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 We synthesized an undoped La2Be2O5 single crystal by the floating zone method and 
investigated its scintillation properties. The synthesized sample was confirmed to have a single-
phase structure of La2Be2O5 as shown by the powder X-ray diffraction pattern. The diffuse 
transmittance spectrum of the synthesized sample had transmittance at 80% in the range of 
250–850 nm. The scintillation spectrum had a broad emission band from 280 to 600 nm, which 
was derived from unidentified lattice defects. In the scintillation decay profile, the obtained 
decay time constants were 1.1, 6.2, and 386 ns. From pulse height spectra, the light yield of the 
La2Be2O5 single crystal was 1000 photons/MeV. In afterglow profiles, the afterglow level was 
42.9 ppm. 

1. Introduction

 A scintillator is a type of optical material that can immediately transform ionizing radiation 
with high photon energy into ultraviolet-visible light with low photon energy. Its primary 
application is a radiation detector, which is composed of a scintillator and a photodetector. A 
scintillator has been widely used in various fields including nuclear medicine,(1,2) security,(3,4) 
astrophysics,(5) and resource exploration.(6)  The required properties of a scintillator depend on 
its applications. However, high chemical stability, large effective atomic number (Zeff), high 
density (ρ), fast decay time constant, high light yield (LY), and low afterglow level (AL) are 
generally required for a scintillator. Since a scintillator with all these required properties has not 
been found yet, various new scintillators have been developed.(7–13) Such development of new 
scintillators has been conducted in various forms: glass,(14–17) transparent ceramics,(18–20) single 
crystals,(21–25) organic–inorganic composites,(26,27) and plastics.(28,29) 
 In this study, we focused on the La2Be2O5 single crystal. La2Be2O5 has been studied as the 
host material of a scintillator in the field of radiation measurement since it has a high chemical/
radiation resistance, a relatively large Zeff (52.9), and a high ρ (6.1).(30,31) For example, it has been 
reported that the Ce-doped La2Be2O5 single crystal has a broad emission band centered at 450 
nm(30) and that the LY of the Ce-doped La2Be2O5 is 58% compared with that of Bi4Ge3O12.(32) 
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On the other hand, the scintillation properties of the undoped La2Be2O5 single crystal have not 
been studied. In a previous study of the photoluminescence (PL) properties of undoped 
La2Be2O5, the emission wavelength was observed in the range of 280–600 nm due to 
unidentified lattice defects.(33) This emission wavelength is compatible with the wavelength 
sensitivity of the general photodetector. Therefore, undoped La2Be2O5 could also be a candidate 
for a scintillator. In addition, it is important to understand the scintillation properties of an 
undoped material. One reason for this is that the energy migration efficiency and interaction 
probability between ionizing radiation and materials in the scintillation process basically depend 
on the host material. For the above reason, we synthesized the La2Be2O5 single crystal by the 
floating zone (FZ) method and investigated its scintillation properties.

2. Experimental Method

 The La2Be2O5 single crystal was synthesized by the FZ method. La2O3 (99.99%) and BeO 
(99.99%), which were raw materials, were mixed to form into a cylindrical rod by applying 
hydrostatic pressure. The formed rod was sintered at 1200 ℃ for 12 h in air and then crystal 
growth was conducted in an FZ furnace (Canon, Machinery FZD0192). The growth parameters 
used were a pull-down speed of 3 mm/h and a rotation speed of 30 rpm. The obtained crystalline 
rod was cut to obtain the evaluation sample, and a polishing machine (Buehler, MetaServe 250) 
was used for polishing the surface. To confirm the crystal phase, the powder X-ray diffraction 
(PXRD) pattern was obtained with a diffractometer (MiniFlex600, Rigaku). The diffuse 
transmittance spectrum was evaluated using a spectrophotometer (SolidSpec-3700, Shimadzu). 
The PL excitation and emission spectra were evaluated using a spectrofluorometer (JASCO, FP-
8600). The resolutions of the spectrofluorometer on the sides of excitation and emission spectra 
were 10 and 20 nm, respectively.
 Scintillation spectra were evaluated using our original setup.(34) As the radiation source, an 
X-ray generator (Spellman, XRB80N100/CB) with an X-ray tube was used, and the bias voltage 
and tube current were 80 kV and 1.2 mA, respectively. Scintillation decay time and afterglow 
profiles were evaluated using an afterglow characterization system,(35) and pulse height spectra 
under γ-rays from 137Cs were evaluated with our previous setup.(27,36)

3. Results and Discussion

 Figure 1(a) shows the picture and PXRD patterns of the La2Be2O5 single crystal. The 
synthesized sample appeared colorless and transparent, and the sample size was approximately 
4 × 4 × 1.0 mm3. The PXRD pattern of the synthesized sample corresponded to the reference 
pattern (La2Be2O5: International Centre for Diffraction Data No. 76–1652). Therefore, it was 
considered that the synthesized sample had a single-phase structure of La2Be2O5. Figure 1(b) 
shows the diffuse transmittance spectrum and PL excitation and emission spectra of the 
La2Be2O5 single crystal. The diffuse transmittance of the synthesized sample was approximately 
80% in the range of 250–800 nm. In addition, there was clear absorption in the range of 220–250 
nm, which would be due to the optical band gap of La2Be2O5.(37) In the PL excitation spectrum, 
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the excitation band was observed at approximately 230 nm, which corresponded to the 
absorption wavelength observed in the diffuse transmittance spectrum. Under excitation at 230 
nm, a broad emission band was observed in the range of 300–500 nm. The broad emission band 
was reported in previous research to be attributed to unidentified lattice defects.(38)

 Figure 2(a) shows the scintillation spectrum of the La2Be2O5 single crystal. The synthesized 
sample had a broad emission band located in the range of 300–600 nm. The broad emission band 
would be derived from unidentified lattice defects.(33,38) In addition, at least two different defects 
would contribute to the emission since the scintillation spectrum had two emission peaks at 350 
and 390 nm. Figure 2(b) shows the scintillation decay time profile of the La2Be2O5 single 
crystal. The scintillation decay curve was well approximated by a sum of three exponential 
functions, and the obtained decay time constants were 11, 62, and 386 ns. The fastest component 
came from an instrumental response function (IRF). In addition, the others would be assumed to 
be the value related to the emission band, which was observed in the scintillation spectrum. Note 
that the intensities were 1793 for the first component, 578 for the second component, and 82 for 
the third component.
 Figure 3(a) shows the pulse height spectra of the La2Be2O5 single crystal under γ-rays from 
137Cs (662 keV). In the measurement, the sharping time was set to 2 µs. As a reference, 
(Lu,Y)2SiO5 (LYSO) with an LY of 22000 photons/MeV was used. The synthesized sample had a 
clear photoabsorption peak at 364 ch, and its LY was calculated to be 1000 photons/MeV after 
considering a peak position with LYSO and the quantum efficiency of the photomultiplier tube. 
Figure 3(b) shows the afterglow profile of the La2Be2O5 single crystal. AL was defined by the 
signal intensity at 20 ms after X-ray irradiation with the pulse width of 2 ms. The AL of the 
synthesized sample was 42.9 ppm, which was lower than that of the Tl-doped CsI (~300 ppm) 
evaluated using the same measurement system.(39)

Fig. 1. (Color online) (a) Picture and PXRD patterns of La2Be2O5 single crystal. The reference pattern is 
International Centre for Diffraction Data No. 76-1652. (b) Diffuse transmittance spectrum and PL excitation and 
emission spectra of La2Be2O5 single crystal.
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4. Conclusion

 In this study, we synthesized a La2Be2O5 single crystal to evaluate its scintillation properties. 
From the PXRD pattern, the synthesized sample had a single-phase structure of La2Be2O5. In 
the scintillation spectrum, the La2Be2O5 single crystal had a broad emission band in the range of 
280–600 nm, which was due to unidentified lattice defects. Pulse height spectra revealed that 
the LY of the La2Be2O5 single crystal was 1000 photons/MeV. The AL was 42.9 ppm, which was 
lower than that of Tl-doped CsI. Judging from these scintillation properties, the La2Be2O5 single 
crystal would hold potential as a new scintillator for X-ray and γ-ray detection. However, the LY 

(a) (b)

Fig. 2. (Color online) (a) Scintillation spectrum and (b) scintillation decay time profile of La2Be2O5 single crystal. 

Fig. 3. (Color online) (a) Pulse height spectra of LYSO and La2Be2O5 single crystal under γ-rays from 137Cs. (b) 
Afterglow profile of La2Be2O5 single crystal.  
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of the La2Be2O5 single crystal is clearly lower than that of commercial scintillators such as 
Bi4Ge3O12, LYSO, and CdWO4. Therefore, it is essential to improve LY, and a solution may be to 
control the lattice defect derived from the emission center by doping impurity ions such as alkali 
metal or alkali earth metal. 
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