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 In this study, a search was made for the optimal training parameters for a back propagation 
neural network (BPNN) using the hybrid Taguchi genetic algorithm (HTGA). This was 
conducted to enhance the predictive accuracy of the model and solve the difficult problem of 
BPNN parameter adjustment. The 10-fold cross-validation method was used for verification and 
to assess the pros and cons of the model as well as optimize the training parameters. Practical 
spindle thermal deformation experiments were also conducted to verify the prediction results 
using a computer numerical control milling machine at different spindle speeds using contact 
thermal sensors and an eddy current sensor to measure deformation. The findings of this 
research demonstrate that the training parameters for the BPNN, when optimized using the 
HTGA, exhibit superior performance compared with those obtained through the conventional 
genetic algorithm methodology. The results of the experiment in thermal deformation and 
displacement indicate that the root-mean-square error of the predicted displacement and the 
actual displacement for the optimized BPNN training parameter model using HTGA were 
within 6 µm, and the results were better than those found by conventional methods.

1. Introduction

 Methods for the enhancement of machining accuracy have attracted considerable attention as 
the demand for high-precision machining has risen. To achieve high precision, it is necessary to 
reduce errors.(1) Spindle thermal error accounts for 40 to 70% of the total thermal error(2,3) in 
precision machining. The reduction of spindle thermal expansion has been approached in several 
different ways.(4) The first approach uses cooling oil sprayed onto the spindle to lower the 
temperature. The second approach keeps the spindle at a constant temperature and uses a fixed 
value for error compensation. The third approach is to ensure an even distribution of temperature 
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all over the spindle to prevent irregular deformation. The fourth approach establishes a 
relationship between the spindle temperature and displacement. The amount of expansion is 
measured and a controller is used to compensate for the displacement.(5,6) Li et al.(7) proposed 
the use of improved particle swarm optimization (IPSO) and back propagation neural network 
(BPNN). IPSO is utilized to optimize parameters such as the initial weights and thresholds of 
BPNN, and it is compared with the genetic algorithm (GA)-BPNN prediction model. The results 
showed a spindle thermal error prediction accuracy of 93.1% for the GA-BPNN model. The 
IPSO-BPNN model was more effective and showed an accuracy of 96.5%. Wang(8) utilized the 
Grey Theory to reduce the number of temperature measurement points and adopted the 
hierarchy-GA (HGA) coupled with BPNN. The results indicated that the HGA-BPNN model can 
be applied to any type of computer-numerical-controlled (CNC) thermal error issue. Liang et 
al.(9) constructed a thermal error model by employing linear regression (LR), BPNN, and radial 
basis function (RBF) networks. Their results showed that the RBF thermal error model has a 
higher prediction accuracy than the LR and BPNN models. The use of the RBF model can 
enhance the machining accuracy by 65%. Li et al.(10) suggested that BPNN was suitable for the 
establishment of a thermal error model and utilized the bat algorithm (BA) to enhance the 
performance of BPNN. Integrating the BA with BPNN significantly improved the initially poor 
prediction accuracy of the latter. Comparative results showed that the BA-enhanced BPNN 
thermal error model was more stable, exhibiting fewer performance fluctuations, and more 
robust with higher prediction accuracy than the conventional BPNN model. Tan et al.(11) applied 
the least absolute shrinkage and selection operator to decrease the number of temperature 
measurement points to seven and developed a thermal error model using least squares support 
vector machine (LS-SVM) regression. This model was then evaluated against the grey and 
multiple linear regression models. The results showed that LS-SVM gave a better prediction than 
the grey model and multiple linear regression analysis, the enhancements being 74.6 and 54.3%, 
respectively. This verified the feasibility of creating a model with LS-SVM. Jian et al.(12) 
measured the increase in the temperature and displacement of a lathe spindle at spindle speeds 
of 1000, 2000, and 3000 rpm and created a thermal error model with multiple regression analysis 
and a general regression neural network (GRNN). The results showed that the GRNN model was 
better than the multiple regression analysis, and the prediction error of the GRNN model was 
less than 0.1 mm. Tseng and Chen(13) created a thermal error model using neural-fuzzy theory 
and multivariable linear regression analysis. The thermal error model with neural-fuzzy theory 
enhanced machining accuracy from 80 to 3 µm, and the thermal error model with multivariable 
linear regression analysis enhanced the machining accuracy by 10 µm. The results showed that 
the thermal error model with neural-fuzzy theory is better than the thermal error model with 
multivariable linear regression analysis, which enhanced the machining accuracy from 10 µm to 
3 µm. Liu et al.(14) proposed a thermal error model with the improved grey wolf optimizer 
(IGWO) for the optimization of the smoothing parameter of the GRNN. The results showed the 
prediction accuracy of IGWO-GRNN to be 5.1% (or more) higher than that of the other 
algorithms.
 Clearly, a robust model(15) is necessary for accurate prediction, and a suitable neural network 
based on the data type should be selected. Previous research showed that these thermal errors 
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are nonlinear, and BPNN could be used for the efficient processing of nonlinear issues.(16) 
However, the initial parameters for training had to be determined before the neural network 
could be utilized; this was done by trial and error in the past. This is time-consuming and 
complicated because the optimal value for each parameter must be determined. The optimization 
method can help solve the above-mentioned problems. However, there are many optimization 
methods, such as GA, PSO, and simulated annealing algorithm (SAA). It is difficult to compare 
each optimization method because the results are varied by the convexity and concavity of the 
objective function and constraints.(17) Researchers who have used this method in the past found 
that GA is worthy of reference in terms of its ability to search for solutions without relying on 
GPU, and is also widely used in various fields.(18,19) As a result of the above discussion, in this 
study, we continue to investigate GA-based optimization methods. The results of the above 
discussion show that it is feasible to use various optimization methods to find the best settings 
for various model parameters. It is certain that this approach can overcome the issue of tuning 
the highly nonlinear-correlated parameters, in the case of not considering the computational 
complexity. Thus, the complexity problem and robustness are the limitations of the current 
optimization method. Therefore, in this study, we aim at finding a robust optimization method 
that outperforms the common optimizers such as GA and a suitable scenario for the application. 
Tsai et al.(20) proposed the hybrid Taguchi genetic algorithm (HTGA) method, which introduces 
Taguchi’s method into the crossover step of GA and significantly improves the original 
sensitivity to mutation and crossover rates of GA. Therefore, in this study, HTGA was used. Its 
powerful global search capabilities can yield the optimal BPNN parameter settings for enhancing 
the prediction accuracy of BPNN in a reasonable time. Although the above optimization 
methods have been experimentally proven to be effective in many studies,(17–19) there are 
undeniably many excellent examples, such as the artificial bee colony (ABC) algorithm,(21) 
monarch butterfly optimization (MBO),(22) earthworm optimization algorithm (EWA),(23) 
elephant herding optimization (EHO),(24) moth search (MS) algorithm,(25) slime mold algorithm 
(SMA),(26) and Harris hawks optimization (HHO)(27) that can be referred to. The K-fold cross-
validation (CV) was also utilized to verify the quality of the parameter model. A robust model 
with high prediction accuracy, which had optimal BPNN parameters, was finally created. Thus, 
the objective of this study is to develop a model for predicting the deformation of the machined 
spindle owing to thermal variation. The model can also be used to compensate for the 
deformation during actual machining in the future. For the speed and convenience of 
implementation, the model structure will be BPNN, and the model will be trained with numerous 
parameter settings, so HTGA will be used to search for the best parameters.
 In summary, the main structure, machine model, and sensors used in this study are 
introduced in Sect. 2.1.  In Sect. 2.2, the BPNN with K-fold CV and HTGA are introduced. The 
details of data collection are described in Sect. 3.1. In Sect. 3.2, the parameters adjusted by the 
optimization method and the corresponding experimental results are described and discussed. In 
Sect. 3.3, the use of optimal BPNN training parameters for model creation and the experimental 
results of using GA and HTGA are illustrated. The differences and improvements are also 
shown. The final contribution of the whole study is presented in Conclusions.
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2. Methods

2.1	 Equipment	and	main	process	flowchart

 A Brother S500X1 CNC milling machine was used in this study. Temperature changes were 
measured using PT1000 contact-type temperature sensors with a measurement range from 0 to 
200 °C. The accuracy was ±0.15% and the sampling frequency was 5 s. An EX-110V eddy 
current displacement sensor was also used. Calculations of displacement were made using 
variations in eddy current generated by magnetic induction on the surface of a moving metal 
plate. The measurement range was from 0 to 2 mm, the accuracy is the full scale ±0.3%, with a 
resolution of 0.4 and a sampling frequency of 5 s. The location of the sensors is shown in Fig. 1. 
As displacement was difficult to measure while the machine was running, the relationship 
between the increased temperature and displacement of the spindle during idle running was 
established to determine displacement based on spindle temperature. Spindle temperature and 
displacement data were collected, and HTGA and GA were used to find the optimal training 
parameters for BPNN. The optimal training parameters were found and an accurate prediction 
model was created. A diagram of the experimental structure is shown in Fig. 2. The computer 
used in this study ran the MATLAB Deep Learning Toolbox 13.0 in Windows 10. It had an Intel 
i7-9700 processor and 32 GB of memory. The model training data were collected at spindle 
speeds of 1000, 2500, 5000, 7500, and 9000 rpm; these were 10, 25, 50, 75, and 90% of the 
maximum machine spindle speed of 10000 rpm, respectively. In addition, the spindle speeds 
most frequently used in normal machining operations, namely, 2000, 3000, and 6000 rpm, were 
used for verification of the model data and to search for the optimal training parameters of 
BPNN based on HTGA and GA for model creation.
 In the first part of the process, temperature and displacement signals is collected from the 
sensors [see Figs. 1(a) and 1(c)]. In the second part, HTGA is used to search for the optimal 
BPNN training parameters. In the third part, the optimal parameters are used to create the 
model.

2.2	 Classifier	and	optimization	methods

 An important step in this study was the establishment of a relationship between spindle 
temperature and displacement. The temperature–displacement relationship is a complex 
combination of nonlinear equations, but it is not easy to find this nonlinear equation model. For 
example, Jian et al.(12) used COMSOL to simulate the thermal dynamics of the spindle, but 
eventually, a general regression neural network was adopted to model the temperature and 
displacement. From the literature, it is clear that machine learning to model temperature and 
displacement is the future trend. A previous study(16) revealed that BPNN can be used for 
nonlinear mapping and is suitable for the creation of a thermal error model, and it was therefore 
used in this study. Neural network is the term used for a mathematical model that simulates a 
neural system. The neural network has neurons or nodes connected to each other. The neurons 
acquire information from the outside world or from other neurons and send information to the 
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outside world or other neurons after simple computations. The purpose of the neural network is 
to simulate the biological neural system and to handle a large number of parallel computations, 
as well as distributed storage and processing. The nonlinear mapping and data-oriented 
characteristics of a neural network can solve many problems, and it is quite different from the 

Fig. 1. (Color online) Machine used in experiments and locations of measuring devices. (a) Eddy current 
displacement meter, (b) S500X1 machine used in experiments, and (c) locations of temperature sensors.

Fig. 2. (Color online) Experimental flowchart.
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model creation methods used in the past. The advantage of a neural network is that it is data-
oriented instead of pattern-oriented, and the assumption of a relationship between input and 
output is not required for data orientation. The neural network has high data error tolerance and 
easily adapts to new data. Specifically, statistical regression is assumed to be a linear structure; 
however, since the sequential data of the heat displacement are formed randomly, it is nonlinear 
data. Therefore, statistical regression is not suitable to obtain the relationship between the input 
and output data. A simple neural network has an input layer, a hidden layer, and an output layer. 
The layers are formed by many nodes. The input layer receives data in the network structure and 
the output layer sends it out. There is usually only one layer for output and one for input. The 
hidden layer interacts with the processing unit of the neural network and uses a nonlinear 
transfer function. The number of hidden layers is usually 1 or 2 for good convergence. The more 
layers there are, the more complicated the problem will become. Too many layers will cause 
network convergence problems. The BPNN structure diagram is shown in Fig. 3.
 Here, Xi is the input vector, Yo is the output vector corresponding to the input vector, and θ is 
the initial value of the neuron, also known as bias. The value of the hidden layer is the value of 
weights through the connection input and hidden from the value of the input layer. The 
computation of the neuron value of the hidden layer is expressed as(28)
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where Hh is the hth neuron of the hidden layer, Xi is the ith neuron of the input layer, Wih is the 
connection weight of the ith neuron of the input layer and the kth neuron of the hidden layer, and 
θh is the bias value of the hth neuron of the hidden layer. The dimensional numbers of both the 
input and output layers are N.
 The BPNN includes forward and back propagations. The forward propagation is the output 
value of each neuron obtained from computation through the input layer, and the error between 
the output value and the actual value is also calculated. The error calculation method is expressed 
as(29)

Fig. 3. Structure of neural network.
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where E is the error between the output value and the actual value, To is the oth actual value, Yo 
is the oth output value, and N is the number of neurons in the output layer. The constant in the 
equation is presumed for a subsequent differential cancellation.
 If the error is greater than the preset tolerance value after forward propagation, then the 
BPNN will be calculated for the corrected weights using the gradient descent method.(30) Its 
weight correction equation  is (31)

 EW
W

η ∂
∆ = −

∂
, (3)

where W is the weight connection to each neuron, ∂E is the corrected amount of the weight 
connection to each neuron, and η is the learning rate that controls the rate of the corrected 
weight. Poor network convergence will result if the learning rate is too large or too small.
 In this paper, after the BPNN structure has been described, the optimized BPNN training 
parameters used in this study will be introduced. To show the performances of the trained and 
untrained BPNN, the BPNN should have the same structure as that shown in Fig. 3. The input 
layer is five temperature points, using a single hidden layer with a sigmoid activation function, 
and the output layer is also a single layer with a linear activation function. In addition, the 
optimization method will tune the following parameters. First, if there are too few neurons in the 
hidden layer, the relationship between output and input will result in ineffective mapping. Too 
many neurons will lengthen the computation time. The second adjusted parameter is the training 
function. A suitable training function will enhance the convergence speed and prediction 
accuracy of the network. The third adjustment parameter is the learning rate. This parameter has 
an impact on network convergence; if the value of the parameter is too high, the network will 
converge to a local minimum, and if the value is too small, the network calculation time will 
increase. In this study 10-fold verification was used to ensure the objectivity of the BPNN 
training parameters for the model, and it was also used as a basis for the adjustment of model 
parameters. Suitable training data are very important for neural network training. Factors such 
as the size of the training sample and the correctness of the data in the sample have a significant 
impact on the training of a neural network. The best training can be achieved by extensive, even, 
and differential data distribution. Cross-validation is a verification standard for model quality, 
and the proper selection of training data is very important. The model should not be based on 
only one training result because this may not be a valid selection. The 10-fold method is a better 
and more commonly used cross-validation method. The data is divided into 10 sets; one is 
selected as test data and the remaining sets are used for training. This is continued until all sets 
have been used as test data.(32,33) The average of the 10 implementations is used for the model. A 
schematic of the 10-fold method is shown in Fig. 4.
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 The test data set is blue and the training data is white. Ei represents the error of the ith 
training and E is the total average error, which is the final error of the model. The quality of the 
model can be judged from the final average; a large value is an indication of instability.
 HTGA was proposed by Tsai et al.(20) in 2004, and in this study, it was used to search for the 
optimal BPNN training parameters to solve the complicated and time-consuming problem of 
BPNN parameter adjustment. HTGA is a combination of the conventional GA and the Taguchi 
method. The development of GA was based on Darwin’s theory of evolution and the concept of 
survival of the fittest and elimination, and it includes selection, crossover, and mutation. 
Selection produces individuals with higher fitness for crossover, and the fittest have the highest 
probability of selection. Roulette wheel selection is often used for selecting individuals with 
higher fitness than the total fitness value of a group. Because they occupy a greater area, there is 
more chance of them being selected. The crossover is performed after good genes have been 
selected. The crossover rate must first be defined and will only be performed for two sets of 
chromosomes with a random value greater than the crossover rate. The crossover may be single- 
or two-point. In a single-point crossover, a random point is selected, and the two chromosomes 
are cut and recombined into a new chromosome. In two-point crossover, the chromosomes are 
cut in two places and the three bits are recombined. Mutation prevents too early a convergence 
because this would prevent an optimal global value being reached. The method provides a 
variation rate, and if the randomly generated number is greater than this rate, variation will take 
place.
 The Taguchi method(34) was initially used in agricultural production and biological analysis. 
It is also called quality engineering as it made a considerable contribution to industrial 
production. Product quality can be considerably improved using the simple orthogonal Taguchi 
arrays for experiments and variance analysis. The Taguchi method allows an experimental result 
that is close to the total divisor to be obtained with the fewest number of experiments. The 
method has the following characteristics: quality characteristics based on loss functions, the 
selection and definition of experimental factors, signal-to-noise (S/N) ratio, and an orthogonal 
table. The Taguchi methods used in HTGA include orthogonal arrays, the characteristic of the 
larger the better and smaller the better, the S/N ratio, and so forth.(35) The orthogonal arrays are 
often used to simplify experiments and have the following advantages: their use greatly reduces 
the number of experiments needed and allows simple data analysis. The orthogonal arrays 

Fig. 4. (Color online) Tenfold schematic diagram.
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originated from the Latin Square and are usually represented by L. GA is usually based on the 
crossover of two sets of chromosomes, as shown in the following example. Here, the number 8 
after the symbol L represents the total number of experiments; there are two levels for each 
factor, and the number of control factors is seven. Optimization was used to search for the 
maximum or minimum values in this study. The expected value of the larger the better and its 
loss function is as shown in Eq. (4). The expected value of the smaller the better is 0 and its loss 
function is as shown in Eq. (5).(36)

 2
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y is the objective function, n is the number of objection functions, and Eqs. (4) and (5) represent 
the mean-square deviation with the target. Taguchi utilized the S/N ratio to list the average value 
as a useful signal, and the loss caused by variation is included in the loss signal. The higher the 
ratio, the better the quality. They are changed in Eqs. (6) and (7).
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3. Results 

3.1 Data collection and analysis

 In this study, spindle temperature and displacement data were collected with the machine 
running at spindle speeds of 1000, 2000, 2500, 3000, 5000, 6000, 7500, and 9000 rpm. The 
results for spindle speeds of 3000 and 7500 rpm are shown in Figs. 5 and 6, respectively. Figure 
1 shows the location of the sensors.
 Figures 5 and 6 show that the temperature at a measurement point does not change 
immediately with a change in ambient temperature; there is a delay. The displacement varies 
with a change in temperature at different spindle speeds. The changes shown in Figs. 5 and 6 
confirm that it is feasible to use spindle temperature for the prediction of displacement. The 
ambient temperature and temperature measurement points in Fig. 5 do not show a significant 
change. In Figs. 5 and 6, the displacement reached a steady state after about 2 h of operation, and 
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the change in displacement is based on the changes measured after 2 to 12 h of operation. In Fig. 
6, the ambient temperature changes more significantly between 8 and 12 h, and the temperature 
measurement point is also affected more significantly, so we can see that the environmental 
temperature affects the temperature measurement. In addition, the displacement in Fig. 6 also 
increases with the increase in temperature over 8 to 12 h.

3.2 Adjustment of BPNN training parameters

 The first BPNN training parameter adjusted was the relationship between output and input 
that cannot be effectively mapped owing to the very few neurons in the hidden layer. However, 
too many neurons will increase the computation time. The second parameter adjusted was the 
training function. A suitable training function enhances the convergence speed and prediction 
accuracy of the network. The training function used in this study was set using the training 
function application in the MATLAB Deep Learning Toolbox 13.0. The function and algorithm 
name are shown in Table 1. The third parameter to be adjusted was the learning rate. A learning 
rate that is too large will make it difficult for the network to converge to a local minimum. If the 

Fig. 5. (Color online) Temperature at six locations and spindle displacement at a spindle speed of 3000 rpm.

Fig. 6. (Color online) Temperature at six locations and spindle displacement at a spindle speed of 7500 rpm.
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parameter is too small, the time taken for calculation will increase, and it will take longer to 
reach a minimum. All these parameters are determined by data type, and different data have 
different parameters. In this study, HTGA was used to search for the optimal BPNN training 
parameters, and they were compared with the optimal BPNN training parameters using GA and 
PSO, the two common optimization methods widely used in engineering. The parameter settings 
for HTGA and GA were 50 for the number of chromosomes, 70 for iteration, 0.7 for the crossover 
rate, and 0.2 for the variation rate. BPNN uses one-layer hidden layers. The range of BPNN 
parameters used for the number of neurons in the hidden layer was from 10 to 100. The training 
function learning rate was from 0.0001 to 1. The details of the training function and names of 
the algorithm are listed in Table 1. The convergence results of the adjusted BPNN parameters 
using HTGA, GA, and PSO are shown in Figs. 7(a)–7(c), respectively, and the runtime 
comparison is presented for evaluating the computational complexity.
 In Fig. 7, HTGA not only demonstrates a more rapid convergence speed but also exhibits 
greater robustness in comparison with the GA and PSO. This is evident as HTGA’s fitness values 
stabilize at a constant level, whereas the fitness values for GA and PSO may fluctuate over time. 
Also, HTGA helps reduce the computational burden for the computer when having the shortest 
time to converge with the same settings. When HTGA is used to find the optimal BPNN training 
parameters, if the number of neurons in the hidden layer is 15 and the training function used is 
the Levenberg–Marquardt algorithm, the learning rate will be 0.5. Comparison with the results 
found in a previous study(46) confirms that the optimization of BPNN training parameters using 
HTGA can eliminate the tedious and time-consuming adjustment of the parameters by trial and 
error. According to the above results, the proposed solution (HTGA) outperforms the GA and 
can expedite the optimization process, thus resolving the challenge of selecting BPNN training 
parameters more efficiently.

3.3 Use of optimal BPNN training parameters for model creation

 In the previous section, the optimal BPNN parameters were found using HTGA. In this 
section, those optimal parameters were used for creating a thermal error neural network model. 

Table 1
Training functions and algorithms.
Abbreviation Name of algorithm
LM Levenberg–Marquardt(37)

BR Bayesian Regularization(38)

BFG BFGS Quasi-Newton(39)

RP Resilient Backpropagation(40)

SCG Scaled Conjugate Gradient(41)

CGB Conjugate Gradient with Powell/Beale Restarts(42)

CGF Fletcher–Powell Conjugate Gradient(43)

CGP Polak–Ribiére Conjugate Gradient(43)

OSS One Step Secant(44)

GDX Variable Learning Rate Gradient Descent(45)

GDM Gradient Descent with Momentum(45)

GD Gradient Descent(45)
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The training data used spindle speeds of 1000, 2500, 5000, 7500, and 9000 rpm, which represent 
10, 25, 50, 75, and 90%, respectively, of the maximum spindle speed (10000 rpm) of the machine 
used in the experiments. The spindle speeds most commonly used for actual machining, namely, 
2000, 3000, and 6000 rpm, were used for model data verification and to search for the optimal 
training parameters of BPNN using HTGA (BP-HTGA) as well as GA (BP-GA) for model 
creation. The training and verification data of the optimal training parameters found using 
HTGA for model creation and the results of the verification data compared with the optimal 
training parameters of BPNN using GA are shown in Figs. 8–10. The search for the optimal 
training parameters of BPNN using HTGA and GA for model creation and the error between the 
prediction and actual value of the model are shown in Table 2.
 Figures 8–10 confirm that the results obtained in the training model created using BP-HTGA 
at various speeds are good. The predicted displacement values are very close to the actual 
values. A reference to the error values of training data in Table 2 shows that the BP-HTGA errors 
are within 2 μm, and the training errors at various spindle speeds are all smaller than those of 

Fig. 7. (Color online) Convergence diagrams and runtime comparison for the proposed HTGA, GA, and PSO. (a) 
Convergence diagram of HTGA. (b) Convergence diagram of GA. (c) Convergence diagram of PSO. (d) Runtime 
comparison.

(a) (b)

(c) (d)
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Fig. 8. (Color online) Prediction and actual displacement of spindle at 7500 rpm (BP-HTGA).

Fig. 9. (Color online) Prediction and actual displacement of spindle at 3000 rpm (BP-HTGA).

Fig. 10. (Color online) Prediction and actual displacement of spindle at 2000 rpm (BP-HTGA).

the BP-GA training data. The BP-HTGA model is clearly better than the BP-GA model for 
training. The test data were then used to verify the predictive ability of the model. Figures 9 and 
10 show that BP-HTGA had better prediction at a spindle speed of 3000 rpm. Furthermore, 
according to the test data in Table 2, all the BP-HTGA prediction errors are less than those seen 
in BP-GA at different spindle speeds, and all the root-mean-square errors of BP-HTGA in the 
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test data are under 6 µm, which indicates that the model created using HTGA has very good 
predictive ability. A comparison of these results with those of a previous study(46) showed that 
the model created using HTGA was better than that made using trial and error for parameter 
adjustment. It is clear that the optimization of BPNN training parameters using HTGA can 
effectively improve the adjustment of parameters as well as enhance the predictive ability of the 
model.

4. Discussion

 To mitigate the expenses and complexities associated with adapting a thermal error model to 
diverse CNC machines, Tseng and Ho(47) recommended the application of multivariable linear 
regression and nonlinear regression techniques for effective thermal error compensation. An 
increasing amount of research supports a similar approach for addressing the persistent challenge 
of thermal error in these machines, as indicated in other studies.(48,49) The advantage of the 
methods previously mentioned lies in their straightforward implementation when integrated with 
a digital signal processor (DSP). This integration facilitates user-friendly operation and efficient 
deployment in real-world applications, thereby reducing the technical barriers to adoption and 
application in the field. However, the downside is that the values of the error statistical indexes 
are just acceptable, or, in some cases, error statistical indexes are not included in the research for 
performance evaluation. An intuitive comparison is shown in Table 3. In this table, we can 
discover that the linear regression method is easy to implement with an acceptable compensation 
performance, but according to the results of the above-mentioned research, the prediction will 
start losing its accuracy when predicting error change in a short period of time.
 Owing to the unsatisfactory results of error change in a short period of time, the neural 
network is introduced in this paper to tackle the issue. Under the circumstances of not using 
multiple hidden layers or deep learning, this method can still achieve easy implementation and 
high accuracy for short-term predictions. The neural network relies on the initial weighting and 
training method, which requires experience and time for trial-and-error tuning. Therefore, we 
not only focus on finding the suitable method for thermal error prediction but also the tuning and 
training method of the neural network. For example, Li et al.(7) proposed IPSO to search initial 
weighting and BPNN parameters. Table 4 is a review of the studies using different models on the 

Table 2
Root-mean-square error and mean-square error of model prediction and actual displacement.

Spindle speed 
(rpm)

BP-HTGA BP-GA
Mean-square error 

(µm)
Root-mean- 

square error (µm)
Mean-square error 

(µ)
Root-mean- 

square error (µm)

Training data

1000 1.5177 1.2319 2.1188 1.4556
2500 0.6934 0.8327 0.9619 0.9808
5000 0.5691 0.7544 0.6684 0.8176
7500 3.5189 1.8759 3.8791 1.9695
9000 1.8702 1.3675 2.0900 1.4457

Test data
2000 25.0911 5.0091 34.6703 5.8881
3000 3.3098 1.8193 9.6334 3.1038
6000 11.3408 3.3676 92.9659 9.6419



Sensors and Materials, Vol. 35, No. 12 (2023) 4411

same CNC machine. Although the results show that the general regression neural network has 
the best accuracy, this model is only suitable for training with a small number of samples, and it 
is difficult to realize it in real time. Besides, fine Gaussian SVM also rarely attains real-time 
performance on low-cost computing boards. The BP-HTGA in this paper shows its worth in its 
high accuracy and easy implementation characteristic.
 The results in Sect. 3.1 show the temperature variation and thermal displacement of the 
spindle at 3000 and 7500 rpm. Figure 7 shows that HTGA has a clear advantage with better 
convergence and is successful in this scenario. Additionally, the results also show that the 
optimal number of neurons to find the hidden layer of BPNN is 15, the optimal training function 
is Levenberg–Marquardt, and the optimal learning rate is set to 0.5 in this scenario. The results 
in Sect. 3.3, which include the mean-square error and root-mean-square error metrics for both 
training and testing datasets at different spindle speeds, indicates that the BP-HTGA outperforms 
the model optimized by the standard GA. From the results of the experiments, it can be verified 
that the test data of this spindle at all speeds have relatively small error, and the optimized 
solution targeted in this study is superior to these of common GA methods. Many researchers 
have conducted similar experiments with various optimization methods, and the proposed 
method has been proven to yield the best or superior experimental results.(50–52) This study 

Table 3
Review and comparison of linear regression methods in thermal error prediction research.

Linear regression type Advantages Prediction results (only z-axis is 
considered)

Multivariable linear regression(47)

Nonlinear regression(47)

General linear model(48)

Because of the simplicity of the 
models, it is easier to implement it 

into DSP.

Around 6 µm
Around 3 µm

Rise time was within 19 µm
Stable time was within 15 µm.

Nonlinear regression(49)

The errors derived from the nonlinear 
regression approach are tenfold lower 
than those obtained through multiple 

linear regression analysis(49)

1 to 2 µm

Be advised that since the experiment equipment and the signal gathering conditions are different, the prediction 
results are for reference only. 

Table 4
Prediction performances of different methods on same CNC machine.

Method

For real-time and low-cost 
implementation

Y for yes and N for no
(Baseline is Arduino Due)

Prediction results 
(only the z-axis is considered)

Multivariate regression analysis(12) Y 6.8 µm

General regression neural network(12) N
(highly complex to compute, and 
all testing samples are required to 

train with all train samples)
0.1 µm

General linear model(48) Y Rise time was within 19 µm.
Stable time was within 15 µm.

Fine Gaussian SVM(50) N (requires enough computational 
power for real-time application) 0.1 µm

This study (BP-GA) Y 40 µm
This study (BP-HTGA) Y 6 µm
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proved that the HTGA, GA, and PSO methods are suitable for this experimental scenario, and 
HTGA, in particular, gave better results. For a more objective verification of the results, a 10-
fold cross-validation was used to build the model, thus proving that this process can be applied to 
build the thermal compensation model in this application scenario if more researchers develop 
better optimization methods in the future.

5.  Conclusions

 The methods used to search for the optimal training parameters of BPNN using HTGA were 
investigated. This was conducted to enhance the predictive accuracy of the model and solve the 
difficult problem of BPNN parameter adjustment. The 10-fold cross-validation used for the 
verification of the model can objectively assess the impact of training parameters and create an 
optimal thermal error model of the spindle. The experiments showed that the proposed 
application of HTGA can reduce the time needed for BPNN training parameter adjustment and 
optimize the BPNN spindle thermal deformation model. The HTGA model was better at finding 
the optimal training parameters of BPNN than the model created using GA. The BP-HTGA 
model prediction error was 6 µm compared with 10 µm for the BP-GA model. BP-HTGA can 
optimize parameters faster and give better prediction than BP-GA. The BP-HTGA model can 
reduce errors of 40 to 6 µm to enhance prediction accuracy as well as save time in parameter 
adjustment. Therefore, we proposed to use the BP-HTGA approach to find the best training 
parameters to build a better model to solve the temperature-induced lift-length compensation 
problem. Our experimental results confirm the advantage of using the optimization method to 
search the parameters of BPNN. Aside from our method, other well-known optimization 
methods can also be used, such as MBO, EWA, EHO, MS algorithm, SMA, and HHO.
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