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 Three-phase unbalance is a major factor causing faults in three-phase four-wire distribution 
network systems, which can result in a significant decline in power quality, reduced power 
conversion efficiency, and other severe consequences. In this study, we present an early warning 
control scheme for detecting three-phase unbalance in the intelligent distribution sensing terminal of 
the three-phase four-wire distribution network. The following steps are undertaken. (1) The current 
sensor module of the intelligent distribution substation sensing terminal realizes the three-phase 
unbalance calculation of the point current data of the power grid and obtains a time-series dataset of 
current unbalance rates. (2) The parameters of a long short-term memory (LSTM) network are 
optimized using the quantum particle swarm optimization (QPSO) algorithm to determine the 
optimal network layer weights and thresholds during the training of the LSTM network. (3) A 
QPSO-LSTM-based time-series prediction model is developed to predict the current balance state. 
The accuracy and feasibility of the model are validated using a time-series dataset of current 
unbalance rates. (4) The aforementioned steps are integrated to design an early warning control 
scheme for three-phase unbalance in three-phase four-wire power distribution systems. This 
comprehensive early warning system enables the early detection and control of three-phase balancing 
states in the distribution system through the time-series prediction of the current unbalance rate. It 
facilitates the rotation or replacement of equipment that may disrupt the system’s balance, such as 
aging meters, and the timely detection and response to potential power system attacks. Although the 
overall early warning system requires a more stable and accurate power data acquisition technology 
to achieve the desired prediction, the proposed scheme provides valuable insights for controlling and 
compensating three-phase balancing and monitoring faults in three-phase four-wire circuits.

1. Introduction

 With the advent of the digital power grid and rising living standards, the electric power system 
has become an essential infrastructure in modern society. Among the components of the electric 
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power system, the three-phase four-wire distribution grid system plays a significant role in the 
distribution, regulation, and control of electric energy.(1,2) This system represents the most prevalent 
type of power distribution in contemporary power systems, characterized by its simple structure, 
economic viability, and practicality.(3) It finds extensive application in residential areas with low-
voltage electricity consumption owing to its ability to minimize line losses and voltage drops during 
energy transmission, thereby enhancing energy efficiency and power system stability.(4) However, in 
practical applications, the three-phase power system experiences a growing concern of three-phase 
unbalance due to various factors. This unbalance results in disparities across current, voltage, power, 
and load within the power system, as well as the hastened aging of the system. These effects, in turn, 
impact the power metering of intelligent three-phase meters, disrupt the normal operation of the 
power system, and may even lead to severe power system failures.(5,6)

 Currently, there is significant research focus on early warning control methods for circuit balance 
in three-phase four-wire distribution networks. Zheng et al. proposed a short-term prediction method 
for three-phase unbalance management with noise reduction regression.(7) Li et al. achieved an early 
warning of three-phase balance through a combined ARIMA-long short-term memory (LSTM) 
model for voltage time series prediction.(8) Zhang et al. implemented three-phase current 
compensation using a current prediction model in the αβ0-coordinate system.(9) However, most 
existing studies(10–13) on three-phase balancing control in three-phase four-wire distribution 
networks primarily rely on current or load monitoring systems for governance.
 In summary, various current balance compensation techniques have been developed for three-
phase four-wire transformer power balance control, demonstrating a high level of maturity. However, 
as the current monitoring system only targets all current data for three-phase balancing governance, 
the compensation technology is often controlled only after the three-phase circuit reaches a state of 
severe unbalance, which cannot effectively reduce circuit faults caused by severe three-phase 
unbalance. Moreover, the prediction research of power-quality-related indexes can help achieve an 
early and timely warning of the balance state of a three-phase circuit, and targeted measures can be 
taken for balance control to ensure power balance in the long run.
 Therefore, in this study, three-phase current data are collected from different levels of 
transformers, branch boxes, and meter boxes using current sensor modules from intelligent 
distribution substation sensing, branch line monitoring, and end sensing terminals in a distribution 
network system.(14) A current unbalance rate timing dataset is constructed using a three-phase 
unbalance calculation model. The established LSTM algorithm is used for current balance timing 
prediction, and the quantum particle swarm optimization (QPSO) algorithm’s stochastic space search 
property is used for global parameter optimization to improve prediction accuracy. On the basis of 
the prediction results, an early warning control scheme for three-phase unbalance is designed. This 
scheme facilitates the rotation of aging equipment, such as smart meters, and can respond in a timely 
manner to the power system that faces various security threats and attacks, to provide effective 
situational awareness for deep security defense, minimizing additional losses caused by three-phase 
unbalance. These findings provide reliable data support and scientific planning suggestions for 
managing three-phase unbalance in distribution network systems. 
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2. Current Data Collection Based on Intelligent Substation Sensing Terminal

2.1 Introduction to three-phase four-wire circuit sensors

 In the three-phase four-wire circuit, the state of three-phase unbalance is mainly detected by 
the power intelligent metering system, which relies on the intelligent collection of terminal data 
such as voltage, current, and power, and further adopts the three-phase unbalance calculation 
and three-phase load balancing dynamic planning models to realize the statistics and analysis of 
three-phase balance data of each node in the distribution network system.
 Among them, the three-phase current unbalance can reflect the three-phase unbalanced state 
of the circuit, mainly relying on current sensors to measure and record current data, for the 
three-phase four-wire circuit. A schematic diagram of shunt current sensors for the data 
acquisition line is shown in Fig. 1.

Fig. 1. Schematic diagram of current sensor three-phase data acquisition.
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2.2 Current balance time-series dataset construction

 To enable an early warning of the three-phase unbalance state, it is essential to carry out the 
time-series prediction of the current unbalance degree and obtain data support for validating the 
prediction model through simulations. In this study, three-phase current data are gathered using 
current sensor modules installed in intelligent distribution, branch, and end sensing terminals 
within a specific station area.
 In the three-phase unbalance calculation model, the unbalance degree of the three-phase current 
is typically determined using two approaches:
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Here, IA, IB, and IC represent the A, B, and C phase currents, and Imax and Iavg represent the 
current three-phase maximum and current three-phase average, respectively, and the first more 
commonly used current unbalance rate calculation method is chosen in this study.
 The current data are collected and subjected to preprocessing to obtain the time-series data 
for current unbalance. For this study, a specific station within a regional smart distribution 
network is chosen, and the input dataset is derived from the transformer side. The collected 
current data, representing instances with significant fluctuations in the balance state, are 
sampled at 15 min intervals to generate the timing data curve for the current unbalance degree. 
Figure 2 illustrates a portion of this curve.

Fig. 2. (Color online) Current unbalance data curve.
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3. QPSO-LSTM-based Current Balance Prediction Model

3.1 Introduction to long short-term memory network

 Conventional neural network structures may not be optimal for predicting power-related data. 
However, the LSTM, which is an enhanced model derived from the recurrent neural network 
(RNN), offers improved memory and long-term dependence modeling capabilities. LSTM 
addresses issues such as gradient disappearance and gradient explosion more effectively.(15) 
LSTM proved to be more suitable for examining the nature of the long sequence of data 
associated with current balance in this study. The internal structure of LSTM is depicted in Fig. 
3. 
 The LSTM model comprises a fundamental structure that includes a unit state, three gate 
controllers (input, forget, and output gates), and a memory cell. LSTM has demonstrated 
excellent performance in modeling temporal data and finds extensive applications in prediction 
tasks across domains such as finance, meteorology, and electric power.

3.2 Introduction of QPSO algorithm

 The particle swarm optimization (PSO) algorithm is a population-based randomized search 
algorithm.(16) However, this algorithm has limitations in terms of the randomness of particle 
swarm position changes, leading to a restricted search space and a tendency to converge to local 
minima. To address this issue, the QPSO algorithm was developed, which leverages quantum 
space to eliminate the directional properties of particles and expand the search space. By doing 
so, the QPSO algorithm overcomes the premature convergence problem associated with the PSO 
algorithm.(17)

 In the D-dimensional space of the quantum particle swarm, the particle population is X = 
(X1, X2,..., Xm), the position of the ith individual particle is Xi = (Xi1, Xi2,..., Xij)T, the particle 
velocity is Vi = (Vi1, Vi2,..., Vij)T, the individual optimal solution of the particle object i is Pbest.i = 
(Pbest.1j, Pbest.2j ,..., Pbest.ij)T, and the global optimal solution is Abest.i = (Abest.1j, Abest.2j ,..., Abest.ij)T. 
We set the number of iterations, T, the inertia weight λ, and the acceleration coefficient c with a 
random number r from 0 to 1. The changes in the velocity and position of individual particles 
can be obtained as

Fig. 3. (Color online) LSTM network model structure diagram.
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3.3 QPSO-LSTM time series forecasting model

 In LSTM network training for temporal prediction, multiple input feature variables are used, 
while a single variable represents the output. The input information for the current unbalance 
dataset is derived from the previous time period, and the output represents the subsequent 
moment’s current unbalance. This setup ensures an accurate and reliable short-term balance 
state prediction.
 Within the LSTM network structure, the “forgetting gate” plays a crucial role in determining 
which information should be discarded from the input data. By processing the previous 
moment’s output, denoted as ot−1, along with the current moment’s input, denoted as it, through 
the forgetting gate, an st value ranging from 0 to 1 is obtained. This value is then compared with 
the network layer Kt−1 from the previous moment to assess the probability of allowing this 
portion of information to pass through. When the value is 0, no information is permitted to pass 
through the gate.

 1( [ , ] )t s t t fS w o i vσ −= ⋅ +  (5)

Here, σ is the sigmoid function and ws and vs are the network weights and thresholds, respectively. 
Moreover, to determine the information to be saved, the sigmoid structure of the “input gate” 
layer is used to determine the update of the weights and thresholds, and a new candidate vector 

tK  is generated from layer tanh. The new vector is added to the network layer using the following 
equations:

 1( [ , ] )t i t t ij w o i vσ −= ⋅ + , (6)

 1tanh( [ , ] )t k t t kK W o i v−= ⋅ + . (7)

 We update the old network layer Kt−1 to Kt. We multiply Kt−1 with St, remove the information 
that should be forgotten, and add t tj K∗   to obtain the new network layer Kt, with the equation

 1t t t t tK S K j K−= ∗ + ∗  . (8)

 Finally, the content output is determined and the output is derived from the updated network 
layer. The output layer is determined through the sigmoid layer using ot−1 and it. The network 
layer is then processed through the tanh function and multiplied by the output of the sigmoid 
layer, and the output Gt is finally calculated as 
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 1( [ , ] )t o t t oG w o i vσ −= ⋅ + , (9)

 tanh( )t t tO G K= ∗ . (10)

 The LSTM network structure is enhanced through the integration of the QPSO algorithm, 
enabling the determination of optimal weights and thresholds for network layers during training. 
This is achieved by utilizing the particle random movement search inherent to the QPSO 
algorithm. Within the quantum space, particles exhibit a movement characterized by a Pbest-
centered δ potential drop towards the center, facilitating convergence within the target range and 
the exploration for a solution.
 During the search process for particles within the quantum space, the simultaneous 
determination of positions and velocities for different particles is not feasible. The individual 
states of the optimal search process for each particle are governed by the wave function φ (B).
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 By setting the characteristic length of δ potential drop to l, on the basis of the results of 
Monte Carlo stochastic simulation, the position of the individual particle can be calculated as
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where a is a random number in the interval 0 to 1. At moment t, the position of the individual 
particle is updated as
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 By using the mean position Pbest of the particle population Zbest and introducing the shrinkage 
expansion coefficient β with a random number [0,1]γ ∈ , in the population size M, the 
characteristic length l can be calculated as
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 By combining the above equations, the updated final particle position is obtained as
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Here, Abest is the current global optimal particle, and the individual optimal solution among all 
particle objects is obtained as Pm, the particle m position is Xm(t), and the position of the 
individual particle is updated as Xm(t + 1). In the training process, when the particle updates its 
position, the individual and global optimal positions of the particle swarm will also be updated, 
and the optimal weight and threshold of the LSTM network will be obtained after training.

4. Three-phase Current Balance Prediction Based on QPSO-LSTM Model

4.1	 Algorithm	flow

 On the basis of the established current balance prediction model, we present in this study the 
following algorithm flow for specific prediction:
Step 1:  Data preprocessing and division into training and test sets.
Step 2:  Initialization of model parameters, including the number of nodes in the input and 

output layers of the LSTM neural network model, as well as parameters such as 
population size, shrinkage expansion coefficient, and the number of iterations for the 
QPSO algorithm.

Step 3:  Assignment of initialized particle population positions for the hidden layer of the LSTM 
neural network (n), learning rate (η), and the number of iterations (epoch). Training 
samples are then inputted into the LSTM network model for training.

Step 4:  Calculation of the initial fitness size and determination of the initial individual optimal 
position Pbest and the current global optimal position Abest using the value of the fitness 
function.

Step 5:  Calculation of the average optimal position Zbest and then updating of the positions of 
the particles according to Eq. (16).

Step 6:  Calculation of the fitness value of each particle to obtain a smaller fitness value, so as to 
adjust the individual optimal position of the particle and the global optimal position.

Step 7:  Evaluation of whether the QPSO algorithm has achieved the set target or met the 
termination condition of the iterative cycle based on the fitness value. If the condition is 
met, proceed to Step 6; otherwise, return to Step 3.

Step 8:  Usage of the parameters of the optimal particle population to set the parameters of the 
LSTM neural network model, and then training of the optimized model to finally obtain 
the current unbalance prediction results.

 In summary, the algorithm flowchart for the QPSO-LSTM current balance timing prediction 
model is depicted in Fig. 4.
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4.2 Setting of QPSO-LSTM algorithm main parameters 

 In this study, every 1000 time-series data points in the established current unbalance dataset 
are selected as a set of sample objects, and a total of three data samples are divided into three 
groups for separate prediction. The acceleration constants c1 and c2 are set to 1.5 in the particle 
swarm algorithm, and the inertia weights of the swarm are linearly decreasing from 0.9 to 0.4. 
The shrinkage expansion coefficients of the quantum swarm are also linearly decreasing from 1 
to 0.5. The simulation analysis yields the parameter space of this QPSO algorithm with the 
diagram of the seeking curve as shown in Fig. 5.
 It can be seen from the graphs of the search curves that the PSO and QPSO algorithms have 
significant advantages in terms of convergence speed and search accuracy in finding the optimal 
solution, as the improved QPSO algorithm obtains results closer to the theoretical optimal 
solution by eliminating the particle’s moving direction property and expanding the search space.

Fig. 4. Flow chart of QPSO-LSTM algorithm.
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4.3 Prediction results of the model

 On the basis of the set QPSO-LSTM parameters, the model is simulated and validated by 
combining the current balance timing datasets collected by the current sensor and preprocessed into 
training and test sets according to the ratio of 7:3. The LSTM and PSO-LSTM network models are 
also established to predict the same current unbalance timing data and further verify the capability 
of the QPSO-optimized LSTM network in current unbalance timing prediction. Prediction results 
are shown in Fig. 6.
 From the prediction results, it is evident that the unoptimized LSTM network exhibits 
premature convergence and poor fitting results when used for predicting the timing of current 
balance. Conversely, the prediction results of the PSO-LSTM and QPSO-LSTM network models 
align closely with the actual current unbalance curve. Error comparison among the three models 
is presented in Table 1.
 The comparison results show that the prediction results of the QPSO-LSTM network model 
are relatively more accurate. In summary, the QPSO-LSTM current unbalance timing prediction 
model established in this study has achieved high prediction stability and accuracy, and the 
LSTM network optimization method based on the QPSO algorithm has a significant 
improvement effect on the prediction accuracy.

4.4 Three-phase unbalance warning scheme based on time series prediction

 On the basis of the timing prediction results of current unbalance, the unbalanced state of the 
three-phase four-wire system can be effectively detected. If the prediction indicates that the 

Fig. 5. (Color online) Parameter space and optimization-seeking curve diagram.

(a) (b)
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Fig. 6. (Color online) Comparison of prediction results. Datasets (a) I, (b) II, and (c) III.

Table 1
Algorithm error comparison table.
Algorithm Sample Object R2 RMSE MAE MAPE (%)

LSTM
1 0.84035 12.5087 9.7785 13.7648
2 0.86879 12.1533 9.3424 13.3211
3 0.84565 12.3993 9.7543 13.6325

PSO-LSTM
1 0.88138 11.4783 9.0331 12.7241
2 0.88646 11.3542 8.7351 12.3881
3 0.87834 11.8726 8.9734 12.6186

QPSO-LSTM
1 0.93624 9.9308 7.5342 10.1092
2 0.92778 9.3317 7.7735 10.2648
3 0.93813 9.1231 7.7813 10.3169

(a)

(b)

(c)
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three-phase lines are likely to enter a continuous severe unbalanced state, a range of 
compensation methods and control devices are required to restore the three-phase balance. 
These methods include phase redistribution,(18) balance correction using multilevel converters,(19) 
and power control using AC to DC converters.(20)

 To achieve efficient three-phase balancing control, the current sensor module of the 
intelligent distribution substation sensing terminal is utilized at various points in the distribution 
system. This targeted approach helps to minimize line loss and reduce the risk of faults. The 
specific process of the early warning control is illustrated in Fig. 7.

5. Conclusions

 In this study, we first focused on collecting current data using the current sensor modules of 
power data collection terminals, such as the intelligent distribution substation sensing, branch 
line monitoring, and end sensing terminals of the three-phase four-wire distribution network. By 
combining data preprocessing and a three-phase current unbalance degree calculation model, we 
obtained a dataset for current unbalance rate timing. Furthermore, we developed a current 
balance timing prediction model based on the QPSO-LSTM algorithm. To improve the accuracy 
of the LSTM network prediction model, we utilized the properties of random space search in the 
QPSO algorithm. This enabled us to determine the optimal network layer weights and thresholds 
during training. As a result, we obtained a more precise prediction output function for the LSTM 

Fig. 7. (Color online) Three-phase unbalance warning control flow.
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network prediction model. Finally, we proposed a solution for three-phase balance state early 
warning control based on the time-series prediction results of the current unbalance degree. 
Note that the balance warning control method presented in this study for three-phase four-wire 
circuits demonstrates some feasibility. However, the current data collected by the current sensor 
still faces challenges such as insufficient accuracy and low reliability, which can negatively 
impact the prediction accuracy and timing prediction effectiveness. Nevertheless, the conceptual 
framework of the three-phase balance state early warning control, which relies on current sensor 
data fusion and QPSO-LSTM timing prediction, provides valuable insights for practical research 
on equipment rotation, load prediction control, and line loss metering in distribution network 
systems. Implementing this framework can help reduce energy loss in three-phase four-wire 
distribution networks and prevent the occurrence of severe faults.
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