrated with ECG data to improve the clinical 
interpretation. 
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