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	 As global average fertility rates decline annually, a crisis brought by declining birthrates 
gradually emerges, further impacting the existing education system. In response to the impact of 
declining birthrates on education, countries have recently accelerated the development of 
distance learning. Distance learning provides guaranteed access to comprehensive and quality 
education while encouraging continuous learning opportunities for everyone. However, the 
identity recognition technology used in the current distance learning platform seldom addresses 
the problem of inconsistent image quality in actual scenarios, making it difficult to ensure the 
practical application of the model. To solve these issues, we propose a lightweight dual-attention 
convolutional neural network (LDA-FV) constructed through a dual attention-based inverted 
residual block (DA-IRB) and implemented using an adaptive margin loss (AML) function for 
finger-vein recognition. This method not only extracts effective finger-vein features through 
DA-IRB but also adjusts the training difficulty in accordance with the image quality. 
Furthermore, owing to its lightweight design, the model can be more flexibly deployed on 
existing hardware devices (e.g., mouse) in distance education scenarios. The experimental 
results of this study indicate that the proposed method effectively enhanced the model’s 
recognition capability using the finger-vein database of the University Sains Malaysia (FV-
USM) and the PLUSVein dorsal-palmar finger-vein (PLUSVein-FV3) public database, achieving 
correct identification rates (CIRs) of 99.90% and 97.50%, respectively.

1.	 Introduction

	 According to a 2023 report by the United Nations Population Fund, the global average birth 
rate per woman has significantly declined from 5.0 in 1950 to 2.3 in 2021.(1) Although the current 
global birth rate remains above the 2.1 fertility replacement rate, there is a declining trend of 
sub-replacement fertility, leading to the predicament of lower enrollment in schools, resulting in 
their closure or consolidation.(2) The reduction in the number of students has forced some schools 
to pass on the operational costs to their current students, putting them under the pressure of high 
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tuition fees and even forcing them to discontinue their studies.(3) Furthermore, the COVID-19 
pandemic in 2020 exacerbated the phenomenon of students discontinuing their education.(4) To 
address the impact of the pandemic, countries accelerated the development of distance learning, 
necessitating the conversion of many courses to online platforms for teaching and 
examinations.(5) However, with teaching shifted to virtual classrooms, traditional classroom 
norms and group dynamics that kept students focused and restricted their behavior became less 
effective, leading to the possibility of cheating during exams.(6) In a previous study, this problem 
was addressed by proposing various anticheating systems.(7) Additionally, identity recognition 
technology is essential to maintain the quality, fairness, and security of distance learning. Using 
identity recognition not only ensures that students participating in online courses and exams are 
not imposters,(8) but it also prevents unauthorized access to personal data and enables teaching 
platforms to offer a more personalized learning experience based on individual student progress 
and preferences.(9)

	 In recent years, with the development of computer vision (CV) and deep learning 
technologies, and driven by the COVID-19 pandemic, the intelligent learning industry market 
has become increasingly active.(10) Concurrently, the number of research studies on biometric 
feature-based identity recognition has also increased.(11) Among these, the second generation of 
biometrics recognition technology, which uses vein features for identity recognition, has 
garnered significant attention and is considered a promising direction of technological 
development.(12) Biometric recognition inherently possesses characteristics such as universality, 
distinctiveness, permanence, and collectability.(13) This allows the identification of individuals 
through unique biological characteristics inherent to each person, thus offering more stability 
compared with traditional methods since these characteristics do not change over time. Everyone 
can be rapidly and conveniently identified through their unique biological characteristics. 
Commonly used biological characteristics for identification include fingerprints, iris, face, and 
finger veins. Chen et al.(14) further categorized the areas for acquiring biometric features into 
internal and external biological characteristics. Identity recognition based on external biological 
characteristics such as fingerprints, palm prints, and face is already quite mature and can be 
found in applications such as smart lockers, mobile payments, smartphones, and access control 
systems. However, compared with internal biological characteristics, external ones are more 
susceptible to environmental factors, which may reduce the accuracy of biometric recognition. 
For example, fingerprint and palm print recognition can be affected by wounds, grease, or dirt 
on the fingers, impacting its accuracy.(15) Moreover, owing to the COVID-19 pandemic, people 
have grown concerned about techniques requiring physical contact for identity verification, 
fearing an increased risk of infection.(16) Consequently, facial recognition, which does not 
require physical contact and has lower levels of interference, has been adopted in many studies 
on identity verification for online courses.(17) However, facial recognition is highly sensitive to 
variations in gender, occlusion, head pose, illumination, and facial expression, which can reduce 
its accuracy.(18) Additionally, students’ privacy concerns have been increasingly highlighted in 
recent years, with face-based identity recognition criticized for potentially invading privacy 
rights, making it difficult to promote in educational fields.(19) In summary, external biometric 
features are more vulnerable to environmental influences, leading to instability in practical 
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applications. Moreover, biometric recognition based on external features often involves physical 
contact and privacy issues, which could hinder its adoption in the educational sector. In contrast, 
veins represent a more stable internal biological characteristic. They are hidden under the skin, 
making them difficult to steal or forge; furthermore, they do not wear or change with age. 
However, vein-based biometric recognition still has drawbacks that are mainly related to the 
method of vein image acquisition. Because low-cost near-infrared (NIR) cameras are most 
frequently used, capturing vein images is affected by lighting conditions and user behavior, 
leading to issues with image quality due to illumination variations, vein translation, and rotation.
	 To address the issues of vein imaging mentioned above and to simultaneously lessen the 
weight of the model for practical application in real-world environments, we introduce a 
lightweight dual-attention convolutional neural network (LDA-FV), constructed by stacking 
dual-attention-based inverted residual blocks (DA-IRBs), for finger-vein recognition. In this 
approach, DA-IRB first utilizes a spatial attention mechanism (SAM) to perceive important 
features within the finger-vein image. It then employs a series of convolution operations to 
extract distinctive finger-vein texture features. Following this, a channel attention mechanism 
(CAM) is used to weigh the mapped high-dimensional finger-vein features, facilitating feature 
selection for finger veins. Through the method proposed in this study, the model can significantly 
reduce the number of parameters while maintaining the same level of accuracy. This not only 
lowers the deployment cost of the model but also allows for the flexible deployment of finger 
vein recognition across various hardware devices in distance education, thereby effectively 
enhancing the quality of teaching in distance education. To further enable the model to identify 
individuals based on their finger-vein features, we incorporate an adaptive margin loss (AML) 
function.(20) This function prompts the model to adjust the training difficulty in accordance with 
the image quality and simultaneously enhances the model’s generalization ability. The method 
proposed in this study is aimed at creating an effective and efficient system for finger-vein 
recognition, adaptable to various qualities of vein images in practical scenarios. The main 
contributions of this study are as follows.
	 DA-IRB is incorporated to enhance the model’s feature extraction capabilities, which allows 
the finger-vein recognition model to focus on important texture features within finger-vein 
images, enabling it to learn more distinctive features and simultaneously increase its recognition 
ability.
	 A lightweight LDA-FV model for finger-vein recognition is proposed in this study. It is 
constructed by consecutively stacking DA-IRBs. Furthermore, AML is employed to enhance the 
model’s feature extraction capability from finger-vein images of different qualities. The 
experimental results showed that the LDA-FV model not only outperformed previous methods 
in finger-vein recognition using the finger-vein database of the University Sains Malaysia (FV-
USM) and the PLUSVein dorsal-palmar finger-vein (PLUSVein-FV3) public database but also 
maintained a lower number of parameters.
	 The LDA-FV model used for finger-vein recognition provides a secure and efficient identity 
recognition technology for distance education, further improving the quality and fairness of 
distance education. This improvement enhances the foundational infrastructure of existing 
distance education.
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2.	 Related Work

	 In recent years, numerous methods for finger-vein recognition have been proposed to address 
the challenges associated with vein imaging. Liu et al.(12) proposed a multiscale and multistage 
residual attention network (MMRAN) for finger-vein recognition. However, they used a batch 
size of less than 8 for model training, hindering the effectiveness of batch normalization (BN) 
and possibly leading to a degradation in the model’s recognition capability.(21) Bilal et al.(22) 
utilized traditional CV algorithms for image enhancement of finger-vein images before feeding 
them into a convolutional neural network (CNN) for recognition. However, the image 
enhancement processing they used tended to severely damage vein features, thereby limiting the 
CNN model’s recognition ability. Al-Tamimi and AL-Khafaji(23) employed a contrast-limited 
adaptive histogram (CLAHE), median filtering, and principal component analysis (PCA) for 
image enhancement, followed by training of a CNN with both pre- and postenhanced images. 
However, using CLAHE for enhancing vein images created inconsistent illumination, which in 
turn restricted the model’s recognition capability.(24) Zhang et al.(25) introduced the histogram of 
oriented physiological Gabor responses (HOPGR) for finger-vein recognition. While effective in 
addressing finger tilt issues, this method struggled with finger bending or longitudinal finger 
rotation, potentially leading to reduced identification accuracy. Zhang et al.(26) also proposed an 
adaptive Gabor CNN (AGCNN) for finger-vein recognition, aiming to solve the issue of large 
parameter sizes and computational demands typically found in neural networks. Even though 
their AGCNN model utilized three linear layers as classifiers, it still had a large number of 
parameters and was prone to overfitting on finger-vein training datasets. Liu et al.(27) introduced 
a novel CNN architecture for finger-vein recognition, comprising two different branches: a 
trunk branch using residual units for feature extraction, and a soft mask branch using an 
hourglass network for global vein feature extraction. The complexity of this architecture, 
however, resulted in a high number of model parameters, potentially limiting its deployment in 
real-world scenarios owing to hardware constraints. Chai and co-workers(28,29) also used parts of 
the MobileNetV2 architecture as the main model for extracting finger-vein features. In their 
former study,(28) they used convolutional layers for feature extraction and global average pooling 
(GAP) to transform vein features into one-dimensional feature vectors to avoid a large increase 
in model parameters from subsequent linear layers. However, the high channel dimensions of the 
model led to a rapid increase in the number of parameters, making it a challenge to maintain a 
lightweight model. They then addressed this issue by reducing the channel dimensions of the 
model and simultaneously using automatic color enhancement (ACE) for image enhancement to 
improve the generalization ability of the finger-vein recognition model;(29) however, their ACE 
method had a high computational complexity, making it difficult to apply in real-world model 
deployments.

3.	 Proposed Method

	 In this study, we propose a finger-vein recognition model architecture, LDA-FV, constructed 
by continuously stacking DA-IRBs, as shown in Fig. 1. The LDA-FV architecture not only 
effectively extracts finger-vein texture features and improves the model’s correct identification 
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rate (CIR), but also reduces the number of the model’s parameters through the lightweight 
structure of the DA-IRB. This approach is designed to meet the requirements of practical finger-
vein recognition applications. In the following sections, a detailed description of the DA-IRB 
proposed in this study and the technical methods employed are discussed.

3.1	 Dual-attention-based inverted residual block

	 To address past issues with finger-vein recognition and achieve a lightweight model, in this 
study, inspired by the design philosophy of ConvNeXt,(30) we employed a DA-IRB effectively 
designed for extracting finger-vein texture features, as shown in Fig. 2(a). The DA-IRB in this 
study uses a SAM to extract finger-vein feature maps from large-scale feature maps, enabling 
the model to effectively perceive and locate areas of finger-vein texture features. After extracting 
features with SAM, DA-IRB employs a 7 × 7 depthwise convolution (DWconv)(31) with a large 
convolution kernel to extract distinctive texture features on the basis of important finger-vein 
texture areas perceived by SAM. This also compensates for the insufficient effective receptive 
field associated with smaller convolution kernels.(32) The SAM(33) is represented by two vectors 
in different directions, where each element in the vectors reflects whether the object of interest 
appears in the corresponding row or column, as shown in Fig. 2(b). Hence, the integration of the 
SAM architecture into the DA-IRB significantly improves the finger-vein recognition model’s 

Fig. 1.	 (Color online) Block diagram of architecture of the proposed LDA-FV.
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capability to detect essential finger-vein texture features in spatial dimensions. Additionally, it 
facilitates the efficient extraction of features utilized for identity recognition. Following this, 
adhering to ConvNeXt’s design guidelines, DA-IRB uses two consecutive pointwise 
convolutions (PWConv) to expand and then map the channel dimensions of the finger-vein 
feature maps, preventing loss of feature information owing to dimension reduction. Finally, the 
DA-IRB module uses a CAM(34) to perform channel weighting on the previously extracted 
finger-vein feature maps, enabling the model to perceive which channels contain important 
finger-vein features and filter out insignificant channel features to avoid unnecessary focus. The 
CAM, depicted in Fig. 2(c), compresses the spatial information of the feature map into one-
dimensional channel features using GAP and then squeezes and excites the channel dimensions 
through consecutive convolutional layers. This recalibrates the channel features of the model, 
enhancing its feature extraction capability. By integrating CAM into the DA-IRB, the finger-
vein recognition model becomes more focused on crucial channel features and improves its 
capability to represent finger-vein characteristics. Combining the aforementioned two types of 
attention mechanisms, the DA-IRB improves the finger-vein model’s ability to extract important, 
subtle texture features and accurately filters the extracted finger-vein features. This approach 
helps to avoid the model’s focus on areas irrelevant to identity recognition, while simultaneously 
strengthening its ability in identity recognition. Furthermore, to effectively transform low-level 
texture features into high-level semantic features for classification, we constructed each stage of 
the model with a module ratio of 1:1:3:1.

3.2	 Adaptive margin loss function

	 In practical applications, finger-vein recognition models may encounter low-quality and 
blurry vein images, making it challenging for the model to extract finger-vein features and 

Fig. 2.	 The architectures of (a) DA-IRB proposed in this study, (b) SAM used in DA-IRB, and (c) CAM used in 
DA-IRB.

(a) (b) (c)
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identify individuals, thereby raising concerns about the practical application of finger-vein 
recognition. To tackle this concern, we employed an AML approach, allowing the model to train 
independently in accordance with the quality of distinct finger-vein images. The AML function 
uses an image quality indicator to help the model identify low-quality images. The higher the 
value of this indicator, the better the quality of the image. The calculation of this indicator is 
shown as 
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	 Once the margin values are calculated using Eq. (2), they are then incorporated into the 
AML, as shown in Eq. (3). The AML function adjusts the training difficulty on the basis of the 
quality of the image. When the image quality is poor, the loss function does not increase the 
training difficulty for that feature and when the image quality is better, the loss function 
significantly increases the training difficulty for the feature by using the margin values.
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4.	 Experimental Results and Comparison

	 To evaluate the finger-vein recognition capabilities of the LDA-FV model, we utilized FV-
USM(35) and PLUSVein-FV3(36) public databases for training. The FV-USM database contains 
data from 123 subjects and is a collection of 5904 NIR finger-vein images with a resolution of 
640 × 480. For each subject, images of the left forefinger, left middle finger, right forefinger, and 
right middle finger were collected. The vein images from different fingers are considered 
distinct categories. The PLUSVein-FV3 database includes data from 60 subjects. Kauba et al.(36) 
used NIR LED and laser sensors to collect 7200 palmar and dorsal finger-vein images, each with 
a resolution of 1280 × 1024. Vein images from different sides (palmar and dorsal) are considered 
different subsets. For a fair comparison with past research results, in this study, we only used the 
palmar side finger vein images captured with LED and laser sensors for model evaluation. 
Before model training, we divided the FV-USM and PLUSVein-FV3 databases into training, 
validation, and test sets for model evaluation, with dataset ratios of 4:1:1 and 3:1:1, respectively. 
In terms of hyperparameter settings, the initial learning rate was set to 0.001, the image size to 
112, the batch size to 32, and the number of epochs to 40. AdamW(37) and cosine annealing were 
chosen as the optimizer and learning rate scheduler, respectively, for model training. Finally, the 
proposed model was trained using the PyTorch Toolbox on a computer with a 12th Gen Intel® 

Core™ i9-12900H CPU and an Nvidia RTX 3080 Ti graphics processing unit. To assess the 
feasibility of the lightweight LDA-FV model architecture proposed in this study, the FV-USM 
database was used to evaluate the overall performance of the model. The model’s security was 
measured using the CIR metric. A high value of this metric indicates high security and better 
overall system recognition performance, making it suitable for one-to-many finger-vein 
recognition tasks. The calculation of CIR is described as

	
 

    
Correction caseCIR

Number of total case
= .	 (4)

	 The experimental results show that the LDA-FV model architecture proposed in this study 
achieved a high CIR of 99.90% on the FV-USM database, with a total of 1.2 million model 
parameters. Compared with methods proposed in other studies, the LDA-FV model architecture 
not only had fewer model parameters but also maintained higher accuracy, as shown in Table 1. 
Furthermore, to validate the generalization of the LDA-FV model in finger-vein recognition, a 
comparative analysis was conducted using the PLUSVein-FV3 database. The results showed that 
the LDA-FV model achieved CIRs of 97.50% and 97.22% on images captured by LED and laser 
sensors, respectively, in the PLUSVein-FV3 database, as indicated in Table 2. It is noteworthy 
that the LDA-FV model architecture in this study, compared with the previous FV-RSA model, 
not only had similar CIR but also had a lower number of model parameters. This significant 
reduction in computational complexity makes the deployment of the LDA-FV model in real-
world environments feasible. Additionally, compared with the previous ILCNN model, the LDA-
FV achieved higher CIR values on both the FV-USM and PLUSVein-FV3 databases and had a 
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lower number of model parameters. This improvement might have stemmed from the LDA-FV 
model’s ability to map finger-vein features onto a higher channel dimension during the feature 
extraction process. This approach allowed the model to learn and filter finger-vein features more 
effectively, thereby achieving a higher CIR with fewer parameters.

5.	 Conclusions

	 In this study, we introduced a finger-vein recognition model architecture, LDA-FV, 
constructed by stacking lightweight DA-IRBs equipped with attention mechanisms. The 
performance of this model architecture was comprehensively evaluated using the FV-USM and 
PLUSVein-FV3 public databases. The DA-IRB architecture in this study enabled the LDA-FV 
model to effectively perceive important regions of finger-vein texture features and selectively 
filter features in these areas. This ensured that the extracted finger-vein textures were beneficial 
for identity recognition, and also simultaneously enhanced the model’s recognition capability. 
As illustrated in the experimental results, the LDA-FV model not only achieved better CIR on 
both FV-USM and PLUSVein-FV3 databases compared with previous methods but also 
maintained a lower number of model parameters. This reduction in parameters means that the 
LDA-FV model is less constrained by hardware limitations and can more easily apply finger-
vein recognition to practical distance education environments. Our results demonstrate the 
potential of the LDA-FV model in practical applications, which offers a balance between 
efficiency, accuracy, and ease of deployment in real-world environments.

Table 1
Results for proposed model and from previous research on the FV-USM database.
Methods CIR (%) Params (M)
Semi-PFVN(28) 94.67 3.35
MMRAN(12) 96.07 3.51
LightFVN + ACE(29) 96.17 2.65
W. Liu et al.(27) 98.58 5.85
LFVRN_CE + ACE(24) 99.09 4.93
EfficientNet-B0(38) 99.70 4.64
ILCNN(39) 99.82 1.23
FV-RSA(40) 99.90 8.70
LDA-FV (This work) 99.90 1.20

Table 2
Results for proposed model and from previous research on the PLUSVein-FV3 database.

Methods CIR (%)
LED Laser

DenseNet-121(41) 93.06 93.19
EfficientNet-B0(38) 95.82 92.22
ILCNN(39) 95.90 93.52
LDA-FV (This work) 97.50 97.22
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