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	 In this study, microchip electrophoresis (MCE) was integrated with a two-
dimensional photonic crystal (PhC) fabricated using nanoimprint lithography (NIL) for 
the detection of low-molecular-mass substances such as carbohydrates by determination 
of refractive index changes in solutions.  The MCE-integrated PhC was fabricated 
using poly(dimethylsiloxane) (PDMS)-based micro-flow channels and NIL-based PhC.  
Different concentrations of sucrose solutions [0.5–20% (w/v), refractive index: 1.3337–
1.3619] were introduced into a PDMS-based micro-flow channel by electro-osmotic 
flow (EOF), and the MCE-integrated PhC successfully detected fractional refractive 
index changes (0.0002) from the change in the optical characteristics of NIL-based PhC.  
Based on this detection principle, low-molecular-mass substances can be detected cost-
effectively and easily without using a labeling procedure.

1.	 Introduction

	 In living organisms, low-molecular-mass substances such as a carbohydrates play 
an important role in maintaining cellular functions.(1)  In addition, carbohydrates have 
been studied for medical applications such as drug delivery.(2)  To realize carbohydrates 
for medical applications, the analysis of their function, chemical structure, and 
concentration is required.  However, the analysis of carbohydrates presents several 
difficulties in that it requires labeling with reagents, such as a fluorescent dyes, 
by forming covalent bonds.  In contrast, the analysis of carbohydrates without 
covalent labeling requires high-cost analytical instruments such as high-performance 
liquid chromatography (HPLC)(3) and mass spectrometry (MS).(4)  These analytical 
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instruments require huge sample volumes, sophisticated techniques, and long analysis 
time.  To overcome these disadvantages, micro-total analysis system (μTAS)-based 
analytical devices fabricated using micromachining techniques have been actively 
produced.(5)  μTAS-based analytical devices could overcome several disadvantages of 
conventional analytical instruments, such as huge sample volumes and sophisticated 
analysis techniques.  However, previously reported μTAS-based analytical devices 
still require high-cost instruments for analysis of unlabeled carbohydrates, such as 
capacitively coupled contactless conductivity detection (C4D)-based systems(6) and 
surface plasmon resonance (SPR).(7)  Considering these situations, we integrated 
microchip electrophoresis (MCE) and photonic crystals (PhC) to develop cost-
effective, rapid, and simpler devices for the label-free analysis of carbohydrates.
	 MCE enables the introduction of small volumes of sample solutions with high 
reproducibility by using electrokinetic behavior.(8)  In addition, MCE-based devices 
can be adopted to establish a system of multiple analysis by enabling control of device 
design [flow channel dimensions (width and height) and construction].  On the basis of 
these features, MCEs have been widely applied in the analysis of low-molecular-mass 
substances.(9)

	 In addition, we focused on specific optical characteristics of nanostructures.  
Nanostructures, such as a nanoparticles, exhibit specific optical characteristics [light 
absorption,(10) fluorescence,(11) and diffraction(12)] that depend on the size and physical 
property of base materials.  Furthermore, specific optical characteristics of nanostructures 
may be greatly modified by refractive index changes in the surrounding.  Using this 
feature, novel chemical sensors and biosensors have been developed.(13–15)  On the basis 
of specific optical characteristics of nanostructures, we have developed novel chemical/
biosensors using nanoimprint lithography (NIL)-based two-dimensional photonic crystals 
(2D-PhC).(16)  A 2D-PhC is a nanostructure-based optical device constructed of a periodic 
nanoarray of dielectric material such as polymers.  A 2D-PhC can diffract and reflect a 
specific wavelength of light depending on the size, periodicity, and refractive index of 
its base material.  Furthermore, the wavelength and strength of the reflection are shifted 
by the refractive index change of the surrounding environment that may be caused by 
antigen-antibody reaction(17) or DNA hybridization.(18)

	 In addition, NIL is a novel, cost-effective fabrication techniques for producing 
nanostructures on polymers using a mold with high reproducibility.(19)  Basically, for 
the fabrication of 2D-PhC or nanostructure-based optical devices, high-cost fabrication 
instruments, such as electron beam lithography (EBL), focused ion beam (FIB), and 
reactive ion etching (RIE), have been widely used.  In contrast, using NIL, 2D-PhC or 
nanostructure-based optical devices can be fabricated without using high-cost fabrication 
instruments.  In view of these advantages of NIL, we refer to NIL-based fabrication 
techniques as “printable photonics”.(16)

	 In this study, a MCE-integrated 2D-PhC was developed for the analysis of 
carbohydrates.  The MCE integrated 2D-PhC was used to detect different concentrations 
of sucrose and glucose.
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2.	 Materials and Methods

2.1	 Materials
	 For the fabrication of the MCE flow channel, SU-8 3050, SU-8 developer (Nippon 
Kayaku Co., Ltd., Tokyo, Japan), and poly (dimethylpolysiloxane) (PDMS) (SILPOT® 

184) (Dow Corning Toray, Co., Ltd., Tokyo, Japan) were used.  For the detection of 
carbohydrates as a test case, glucose and sucrose were purchased from Wako Pure 
Chemical Industries, Ltd. (Osaka, Japan).  Ultrapure water (18.2 MΩ·cm) from Sartorius 
Stedim Biotech (Aubagne, Cedex, France) was used in all sample preparations.

2.2	 Apparatus
	 To fabricate the triangular configured nanohole array 2D-PhC, a printable photonics 
technique based on NIL was carried out using a nanoimprint apparatus (X-300, SCIVAX 
Corp., Kanagawa, Japan).  For the surface hydrophilization and bonding of the PDMS-
based flow channel to the 2D-PhC, an O2 plasma cleaner (CUTE-MP/R) [FEMTO 
Science (Gyeonggi-Do, Korea)] and UV/O3 cleaner {UV253E [Filgen Inc. (Aichi, 
Japan)]} were used.  For evaluating the optical characteristics of the MCE-integrated 
2D-PhC, a UV-VIS spectrophotometer [SPM-002, wavelength range: 190–1100 nm 
(Photon control, Burnaby, BC, USA)], and optical power meter [8230E (ADC Corp., 
Tokyo, Japan)] were used.  A tungsten halogen light source (HL-2000, wavelength range: 
360–2000 nm) and an optical fiber probe bundle (R-200-7 UV/VIS, fiber core diameter: 
200 μm, wavelength range: 250–800 nm) were purchased from Ocean Optics (Dunedin, 
FL, USA).

2.3	 Fabrication of 2D-PhC using printable photonics technology
	 To develop the MCE-integrated PhC, 2D-PhC (hole diameter, height, and distance: 
230 nm) from cyclo-olefin polymer (COP) (thickness: 100 μm), a printable photonics 
technique based on NIL was carried out using a nanoimprint apparatus (X-300, SCIVAX 
Corp., Kanagawa, Japan).  From our previous study, this configuration of the 2D-PhC 
could detect the antigen-antibody and/or DNA hybridization highly sensitively.(16–18,21)  
Hence, the same configuration of 2D-PhC was used in this study.

2.4	 Fabrication of MCE-integrated PhC
	 The construction of the MCE-integrated PhC is shown in Fig. 1, along with 
photograph of the device.  By integrating the MCE onto the 2D-PhC, the sample solution 
from the inlet can be introduced into the flow channel as a small volume plug by electro- 
osmotic flow (EOF), and the differences in refractive index between sample solution and 
loading buffer can be detected using the 2D-PhC as a reflection peak and an intensity 
change.  Hence, the carbohydrate concentration can be measured without covalent 
labeling.
	 The fabrication method for the MCE-integrated PhC is shown in Fig. 2.  The PDMS-
based MCE flow channel was fabricated by the conventional rapid prototyping technique.  
The cross-channel MCE device consisted of three 10-mm-long channels and a 40-mm-
long separation channel (500 μm width and 30 μm depth).  The surfaces of the PDMS-
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based MCE flow channel and the 2D-PhC were activated using O2 plasma and UV/
O3 cleaner and bonded together via a bonding agent (PDMS prepolymer with catalyst: 
toluene = 1 : 1).(20)  The MCE-integrated PhC was used to detect different concentrations 
of sucrose.

Bonding agent 
(PDMS prepolymer:toluene = 1:1)

Glass 
substrates 
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1st：500 rpm, 3 s 
2nd：1500 rpm, 60 s
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Fig. 2.	 (Color online) Fabrication method for an MCE-integrated PhC.

Fig. 1.	 (Color online) (a) Schematic illustration of the construction of an MCE-integrated PhC.  (b) 
Photographs of an MCE-integrated PhC.

(b) (a)
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2.5	 Optimization of optical setup for label-free detection of sucrose using 
MCE-integrated PhC

	 For the label-free detection of refractive index changes by EOF using an MCE-
integrated PhC, the construction of an optical setup was investigated.  From our previous 
study, we know that the optical setup affects the optical characteristics of the 2D-PhC 
based on how it is constructed.(21)  A schematic illustration of the optical setup is shown 
in Fig. 3.  In this study, three optical setups {transmission [Fig. 3(a)], reflection [Fig. 
3(b)], optical axis shift [Fig. 3(c)]} were constructed.  In the case of optical axis shift, 
the fiber probes between the light source and the detector were separated by a (distance: 
500 μm).  Using these optical setups, the optical characterization of 2D-PhC and the 
optimization of optical setup were achieved.

Fig. 3.	 (Color online) Experimental setup for detection of sucrose: (a) transmission, (b) reflection, 
and (c) optical axis shift.

(b) 

(a)

(c)
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2.6	 Label-free detection of sucrose using MCE-integrated PhC
	 To evaluate the performance of the MCE-integrated PhC for the determination of 
refractive index changes between the loading buffer [10 mM HEPES buffer (pH: 8.2)] 
and different concentrations of glucose [5% (w/v)] or sucrose [0.5–20% (w/v)], solutions 
were introduced into the flow channel by EOF [0.5 kV (DC)].(22)  The changes in optical 
characteristics between the sucrose plug and the loading buffer passing through the flow 
channel were monitored using an optical power meter set at 550 nm.  In addition, for the 
evaluation of performance, the refractive indices of the sucrose solutions and loading 
buffer were also measured using a refractometer {PAL-RI [Atago Co., Ltd. (Tokyo, 
Japan)]}.  Under these experimental conditions and procedure, the refractive index 
dependences of the optical characteristics were investigated using MCE-integrated PhC.

3.	 Results and Discussion

3.1	 Optimization of optical setup for label-free detection of sucrose using 
MCE-integrated PhC

	 The optical characteristics using different optical setup are shown in Fig. 4.  In the 
case of transmission [Fig. 4(a)] and reflection [Fig. 4(b)], the spectrum of the light 
source could be observed.  To monitor the reflection peak wavelength from the 2D-PhC, 
the distance between the fiber probe tip and the 2D-PhC surface will be significantly 
affected.  In this case, the depth of the flow channel (50 μm) and the thickness of PDMS 
(> 3 mm) determined the distance between the fibers and the 2D-PhC.  Hence, the 
specific reflection peak could not be observed.  In addition, the 2D-PhC was affected by 
the incident angle of light.  The reflection peak wavelength of the 2D-PhC is based on 
Bragg’s law.  Hence, the specific wavelength associated with the 2D-PhC could not be 
observed with light irradiated in the perpendicular direction.
	 On the other hand, in the case of optical axis shift [Fig. 4(c)], the specific peak 
wavelength attributed to the 2D-PhC could be observed.  In this study, the numerical 

Fig. 4.	 (Color online) Optical characteristics of PhC using different optical setups: (a) 
transmission, (b) reflection, and (c) optical axis shift.
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aperture of the optical fiber (NA = 0.2) was known.  Hence, light was irradiated at an 
incident angle of approximately 11°.  As a result, the specific wavelength from the 
2D-PhC could be observed.
	 Furthermore, we found that the bulk layer (nonpatterned region) of the 2D-PhC acts 
as a waveguide.  The irradiated light diffracts and is guided in the bulk layer.  Hence, 
in the case of optical axis shift, the specific wavelength from the 2D-PhC could be 
observed.  To confirm the function of the bulk layer of 2D-PhC as an optical waveguide, 
finite difference time domain (FDTD) {EEM-FDM [EEM Inc. (Saitama, Japan)]} 
analysis was performed (Fig. 5).  In the FDTD analysis, incident light was diffracted 
and guided in the bulk layer of 2D-PhC.  In addition, to monitor the guided wave, the 
distance between the light source and the detector was changed (500–1300 μm) [Fig. 
6(a)], and the optical characterization was again carried out.  By increasing the distance, 
the background light from the light source was reduced over 600 μm [Fig. 6(b)].  
However, at larger incremental distances, the specific peak intensity decreased because 
of guided light intensity decay in the bulk layer.

3.2	 Label-free detection of carbohydrates using MCE-integrated PhC
	 To verify the principle of detection, 5% (w/v) glucose solution (n = 1.3395) was 
introduced into the flow channel at different distances of fiber probes.  The change in 
optical characteristics caused by introducing the solution using EOF for different optical 
fiber distances is shown in Fig. 7.  A refractive index change between the loading buffer 
(HEPES buffer) and the glucose solution could be observed.  In addition, by changing 
the distance between the fiber probes, the dependence of the intensity change on the 
distance could be observed.  The distances of the fiber probes were 600–800 μm for the 
label-free detection of refractive index changes of sucrose solutions.

1) 3) 2) 4) 

5)

Incident light Guided wave

Fig. 5.	 (Color online) Results of FDTD simulation.
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	 Using the optimized optical setup, a label-free detection of sample solutions of a 
loading buffer (n = 1.33335) and sucrose [concentration: 0.5–20% (w/v) (n = 1.33337–
1.3619)] was carried out as a test case.  To monitor the refractive index change using the 
MCE-integrated PhC, changes in the time course optical characteristics at 550 nm were 
observed.
	 The sensitivity of the detection of refractive index is shown in Fig. 8.  By introducing 
different concentrations of sucrose, MCE-integrated PhC could detect a refractive index 
change with a high linearity (R2 = 0.9992).  In addition, note that the MCE-integrated 
PhC could detect a fractional refractive index change of approximately 0.0002.  For 
the detection of such a small change in refractive index, high-cost and highly sensitive 
optical setups are required.  However, the MCE-integrated PhC can detect the refractive 
index change using a cost-effective and simple optical setup.  From these results, an 
MCE-integrated PhC has great potential for the analysis of carbohydrates without 
involving sophisticated sample preparation and high-cost instruments.

Fig. 7 (left).  (Color online) Real-time changes in optical characteristics for different fiber probe 
distances for 5% (w/v) glucose solution using EOF.
Fig. 8 (right).  (Color online) Sensitivity of detection of refractive indices of sucrose solutions. 

Side view

X = 500–1300 µm

Light source

Detector

X = 0

Fig. 6.	 (Color online) (a) Cross-sectional image of controlling fiber probe distances. (b) Optical 
characteristics at different fiber probe distances.

(b) (a)



Sensors and Materials, Vol. 27, No. 5 (2015)	 433

4.	 Conclusions

	 In this study, an MCE-integrated PhC was developed using a rapid prototyping 
technique and printable photonics technology.  In addition, the MCE-integrated PhC 
enabled the detection of changes in fractional refractive index without using a labeling 
procedure.  Our results indicate that the MCE-integrated PhC has great potential for 
the analysis of low-molecular-mass substances, and may be particularly attractive for 
medical applications that require cost-effective analysis.
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