S&M Young Researcher Paper Award 2020
Recipients: Ding Jiao, Zao Ni, Jiachou Wang, and Xinxin Li [Winner's comments]
Paper: High Fill Factor Array of Piezoelectric Micromachined
Ultrasonic Transducers with Large Quality Factor

S&M Young Researcher Paper Award 2021
Award Criteria
Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.

An Expert Smart Scalp Inspection System Using Deep Learning

Sin-Ye Jhong, Po-Yen Yang, and Chih-Hsien Hsia

(Received June 15, 2021; Accepted September 15, 2021)

Keywords: smart scalp inspection, beauty economy, embedded system, deep learning

With the advent of the “beauty economic era,” in which people are paying more attention to beauty and health, the health of the scalp is being increasingly valued. However, current scalp care services are limited by problems such as they are not automatic and objective, and the results are not significant, which make them unacceptable to the public. Because of these reasons, in this study, we focus on the obstacles that hairdressers face and propose an expert inspection system that is suitable for determining scalp problems by utilizing deep learning, cloud computing techniques, and an embedded system. Dandruff is the most common scalp problem. In this work, we propose a convolutional neural network (CNN)-based method to analyze the severity of dandruff and evaluate the health of the scalp. The convolutional block attention module (CBAM) is adopted to improve the feature extraction performance of the CNN model. The depth separable convolution (DSC) and spinal fully connected (FC) are applied in this work to reduce the number of model parameters. Aside from offering a more effective smart scalp inspection process, this method also lets hairdressers and customers track their scalp problems easily. In the future, we expect to reduce the stress of hairdressers and enhance customers’ trust on scalp care services by using the smart health inspection offered by this system. Last but not least, it has been shown that the method proposed in this research can achieve an accuracy of 85.03%, which is higher than that achieved by recently proposed methods.

Corresponding author: Chih-Hsien Hsia

Forthcoming Regular Issues

Forthcoming Special Issues

Special Issue on Advanced Methods and Devices for Remote Sensing
Guest editor, Lei Deng and FuZhou Duan (Capital Normal University, Beijing)

Special Issue on Microfluidics and Related Nano/Microengineering for Medical and Chemical Applications
Guest editor, Yuichi Utsumi (University of Hyogo)
Call for paper

Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019) (2)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website

Special Issue on Biological Odor Sensing System and Their Applications
Guest editor, Takeshi Sakurai (Tokyo University of Agriculture)

Special Issue on High-sensitivity Sensors and Sensors for Difficult-to-measure Objects
Guest editor, Ki Ando (Chiba Institute of Technology)
Call for paper

Special Issue on Sensing Technologies and Their Applications (II)
Guest editor, Rey-Chue Hwang (I-Shou University)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.