Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 33, Number 12(5) (2021)
Copyright(C) MYU K.K.
pp. 4643-4658
S&M2786 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2021.3445
Published in advance: December 13, 2021
Published: December 28, 2021

Spatial-temporal Variation of Soil Moisture in China from Long Time Series Based on GLDAS-Noah [PDF]

Mengqing Geng, Feng Zhang, Xiaoyan Chang, Qiulan Wu, and Lin Liang

(Received May 28, 2021; Accepted November 11, 2021)

Keywords: China, soil moisture, spatial-temporal variability, GLDAS, Mann–Kendall, Hurst

Soil moisture is a comprehensive reflection of soil moisture status and is an important parameter for land surface conditions. It is very important to study the distribution characteristics of soil moisture for ecological environment protection, scientific and rational utilization of soil water resources, and climate research. Using the soil layer humidity data sets of GLDAS-Noah v2.0 and v2.1, we analyzed the spatial-temporal distribution of soil moisture in China in a layer from 0 to 200 cm over 71 years from 1948 to 2018. Firstly, the Mann–Kendall trend test was used to analyze the trend of the changes and the spatial variation characteristics of soil moisture over the 71 years. Secondly, the coefficient of variation was used to analyze the temporal and spatial fluctuation of soil moisture in each layer of the study area over the 71 years. Finally, the Hurst index was used to predict the future trend of soil moisture changes in each layer. In addition, the correlation between soil moisture and the spatial-temporal variation of soil temperature in China was explored. The results show that the annual variation trend of soil moisture in the 0–200 cm soil layer has been consistent, that is, the soil humidity in most parts of east China has been decreasing, especially in northeast China, central China, the area surrounding the Yunnan Guizhou Plateau, and Taiwan Island, while it has been increasing in most of the western regions. Also, the change in soil layer humidity from 0 to 200 cm in southern China was greater than that in the northern region, and the humidity of the soil layer in the Pearl River Delta region was the most unstable. In addition, the spatial variation of soil moisture in the study area was relatively small from 1948 to 2001, but from 2002, the soil moisture throughout the study area became uneven. In the future, the trend of the change in soil moisture in most areas of China will remain consistent with that in the past 71 years, i.e., the soil in most parts of the east will gradually dry out and the soil moisture in most parts of the west will gradually increase; the soil humidity from 0 to 200 cm in most of the study area is inversely related to the soil temperature, and is mainly concentrated in northeast and central China, central and northern Inner Mongolia, the Qinghai Tibet Plateau, and Taiwan Island.

Corresponding author: Feng Zhang, Xiaoyan Chang


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Mengqing Geng, Feng Zhang, Xiaoyan Chang, Qiulan Wu, and Lin Liang, Spatial-temporal Variation of Soil Moisture in China from Long Time Series Based on GLDAS-Noah , Sens. Mater., Vol. 33, No. 12, 2021, p. 4643-4658.



Forthcoming Regular Issues


Forthcoming Special Issues

Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Data Sensing and Processing Technologies for Smart Community and Smart Life
Guest editor, Tatsuya Yamazaki (Niigata University)
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Special Issue on Advanced Micro/Nanomaterials for Various Sensor Applications (Selected Papers from ICASI 2023)
Guest editor, Sheng-Joue Young (National United University)
Conference website
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.