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	 The integrated regional energy system has significant advantages in realizing multi-energy 
complementarity and improving system energy utilization, which has gradually become a hot 
research topic nowadays. In this study, a corresponding optimal operation model is established 
for the integrated regional energy system. Moreover, the game relationship between the 
microgrid operator and the user aggregator in the integrated regional microgrid considering 
user-side electric heating equipment is studied and analyzed, and a two-layer game model 
between the microgrid operator and the user aggregator is proposed. Meanwhile, sensor devices, 
such as temperature sensors, thermal sensors, and energy sensors, are included in the integrated 
energy system and are used to provide real-time data to help monitor the state of the system and 
improve the control strategy and rationality and intelligence of the system. Finally, the electricity 
and heat prices of the upper-level microgrid operator are updated using the improved coati 
optimization algorithm (ICOA), and the lower-level optimization problem is modeled and solved 
by the solver. The results show that the proposed two-tier planning approach can considerably 
improve the revenue of the lower tier user side while ensuring the revenue of the upper tier 
microgrid operator. The revenue of the user aggregator increases by 23.1%, and the total system 
revenue increases by $29, which realizes a win–win situation for both the microgrid operator and 
the user aggregator and has long-term significance for improving the operational stability and 
economy of the regional integrated microgrid system.
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1.	 Introduction

	 The overexploitation of fossil energy, the increasing deterioration of the natural environment, 
and the continuous innovation of Internet technology have made energy interconnection, low 
carbon emission, and high efficiency the main trends of current energy development.(1) The 
focus of current research is to realize the rational dispatch of different types of energy through 
coordinated management and distribution. Existing studies have concentrated on the coupling of 
multi-energy, demand-side response, and multi-time scale for dispatch analysis.(2)

	 With the increasing evolution of Integrated Energy Systems (IESs) and the reform of the 
electricity market, the power coupling interaction between the load and the source has become 
more pronounced, shifting from the traditional structure of vertical integration (top-down) to the 
competitive interaction structure. The traditional IES tariff does not receive other factors, and 
the interactive competitive IES tariff not only affects the load demand, but the load also reacts to 
the tariff. It is more appropriate to study the IES distributed optimization, such as game theory 
and the alternating direction multiplier method. Among them, game theory is a theory for 
studying how to make a reasonable decision in accordance with the ability and information 
available to each subject when there is a connection or conflict of interest among multiple 
decision subjects. The game models such as noncooperative game, bargaining game, 
evolutionary game, and master–slave game are gradually applied in the fields of optimal 
operation and energy management of energy systems.
	 With this background, we established a model based on the master–slave game and energy 
storage system for the integrated regional energy system (IRES) containing the microgrid 
operator and multiple users, and improved the flexibility of users’ thermal energy demand by 
adding self-producing heat equipment on the user side under the framework of the strategy of 
heat and electricity price setting on the microgrid operator side.

2.	 Literature Review

	 Many scholars in China and abroad have proposed some methods to optimize the operation 
of integrated energy community microgrids. Li et al.(3) constructed a Stackelberg-based demand 
response scheme, in which the IES operator acts as the upper-level leader, pursuing the operator’s 
maximum net profit by setting the price of energy, whereas the lower-level users act as followers 
that adjust their energy consumption schedules to minimize their total costs. Ouedraogo et al.(4) 
built an optimization system focused on low-cost software, considering the photovoltaic (PV) 
access case, through battery charging, and discharging is controlled by an energy management 
system (EMS) system to minimize system cost. Wang and Hu(5) proposed a two-stage 
management approach that takes into account the pre-trade actions of users and energy service 
providers (ESPs), constrains the tariff and load in the first period, and establishes an interactive 
game model of energy in the second period, which leads to the optimization of the electricity 
tariff and energy management system. Dong et al.(6) proposed a two-layer optimal dispatch 
system for IRES that considers the electric–thermal hybrid structure energy storage, which 
effectively enhances the revenue of energy storage system (ESS) operators while reducing the 
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costs of the microgrid users and realizing the benefits of the multiple energy sources in the 
system. Pan et al.(7) proposed an improved strategy for IES based on the ESS to extend battery 
life through supercapacitors and reduce the running cost of replacing the ESS equipment.
	 Jiang et al.(8) proposed a two-tier model to resolve the joint planning–operation matter of the 
system, which can simultaneously ensure the benefits of the upper tier and reduce the operating 
costs of the lower tier, but their study lacks the equipment optimization for the lower tier 
operators. Li et al.(9) incorporated the response of loads such as electric and thermal energy into 
the optimal scheduling of IES, and an IES optimization model was developed to minimize the 
operating cost of the system, but the hierarchical optimization between upper-level decision 
makers and lower-level users was not considered in the study. A new low-carbon economic 
operation model was proposed(10) specifically to consider the demand-side dispatch of flexible 
loads in IES to better achieve rational load distribution and reduce system operation costs. Gao 
et al.(11) presented a method for configuring a HESS and proposed an active energy storage 
operation strategy to coordinate the demand of users in IES as well as the fluctuation of the RE 
sources.
	 Some groupes use a machine learning approach to optimize the operation of IES. Liu et al.(12) 
presented an improved moth–flame algorithm to resolve the optimal scheduling matter of energy 
sources in a pilot system. Zhang et al.(13) proposed a new grey wolf optimizer (GWO) 
optimization method that improves the limitations of traditional GWO to enhance the stability of 
hydroelectric plants by optimizing power delivery. In this study, a new solution algorithm 
[improved coati optimization algorithm (ICOA)] is proposed. On the basis of the coati 
optimization algorithm (COA), by adding Bernoulli chaotic mapping to the population 
initialization and dynamic inertia weight factors to the COA position update formula, the 
algorithm’s seeking ability is further improved, and the rationality of the algorithm improvement 
strategy and the algorithmic performance of ICOA are verified by evaluating the metric values 
of the test functions and testing them in comparison with existing traditional algorithms.
	 In summary, there is a paucity of studies on the changes in the game outcome due to changes 
in the equipment on the user side during the game, and the configuration of the ESS in the IES 
improves the load regulation capability on the user side and reduces the user’s power supply and 
demand to the microgrid. Therefore, the important results of this study are as follows.
1.	 	A new two-tier IRES optimization model is established to specify a reasonable regional 

microgrid system operation strategy by considering the microgrid side as the leader and the 
lower user side as the follower under the principle of the master–slave game.

2.	 	For the optimal electricity and heat tariff solution of the upper microgrid operator, we 
introduce the new optimization algorithm ICOA, which is optimized and improved by chaotic 
initialization and dynamic inertia weight coefficients, and the improved method is tested for 
comparison.

3.	 	The introduction of electric heating equipment is considered on the user side in IRES, while 
electric and thermal coupling is considered in both the upper and lower layers to better match 
the actual scenario, and the heat price setting strategy of the microgrid is changed to reduce 
the cost on the user side.
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4.	 	An optimization model that considers the various functions of ESS is structured on the basis 
of IRES. The model considers the existing device running restrictions and the RE uncertainty 
restrictions.

	 The rest of this study is organized as follows. In Sect. 3, we describe the system architecture 
of the IRES and present the operation strategy of the regional system. In Sect. 4, we present the 
proposed algorithm and compare and test it with other intelligent algorithms. In Sect. 5, the 
results of two different cases are analyzed and discussed. In Sect. 6, we present the conclusions 
and further research directions of this study.

3.	 System Modeling

	 Community-based IRES has the advantages of multi-energy complementarity and improved 
energy utilization efficiency. In this section, on the basis of the current research status of active 
distribution grid hierarchical energy management and community-based IRES, the distributed 
user groups inside the microgrid are equated to user aggregators, and the community-based 
IRES consists of the microgrid operator, the user aggregator, and the ESS. Temperature sensors 
inside a house can help monitor the temperature of the thermal energy storage system and better 
utilize the electric heating equipment, and energy sensors can provide detailed information on 
electrical energy usage, as shown in Fig. 1. 
	 Meanwhile, we introduce the construction method of the hierarchical energy management 
model and the specific characteristics of the hierarchical energy management model, and lay the 
foundation for the specific case studies in the subsequent sections.

3.1	 Microgrid operator system

	 The microgrid operator system serves as an intermediate link between the users and the grid 
and is able to trade energy with both parties; at the same time, the microgrid operator is partially 
equipped with a gas turbine to provide electrical and thermal energy directly to the users.(3)

	 The loads of the user aggregator mainly consist of electrical and thermal loads. In this paper, 
it is considered that the users only purchase power from the microgrid manager and sell the 
power uniformly to the grid when energy is abundant, and the users can not only purchase power 
from the microgrid manager, but also keep the power imbalance by discharging through the 
ESS.(14) For the heat load, part of it is provided by the micro–gas turbine on the operator side of 
the microgrid, and the other part can be provided by the electric heating equipment on the user 
side. In this model, there is more flexibility in energy use.
	 In this study, the microgrid operator sets reasonable prices for purchasing and selling 
electricity, and the user side optimizes the allocation of electricity and heat loads in a day on the 
basis of heat and electricity prices.
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3.2	 Microgrid operator model

	 We divide the 24 h day into multiple time periods, and the microgrid operator uses the price 
of electricity sold and the price of heat sold as decision variables, with the corresponding 
constraints of

	 CADN,b < CMG,s < CADN,s,	 (1)

	 , , ,MG min MG s MG max
h h hC C C< < ,	 (2)

where CADN,b and CADN,s are the purchasing price and selling price of the main grid, respectively, 
CMG,s is the selling price of the microgrid to the user aggregator, and ,MG s

hλ  is the selling price of 

Fig. 1.	 (Color online) Typical community-based integrated micronetwork structure diagram.
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the microgrid operator in one day. ,minMG
hC  and ,maxMG

hC  are the lower and upper limits of the 
microgrid heat price, respectively.
	 The microgrid operator side is equipped with a micro–gas turbine fueled with natural gas to 
provide heat and electricity to the user side. During the day, the relationship between the fuel 
cost and the unit output power can be represented as

	 ( ) ( ),ngMT MT e
MT

LH

C
E t P t

Q η
= ,	 (3)

where PMT,e(t) is the electric power output by the micro–gas turbine at the t-th hour of a day, Cng 
is the unit price of natural gas, QLH is the low calorific value of natural gas, and ηMT is the power 
generation efficiency of the micro-combustion unit.
	 The relationship between the electric and thermal outputs of the micro–gas turbine at the t-th 
hour can be expressed as

	 ( ) ( ),, 1 MT MT
MT eMT h e l

hMT
e

P t P tη η
η

η
− −

= ,	 (4)

where PMT,h(t) is the thermal power output by the gas turbine at time t, MT
lη  is the heat loss rate, 

and ηh is the heating coefficient.
	 Considering the balance of thermal energy, the thermal energy demand on the user side is 
equal to the thermal power generated by the microgrid, which is represented by

	 ( ) ( ), ,MT h MG hP t L t= .	 (5)

	 In summary, the one-day revenue of the microgrid system can be expressed as

	 , , ,l e l h ADN e
MG MG MG MG MTC C C C C= + + − ,	  (6)

where ,l e
MGC  and ,l h

MGC  represent the revenue generated by the microgrid operator from user-side 
electricity transactions and user-side heat supply in one day, respectively. ,ADN e

MGC  represents the 
electricity transactions between the microgrid system and the grid, and CMT represents the cost 
of gas for the microgrid operator in one day.

3.3	 Energy storage system model

	 The ESS mainly provides electrical energy storage/supply for the user side,(15) and the amount 
of stored energy at the t-th moment of the day can be represented as
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	 ( ) ( ) ( )1 c cES t ES t P t tη= − + × ×∆ ,	 (7)

	 ( ) ( ) ( )1
Pd t t

ES t ES t
dη
×∆

= − ,	 (8)

where Pc(t) and Pd(t) are the charging and discharging of the user aggregator in the community 
in the t-th time period, respectively. ηc and ηd represent the transmission efficiency of the user in 
the charging and discharging processes, respectively and are both taken to be 0.95 in this study.
	 The state of charge (SOC) is an important argument for the remaining capacity of the ESS 
and is shown as

	 ( ) ( ) 100% / ccpsSOC t ES t ES= × ,	 (9)

where ES(t) is the power level of the battery t at this time in the ESS, and ESccps is the starting 
rated capacity.
	 The charge and discharge of the ESS at any moment T should meet

	
( )

( )
( )

,

,

0 ,
0,

c c,max

d max d

min max

P t P
P P t

ES ES t ES

 < <
 < <
 < <

	 (10)

where ESmin is the minimum value of the capacity and ESmax is the maximum value in the ESS.

3.4	 User aggregator model

	 User-side loads have some flexibility and schedulability, and the user side can be equipped 
with electric heating equipment to supply the user’s thermal load.(16) The electrical load of the 
user aggregator at point t in a day can be represented as

	 ( ) ( ) ( ) ( )le ls lf le
eL t L t L t L t= + + ,	 (11)

where Lle(t) is the total electrical load of the user aggregator, Lls(t) and Llf(t) represent the flexible 
electrical load and rigid electrical load on the user side, respectively, and ( )le

eL t  is the additional 
electrical load consumed by the electric heating equipment on the user side to produce thermal 
energy.
	 With the inclusion of an energy storage system on the user aggregator side, the user 
aggregator can store or take a certain amount of electrical energy at each time period. 
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Considering the electrical load demand response on the user side, the net electrical load of the 
user aggregator at time t of the day can be obtained and expressed as

	 ( ) ( ) ( ) ( ) ( ) ( )lc lf ls le lES lpv
e eL t L t L t L t L t L t= + ∆ + ∆ + − ,	 (12)

where Llpv(t) represents the predicted output of the PV installation of the user aggregator of the 
day, and Le

lES(t) represents the electricity stored or withdrawn by the user aggregator to the ESS 
of the day, with positive/negative values for storage/retrieval. A positive/negative value of Llc(t)
indicates that the user aggregator buys/sells electricity from the microgrid operator during that 
time period.
	 For the heating side, the only source of thermal energy for the user in the traditional model is 
the microgrid operator. With the development of electric home appliances, most of the user-side 
thermal energy can be obtained using electric heating equipment, so it is assumed that the user 
side has the capability to convert electrical energy to all thermal demands. In this study, we 
placed temperature sensors in various key locations, including rooms and corridors. These 
sensors will measure the temperature in different areas. When the temperature is low, the user 
can produce heat using electric heating equipment when grid electricity prices are low, thereby 
reducing the heat price for the user. The thermal load of the user aggregator during a day with 
the corresponding constraint can be expressed as

	 ( ) ( ) ( ) ( ) ( )1tMG hIh ls lh
h hL t L t L t L tµ µ= + − − ∆ ,	 (13)

	 ( ) ( )0 lh lh
maxL t t≤ ∆ ≤ ∆ ,	 (14)

where LIh(t) is the thermal power provided by the electric heating equipment on the user side of 
the user aggregator at time t, ( )lh

max t∆  is the maximum value of the thermal load that can be 
abated with the actual abatement in t, μh is the heating coefficient of the microgrid operator 
selected by the user aggregator as the heating provider at time t of the day, μh is 0 when indicating 
the load of the user using the electric heating equipment, and 1 when indicating the thermal 
energy purchased entirely from the microgrid operator side on the user side.
	 In this study, electric heating equipment is added to the user aggregator side, and the 
corresponding constraints for the electric heating equipment at the t-th moment of the day are 
denoted as

	 ( ) ( )uh le
lL t L tη= ∆ ,	 (15)

where Luh(t) is the user-side electric heating equipment output at t moments in a day, ΔLle(t) is 
the maximum heat output that the electric heating equipment can allow in the process of electric 
heating, and ηl is the heat production efficiency of the electric heating equipment.
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	 ( ), , ,MG e ue MG h l he
l l l l t

C C C C L tβ= − + − − ∆∑ 	  (16)

Here, ,MG e
lC  is the adjusted electrical load of the aggregator at time t of the day, and ue

lC  is the 
energy utility benefit function on the user side. ,MG h

lC  represents the cost of purchasing thermal 
energy from the microgrid operator, and  βΔLl,he(t) represents the penalty cost of reduced user 
comfort due to the electric heating load that the user can cut in one day.

	 ( ) ( ) ( )( )2ue
l af af

t

C t xL t yL t c= + +∑ 	 (17)

	 ( ) ( ) ( ) ( ) ( )lf ls le ES
afL t L t L t L t L t= + + ∆ + 	 (18)

	 ( ) ( )( ) ( )( ),
1 1max ,0 min ,0MG h MG lc EG lc

l t
C t L t L tλ λ = ⋅ + ⋅ ∑ 	 (19)

	 ( ) ( )2 1
1
MG h l

MGC t C t= 	 (20)

Here, Laf(t) represents the electric load of the user aggregator after adjustment at time t; x, y, and 
c are the parameters of the electricity consumption utility function of the user aggregator.

4.	 Model Solving Method

	 In this study, the interaction variables between the microgrid operator and the user aggregator 
are electricity price, heat price, and electricity and heat purchases. When the microgrid 
operator’s price is too high or too low, the user aggregator will dynamically adjust its own 
electricity and heat purchases. The revenues of microgrid operators and aggregators are in 
conflict, so microgrid operators and aggregators can be regarded as a master–slave game model. 
The model can be expressed as

	 ( ) , ,

,

,
, , ;

MG b MG s
load

s lh l ES
l MG l

MG L
K

L L L E E
λ λ ∪ =  

∆  
,	 (21)

where MG is the leader in this optimization model, Lload is the follower, ΔLlh is the strategies of 
the user aggregator for thermal energy reduction, Ll,ES is the strategies of the user aggregator for 
ESS, and El is the gain of the user aggregator in one day. EMG represents the revenue of the 
microgrid operator in one day, calculated using Eq. (6).
	 In this study, for the user aggregator, the objective function is to maximize the user gain 
within one day. For the microgrid operator, we solve for the optimal thermal and electric price 
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for one day. The COA is a newly proposed intelligent optimization algorithm that has gradually 
started to be applied to the study of power system optimization. In this study, the ICOA is chosen 
as the solution method for the upper model, and the CPLEX solver is used in the lower layer to 
solve for the maximum revenue of the user aggregator.(17)

4.1	 COA

	 The COA optimization method is meta-heuristic based on a raccoon population, where co is 
considered a member of the algorithm. The value of the decision variable is the position of co in 
space. Thus, in COA, the location of co describes a candidate solution to the solution matter.(18) 
At the start of a COA operation, the co’s location in the space is initialized using

	 ( )
,

:a a b a b bX x lb m ub lb= + ⋅ − ,	 (22)

where Xa is the location of the a-th co, xa,b is the value of the b-th decision variable, m is the 
number of decision variables studied, and ubb and lbb are the upper and lower bounds of the b-th 
decision variable, respectively.
	 In the COA method, the location of the best part of the co population is presumed to be that of 
the igu. It is also assumed that half of the co population climbs up the tree and the other half 
waits for the igu to fall to the ground. The co position from the tree is represented as

	 ( )1 1
, , ,: 1,2, , , 1,2, ,

2a

L L
a a b a b b a b

NX x x m igu I x fora b m = + ⋅ − ⋅ = … = …  
.	 (23)

	 After the igu hits the ground, it can be placed at any position in space. From these random 
positions, the co on the ground moves in space to better approach the igu. The update process of 
the igu drop location and the co movement can be represented by

	 ( )G
a b bigu lb m ub lb= + ⋅ −  and	 (24)

	
( )

( ),

, ,
1 1

, ,

   
:

1, 2, , , 1,2, ,
2 2

G
a b b a b iguG i

L L
a a b G

a b a b b

x m igu I x F F
X x N Nx m x igu i N j M

 + ⋅ − ⋅ <


=     + ⋅ − = + + =       
 

.	 (25)

	 If the new location of each co enhances the value, the update process is accepted; otherwise, 
co remains at the original position, and the update condition applies for a = 1, 2, ..., N. The above 
equation can be expressed as
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1 1

e
,

se, l

L L
a a i

a
a

X F F
X

X
 <= 


	 (26)

where 1L
aX  is the new location computed for the a-th co, 1

,a b
Lx  is its b-dimension, 1L

aF  is the value of 
the objective function corresponding to co, igu represents the igu’s position in the space, which 
actually refers to the best positioned member of the space, igub is its corresponding b-dimension, 
I randomly selects an integer in the set, iguG is the igu’s randomly generated position on the 
ground, G

bigu  is its b-dimension, FiguG is the value of its objective function, and ⌊-⌋ is the bottom 
function.
	 To simulate the behavioral characteristics of co when avoiding predators, a random location 
was generated near the location of each co according to

	 , , where 1,2, ,loc locb b
b b

lb ublb ub t T
t t

== = 
,	 (27)

	 ( ) ( )( )2 2
, ,: 1 2L L loc loc loc

a b a b b b bX x x r lb r ub lb= + − ⋅ + ⋅ − ,	

	 1,2, , , 1,2, ,a N b m= … = … .	 (28)

	 If the newly calculated location enhances the value, then the new location can be accepted 
and the above update condition can be expressed as

	
2 2

e
,

se, l

L L
a a a

a
a

X F F
X

X
<= 


	 (29)

where 2L
aX  is the new location of the a-th co, 2

,
L
a bx  is its b-dimension due to the update of the 

second stage co, 2L
aF  represents the value of the new location of co, t is the iteration counter, and 

loc
blb  and loc

bub  are the lower and upper bounds of the position of the b-th optimization variable, 
respectively.

4.2	 Improvement strategies 

4.2.1	 Chaos initialization

	 Chaotic sequences have the characteristics of ergodicity and unpredictability, so chaotic 
sequences can be used to replace the random array initialization of the population. To enhance 
the search space distribution of co and enhance the range of the global optimal solution search of 
co, the chaotic initialization is chosen to update the position of co. The chaotic initialization is 
shown as
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( ) ( ]

( ) ( )1

/ 1 , 0,1
1 / , 1 ,1

m m
m

m m

r r
r r r

µ µ
µ

µ µ+

 − ∈ −=  − + ∈ −
	 (30)

where r is the chaos parameter and μm is the chaos value of the m-th time. 

4.2.2	 Dynamic inertia weighting factor

	 In the position update formula of the co population, co does not make full use of the original 
position, which has an impact on the diversity of co individuals. In this study, we balance the 
search process of the COA method in the early and late iterations by introducing the dynamic 
inertia weight factor, which is added to

	
( )
( )

, 1 2 3 , 21
,

, 1 2 3 , 2

sin ,

cos ,

L L L
a b t a bL

a b L h L
a b t a b

X n n n X X E S
X

X n n n X X E S

θ

θ
+

 ⋅ + ′ ⋅ ⋅ ⋅ − <= 
⋅ + ′ ⋅ ⋅ ⋅ − ≥

 and	 (31)

	 ( ) ( )1 1 2 /max maxTer t Terθ θ θ θ=  ⋅ − ⋅ −   ,	 (32)

where θ represents the dynamic inertia weight factor and Termax is the largest iteration of the 
COA method.

4.3	 Algorithm performance testing

	 To verify the algorithm performance and improvement strategy of the study on ICOA, we 
used the six test functions to test the performance of ICOA. The performances of the particle 
swarm optimization algorithm, whale optimization algorithm, sinusoidal cosine algorithm, and 
Harris hawk algorithm are used for comparison with those of the COA and ICOA. Among the 
test functions, ICOA is optimal in terms of optimal value, variance, and mean.

5.	 Case Analysis

	 The case in this study is a community with five residential buildings, the electrical and 
thermal loads and PV output curves for which are shown in Fig. 2. It is assumed that each 
residential building is equipped with photovoltaic power generation and electric heating 
equipment for 24 h, and a micro–gas turbine is installed on the operator side of the community 
microgrid. The lower and upper limits of the thermal load are set to 0.02 and 0.08 kW/$, 
respectively.(19) The elastic load variation on the user side is about 15%, and the comfort factor 
on the user side is taken as 0.014 $/kW2. To prove the effectiveness of the model, different 
example models are represented in Table 1.
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Fig. 2.	 (Color online) User aggregator side electric and thermal loads and PV output curve.

Fig. 3.	 (Color online) Model 1: Optimization results for lower microgrid operator's electricity sales price (a) and 
heat sales price (b).

Table 1
Two different models in IRES. 
Model Optimization of thermal load Electric heating equipment
1 0 0
2 1 1

Table 2
Optimized revenue values for the microgrid operator and user aggregator.
Model User aggregator revenue/$ Microgrid operator revenue/$
1 229.3 110.6
2 282.8 86.21

(a) (b)
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(a) (b)

Fig. 4.	 (Color online) Model 2: Optimization results for microgrid operator's electricity sales price (a) and heat 
sales price (b).

	 The above two models are simulated in Matlab, and the optimal heat and electricity prices of 
the microgrid operator are found using ICOA. The optimal revenues of the microgrid operator 
and the user aggregator are found using the Cplex algorithm, and the results of the revenues of 
the two models are shown in Table 2.
	 In this study, Models 1 and 2 are analyzed. The optimized prices of electricity and heat sold 
by the microgrid operator in a day for Models 1 and 2 are shown in Figs. 3 and 4, respectively. 
Compared with Model 2, the heat load on the user side of Model 1 can only be supplied by the 
microgrid operator, and the price of heat supply is higher. Since electric heating equipment and 
flexible loads are involved in the regulation of thermal and electric loads on the user side in 
Model 2, the price of thermal loads from the microgrid operator is appropriately lowered, and 
the price change further promotes the game between the user side and the microgrid side. 
Figures 5 and 6 show the changes in the original electric load and the original thermal load on 
the user side under different modes, where Fig. 5 shows the electrical and thermal loads at the 
user side in Mode 1. In Fig. 6(a), the user side tends to increase the electricity consumption 
during 0:00–6:00, 22:00, and 24:00, decrease the electricity consumption during 8:00–22:00, 
and increase the electricity consumption most during 13:00, when the microgrid operator’s tariff 
is the lowest, which is favorable for the user aggregator to obtain the most benefit.
	 Compared with the microgrid operator trading electricity and heat with users individually 
(Model 1), the overall revenue of the user-side aggregator is substantially improved owing to the 
flexibility of load shedding and the introduction of electric heat production equipment on the 
user side, and although the revenue of the microgrid operator is appropriately lowered, the user-
side aggregator’s revenue is improved to a greater extent. The microgrid operator’s heat price 
will be higher in Model 1 than in Model 2 because there is no electric heating equipment on the 
user side, and the operator raises the heat price to increase revenue. The introduction of the ESS 
also improves the electric load regulation capability on the user side, and when the electricity 
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price is high, the user side can be recharged from the storage system, which reduces the electric 
energy dependence between the user and the microgrid operator, and the revenue of the user 
aggregator under Model 2 increase by $53.4 and the microgrid operator’s gain decreased by 
$24.54 compared with Scenario 1. This is due to the fact that the user side is equipped with an 
independent electric heating device under Model 2, which improves the flexibility of the user 
side’s heat demand, and the introduction of the master–slave game results in a higher gain for 
both parties.
	 Figures 5 and 6 show the electric and thermal load regulations under Models 1 and 2, 
respectively. In Model 2, when the heat load can be reduced, the user aggregator takes into 
account the reduction of heating costs and user comfort. Model 2 considers the case of time-of-
use electricity tariffs and appropriately increases the heat supply of the electric heating 
equipment on the user side when the electricity tariffs are lower to meet the user’s heating 

(a) (b)

Fig. 5.	 (Color online) Model 1: Optimization results for user aggregator electrical load (a) and thermal load (b).

Fig. 6.	 (Color online) Model 2: Optimization results for user aggregator electrical load (a) and thermal load (b).

(a) (b)
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demand. Figure 7(a) shows the user aggregator heat load profile for Model 2. Figure 7(b) gives 
the variation curve of the consumer-side electricity quantity in a day. At the time of lower tariff, 
the energy storage system absorbs energy during 0:00–8:00, 12:00–16:00, and 23:00–24:00. In 
Model 2, the thermal energy captured by the user-side electric heating equipment varies by time 
of day, and the use of a lower heating cost scheme to increase revenue helps to reduce the 
operating costs on the user aggregator side.

6.	 Conclusions

	 In this study, we took community-based IRES as the background and proposed optimal 
decision-making schemes for electric heating equipment and the electric heating load demand 
response mechanism for the user side. The adopted two-tier game theory can maximize the 
interests of the lower-level user aggregators while maintaining the interests of the upper-level 
microgrid aggregators, achieving a win-win situation for both microgrid operators and user 
aggregators. The conclusions of this study are as follows.
1.	 A master–slave game model considering a microgrid operator and a user aggregator is 

developed, with the upper level solving for the optimal electricity and heat sales prices for the 
microgrid operator and the lower level solving for the optimal revenue of the IRES.

2.	 ICOA is proposed to solve the optimal price of the microgrid operator, and the proposed 
algorithm is verified to have better convergence and convergence speed by testing the 
function

3.	 The proposed model integrates the participation of user-side electric heating equipment and 
ESS with upper and lower electric couplings. The inclusion of sensors makes the considered 
scenarios more specific.

Fig. 7.	 (Color online) Model 2: User aggregator electric heating equipment output curve (a) and electric load 
balance diagram of user aggregator in IRES (b).

(a) (b)
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	 In this study, we provided a reasonable analysis of the operation and dispatch optimization of 
the IRES, but there are still some shortcomings. First, the modeling of the IRES in this study is 
relatively simple. Second, the user satisfaction on the user side after considering the electric and 
thermal demand response is not analyzed. In the future, the scale of the system can be further 
expanded to an integrated cooling, heating, and power system, and the model can be analyzed in 
more detail. Also, internal transactions between multiple user aggregators are considered to 
achieve a better distributed management of the IRES.
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