S&M Young Researcher Paper Award 2020
Recipients: Ding Jiao, Zao Ni, Jiachou Wang, and Xinxin Li [Winner's comments]
Paper: High Fill Factor Array of Piezoelectric Micromachined
Ultrasonic Transducers with Large Quality Factor

S&M Young Researcher Paper Award 2021
Award Criteria
Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.

Design of an Intelligent Grinding Parameter Selection Assistance System

Jyun-Yu Jhang and Cheng-Jian Lin

(Received September 6, 2021; Accepted December 20, 2021)

Keywords: grinding, convolutional neural network, surface roughness, Taguchi method, differential evolution

In this study, an intelligent grinding parameter selection assistance system (IGPSAS) was designed that can be used by operators for the grinding process. In the data collection stage, an ESG-1020 surface grinder and aluminum were used for grinding experiments. The proposed IGPSAS consists of two parts: a Taguchi-based convolutional neural network (TCNN) and a differential evolution algorithm. First, the proposed TCNN was used to establish a surface roughness prediction model. Then, the proposed differential evolution algorithm was used to determine the best processing parameters. To achieve better surface smoothness prediction capabilities in the CNN model, the Taguchi method was used to optimize the parameters of the network model architecture. The influence of each factor was analyzed, and a network with stable parameters was selected for machine processing. The performance of the proposed TCNN was verified experimentally. The mean average percentage error (MAPE) of the proposed TCNN’s surface roughness prediction in the measurement of a NewView 8300 optical surface profile was 15.65%. In addition, the differential evolution algorithm was used to select the best processing parameters and perform actual processing. The MAPE of surface roughness prediction of the proposed IGPSAS was experimentally determined to be 10.97%, demonstrating that the system effectively provides the user with the ability to operate the machine with the parameters set according to the desired processing quality.

Corresponding author: Cheng-Jian Lin

Forthcoming Regular Issues

Forthcoming Special Issues

Special Issue on Advanced Micro and Nanomaterials for Various Sensor Applications (Selected Papers from ICASI 2020)
Guest editor, Sheng-Joue Young (National Formosa University), Shoou-Jinn Chang (National Cheng Kung University), Liang-Wen Ji (National Formosa University), and Yu-Jen Hsiao (Southern Taiwan University of Science and Technology)
Conference website

Special Issue on Advanced Technologies for Remote Sensing and Geospatial Analysis Part 1
Guest editor, Dong Ha Lee (Kangwon National University) and Myeong Hun Jeong (Chosun University)

Special Issue on Recent Advances in Soft Computing and Sensors for Industrial Applications
Guest editor, Chih Hsien Hsia (National Ilan University)

8th Special Issue on the Workshop of Next-generation Front-edge Optical Science Research
Guest editor, Yutaka Fujimoto (Tohoku University) and Takayuki Yanagida (Nara Institute of Science and Technology)

Special Issue on Advanced Materials and Sensing Technologies on IoT Applications: Part 3-1
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)

Special Issue on Film and Membrane Sciences
Guest editor, Atsushi Shoji (Tokyo University of Pharmacy and Life Science)

Copyright(C) MYU K.K. All Rights Reserved.