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 With the development of sensor technologies, sensors have become increasingly embedded in 
various fields, becoming an indispensable part of our daily lives, research, and work. Notably, in 
ethology, surveillance cameras, a type of optical sensor, are extensively used alongside machine 
learning to analyze animal behaviors. However, simply feeding vast amounts of sensor data into 
servers for processing is neither efficient nor sustainable. In line with the prevailing trend 
towards edge computing, it is becoming increasingly important to process and integrate the 
captured sensor information directly within the sensor itself. While we have not fully achieved 
this, the application of deep learning methods to facilitate efficient and rapid processing with 
low computational demands is a necessary progression. In our study, we used a method for 
outdoor animal behavior analysis using multi-target classification, taking advantage of the 
potential efficiency gains provided by deep learning. We focus on a polar bear’s behaviors 
captured by an IoT-enabled surveillance camera in a zoo. The image data are first analyzed by 
using an object detection model to provide location sequences, movement speed, and coordinates 
of video frames, representing the animal’s state. Using these sensor data, we developed a 
classification model that accurately classifies multiple behaviors. The detection of these 
behaviors, including stereotypical behavior, illustrates the potential of our system to 
comprehensively monitor the animal health status. Our method achieved accurate detection 
[98.3% average precision (AP) 50] and multi-behavior recognition (accuracy of 89.5%), while 
maintaining robustness against outdoor noise.

1. Introduction

 The increasing integration of sensor technologies in various fields has become a defining 
trend in recent years, playing an integral role in research, industry, and daily life. Particularly in 
the domain of ethology, sensor technologies, notably surveillance cameras, are gaining 
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momentum in the analysis of animal behaviors.(1) A continuous observation facilitated by IoT 
sensor technologies such as surveillance cameras provides extensive data on animal behavior, 
contributing significantly to fields such as ecology, wildlife conservation, animal welfare, and 
animal cognition research.
 Recent advances have made it possible to integrate sensors with sophisticated data processing 
methods such as machine learning, paving the way for the improved analysis of complex patterns 
and behaviors.(2) This trend aligns with the ongoing shift towards edge computing, where data 
captured by sensors is processed and integrated directly within the sensor itself, promoting 
efficiency and real-time processing.(3) As sensor technologies and deep learning techniques 
advance, more robust, accurate, and rapid processing becomes possible, even with lower 
computational demands.(4,5)

 Deep learning has already made a significant impact in the field of animal behavior analysis, 
(6) yielding promising results across a multitude of studies. Its ability to handle complex and 
high-dimensional data makes it particularly well-suited for recognizing patterns in animal 
behavior, aiding in tasks ranging from species identification to behavior classification.(7) 
Moreover, the incorporation of IoT devices, such as surveillance cameras, adds an additional 
layer of sophistication, allowing for continuous data collection and real-time analysis (8). More 
researchers are leveraging the effectiveness of deep learning in the field of animal behavior 
analysis. For instance, the scratching and grooming behaviors of mice were detected using 
methods based on a convolutional recurrent neural network (CRNN)(7) and a three-dimensional 
convolutional neural network (3D-CNN),(9) respectively.
 In this study, we aim to explore the potential of deep learning techniques, specifically 
YOLOv5(10) and ResNet-18,(11) in the classification of multiple animal behaviors for efficient 
health and welfare monitoring. By developing an effective and accurate behavior classification 
system, we hope to contribute to the understanding of animal behavior, improve animal welfare 
in captivity, and support ongoing conservation efforts. As deep-learning-based computer vision 
has demonstrated remarkable performance in various applications, including animal behavior 
analysis, we believe that our approach can significantly enhance the efficiency and accuracy of 
animal behavior classification.(7–9)

 The contributions of this paper are as follows: first, we propose a simple and efficient 
background subtraction method that effectively eliminates the interference of the dynamic 
background and light pollution in subsequent YOLOv5s-based animal detection within real 
outdoor environments. This method ensures long-term stable and robust animal detection. 
Second, on the basis of long-term stable and highly accurate detection results, we introduce a 
method for detecting multiple animal behaviors, including stereotypical behavior. The detected 
trajectory information along with the cropped images of the polar bear is used as input to the 
behavior recognition network. The stereotypical behavior of the polar bear is identified by  
analysis focusing on the periodicity in trajectories. We verify the effectiveness of our methods in 
a real environment by applying them to videos of a polar bear kept at Sapporo Maruyama Zoo. 
The proposed method achieves an accurate and robust detection of multiple animal behaviors, 
providing accurate detection (98.3% AP50) and maintaining high robustness to various noises, 



Sensors and Materials, Vol. 35, No. 11 (2023) 3949

including Gaussian, uniform, and so forth. Additionally, our method enables comprehensive 
multi-behavior recognition (accuracy 89.5%), demonstrating its effectiveness in analyzing a 
wide range of animal behaviors.

2. Related Work

2.1 IoT applications in animal behavior analysis

 Over recent years, IoT applications in animal monitoring have burgeoned, diversifying 
research objectives and expanding our understanding of animal behaviors in various contexts. 
Monitoring migratory patterns of wild animals,(12) analyzing grazing behaviors,(13) studying 
grazing site profiles, deciphering animal posture behaviors,(14) and detecting animal estrus 
cycles are among the areas that have benefited from IoT implementations. Most of these studies 
involve recording animal behavior for subsequent analysis, with a smaller subset focusing on 
real-time streaming analysis. Researchers have demonstrated the potential of IoT applications for 
comprehensive and effective animal behavior analysis. For example, one study employed 
machine learning techniques on GPS traces, collected over four months from 40 cows, to 
classify grazing behaviors.(13) In another study, we used supervised behavioral classification 
methods to distinguish between active and inactive behaviors in sheep, resulting in a 
classification accuracy of above 92% under different conditions.(14) These previous studies have 
served as the foundational underpinning for the methods we have employed in our current study.

2.2 Animal behavior with deep learning

 Animal behavior analysis has become increasingly important across various research fields, 
as it provides valuable insights into the mental, physical, and cognitive status of experimental 
animals. Given the diverse range of behaviors exhibited by animals, researchers often focus on 
specific aspects according to their interests. However, the continuous monitoring and detection 
of multiple behaviors throughout the day are also essential for a comprehensive understanding of 
the animal’s overall well-being and response to environmental factors.
 Deep neural network technologies have recently made a significant impact on animal 
research to address these challenges. Convolutional neural networks (CNNs), which effectively 
extract visual features from images, have demonstrated outstanding performance in image 
classification tasks, including animal behavior analysis. Several studies have shown that CNN-
based algorithms can accurately predict animal poses from images,(15) providing a foundation 
for detecting multiple behaviors simultaneously.
 However, many existing methods, such as LEAP(16) and DeepLabCut,(17) primarily focus on 
pose estimation, which may not be sufficient for detecting a wide range of behaviors in a 
continuous manner throughout the day. These methods offer promising potential for detecting 
individual behaviors but may require further development or adaptation to accommodate the 
simultaneous detection of multiple behaviors in various settings.
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2.3 Object detection

 Object detection is a crucial task in computer vision and has been widely used in various 
applications, such as autonomous driving, surveillance, and object recognition. The mainstream 
object detection methods can be divided into two families: the R-CNN family,(18) from R-CNN, 
Faster R-CNN, to Mask R-CNN; and the YOLO family,(10) from YOLO v1 to the current v8 
version.
 The YOLO series, based on deep-learning regression methods, has achieved the advantages 
of a fast, simple pipeline, low background false detection ratio, and high generality. YOLOv5 has 
made significant improvements in terms of model size and accuracy. One of the most significant 
improvements of YOLOv5 is its model size, which is only 27 MB, compared with 244 MB for 
the previous version YOLOv4 that uses the darknet architecture, making YOLOv5 nearly 90% 
smaller. YOLOv5’s very fast inference and small model size make it ideal for applications with 
limited computing resources. Moreover, YOLOv5s has been shown to be comparable to 
YOLOv4 in terms of accuracy, making it an excellent option for real-time object detection tasks.

2.4	 Pretrained	 image	 encoder	 for	 efficient	 image	 classification	 in	 animal	 behavior	
analysis

 Pretrained image encoders have recently gained popularity in deep learning, particularly for 
addressing the challenges of limited data availability in specific tasks such as animal behavior 
analysis. By utilizing transfer learning, pretrained models on large datasets can improve 
performance and robustness, enabling the efficient and effective processing of high-dimensional 
data, such as images, while maintaining the input data quality(19) This strategy aims to directly 
apply the knowledge acquired by a network model to solve similar problems, such as image-
based recognition from small datasets.
 The effectiveness of transfer learning is particularly important when dealing with the limited 
availability of annotated animal behavior data, which is often the case in ethology research. In 
this context, pretrained encoders can provide a strong foundation for extracting relevant features 
from animal behavior images and facilitate more accurate classification.
 In our study, we aim to explore the potential of deep learning techniques, specifically 
YOLOv5 and ResNet-18, in classifying multiple animal behaviors in a continuous and efficient 
manner. By leveraging pretrained image encoders and transfer learning, we aim to address the 
challenges of limited data availability and develop an effective and accurate behavior 
classification system. This will contribute to our understanding of animal behavior and support 
ongoing research in animal welfare and conservation. The use of pretrained image encoders and 
transfer learning has the potential to enhance the effectiveness of animal behavior classification, 
particularly in situations where the available annotated data is limited.



Sensors and Materials, Vol. 35, No. 11 (2023) 3951

3. Methodology

 For the fixed viewing of videos, compared with the object as the target of detection, the 
background of the scene is relevantly invariant through frames. Therefore, before sending the 
input data to the single-object detection model, we preprocess the image by subtracting the 
background to detect the moving object easily.

3.1 YOLO-based single model detector

 Consider a dataset of candidate images, denoted as D, consisting of input images   dx R∈ , 
where d = Width × Height × Channel, and the corresponding bounding box labels   Ky R∈ , where 
d represents the size of the image and K denotes the number of box features ( ), , , , a b w h C . To 
simplify object detection, we can divide the input image into an S = s × s grid. Each grid cell is 
responsible for detecting an object if the center of the object falls within it. Therefore, the object 
detection model f : Rd → R|S|×|B| maps input images to output predictions for bounding boxes, 
where |S| is the total number of grid cells and |B| is the number of bounding boxes. For each 
sample ( ),   x y D∈ , the predicted bounding box output ỹ is given by ỹ = f(x; θ). Finally, the multi-
parts loss L(x, y) can be defined.
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 In this study, the bounding box B is defined by its center position (a, b), width (w), and height 
(h). The confidence score is denoted by C. Thus, the ground truth labels can be expressed as 
yi = [ai, bi, wi, hi, Ci]. To balance the penalty of confidence score and the overlap of bounding 
boxes, λcoord and λnoobj are employed. The terms 𝕝ij

obj and 𝕝ij
noobj indicate whether an object is truly 

detected within the predicted bounding box or not, respectively.
 The YOLO network is optimized to minimize the loss function as the training objective to 
achieve the detection of the objects. The YOLO network consists of convolutional layers 
specifically designed for object detection tasks and comprises three critical modules, as 
illustrated in Fig. 1:

𝕝

𝕝
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𝕝
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1.  Backbone: This module serves to extract generic feature representations and functions as a 
high-performance classifier network.

2.  Neck Network: Situated between the backbone network and the prediction network, the neck 
network enhances the diversity and robustness of the extracted features.

3.  Prediction: Three convolutional networks work together to produce the final output of the 
object detection results.

Fig. 1. (Color online) Overview of YOLO-based single model for animal behavior recognition.
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3.2 Background subtraction as preprocessing

 In videos with a fixed viewpoint, the background remains relatively consistent across frames, 
while the target object of detection undergoes changes. Consequently, it is advantageous to 
preprocess the input data by subtracting the background, which facilitates the detection of the 
moving object by the single-object detection model.
 A straightforward method for estimating the background image involves averaging all frames 
in the dataset. However, our polar bear dataset features a diverse range of background conditions, 
such as daytime, nighttime, and snowy scenes. Thus, a more effective and proactive approach is 
to estimate the background on the basis of temporally proximate frames rather than using the 
entire dataset. We use a sliding window technique to extract the current background context. 
Assuming a sliding window of length T, the background can be obtained using the following 
equation:

 
1 

T

avg t
t

X x
T

= ∑ . (2)

 During our experiments, we discovered that a sliding window with T = 30 yields favorable 
results. In Sect. 5 of our experiment, we will evaluate the efficacy of this preprocessing 
approach.

3.3 Animal’s stereotypical detection

 In this study, one aspect we focus on is the detection of stereotypical behavior in polar bears, 
which is often characterized by repetitive and cyclical actions. However, it is essential to note 
that this is only part of our overall research objectives. Within this specific component, we 
emphasize the periodicity of the stereotypical behavior and disregard the detailed position 
information, which could introduce irrelevant noise when detecting periodicity.
 To achieve this, the image space is divided into a 3 × 5 grid, and the detected position of the 
polar bear is assigned to one of the grid cells. Each grid cell is assigned a unique identifier, 
represented by a letter (A to O). Subsequently, the trajectory of the detected position is 
transformed into a sequence of letters corresponding to the grid cells. It is anticipated that 
stereotypical behavior will generate a periodic series of letters, as illustrated in Fig. 2. 
 The periodicity is quantitatively evaluated by using a compression algorithm. We first apply 
the compression algorithm to the converted letter sequence. Then, the compression ratio r is 
calculated as 

 .−
=

′L  Lr  
L

 (3)
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 The compression ratio is determined by the number of bytes in the string before compression 
(L) and the number of bytes after compression (L'). Compression algorithms exhibit a 
characteristic where the compression ratio increases for consecutive or cyclic strings.   
 Consequently, a high compression ratio can serve as an indicator of stereotypical behavior in 
polar bears. However, when polar bears are at rest for short or long durations, a continuous string 
of identical characters forms, leading to a similar increase in compression ratio as observed in 
stereotypical behavior. In such cases, the compression ratio tends to be exceptionally high.
 To mitigate the issue of excessive text compression rates when polar bears are stationary, 
successive identical characters in a string sequence are removed. Additionally, the special letter 
Z is employed to denote the absence of polar bears. Because of the proposed method, translating 
into a continuous sequence of the letter Z and ultimately condensing into a single letter Z ensure 
that the final detection results remain unaffected.
 Under low light conditions, such as early morning and night, as well as when polar bears are 
in the pool, discontinuous detection is prone to occur. The sporadic appearance and 
disappearance also result in a high text compression ratio. To address this challenge, we first 
employ an animal detection model to identify instances of walking behavior. Then, we apply a 
moving average method to stabilize fluctuations in compression ratio for the detected walking 
instances. Finally, an upper threshold is imposed to restrict the elevated compression ratio, 
allowing for the identification of stereotypical behavior within the walking segments.

3.4 Animal behavior recognition model

 In this study, we introduce an animal behavior recognition model based on the YOLOv5s 
framework for detecting animal targets. Owing to the remarkably high accuracy of YOLOv5s 
detection, we can confidently employ a classification approach that builds upon its outputs. After 

Fig. 2. (Color online) Grids above the image for locating the bear.
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obtaining the detection results from YOLOv5s, we extract the relevant information, including 
the target’s center coordinates, current motion speed, and cropped images using the bounding 
box as a reference.
 Our goal is to employ a simpler and more efficient model to achieve the rapid and accurate 
classification of animal behaviors. Therefore, before feeding the data into the classification 
model, we utilize a pretrained ResNet as an encoder to extract features and reduce the 
computational load. The reason for using ResNet as an encoder lies in its ability to minimize the 
computational burden while accurately extracting features. Subsequently, the output from 
ResNet is combined with two scalar values (center coordinates and motion speed), which then 
serve as the input for the classification model during training. This methodology ensures the 
development of a robust animal behavior recognition model that leverages the strengths of both 
YOLOv5s and ResNet, resulting in efficient and accurate classification performance.
 We implement a fully connected neural network (FCN) classification model, which takes the 
position coordinates, movement velocity, and the feature vector extracted from an encoder as 
inputs, and outputs the classification of animal models. To measure the discrepancy between the 
actual and predicted categories, we employ the cross-entropy loss function, which is widely used 
in classification tasks. The loss function is expressed as

 ( )ˆlog=− ∑
N

i i
i

L  y y  
N =1

1
 (4)

 Here, yi denotes the one-hot encoding of the actual category and ŷi represents the predicted 
probability distribution. In the FCN model, the input comprises position coordinates px, py, 
movement velocities vx, vy, and the feature vector F extracted by the encoder. These inputs can be 
concatenated to form a larger input vector:

 1 2, , , , , , , . = … x y x y nI p  p v  v F F F   (5)

  n signifies the dimension of the feature vector generated by the encoder. In our model, we 
employ a pretrained ResNet18 model from PyTorch as the encoder and n = 7 × 7. This value is 
dictated by the design of the ResNet architecture, which generates a 7 × 7 output feature map in 
its final layer. The extended input vector is subsequently passed through the FCN, resulting in the 
output probability distribution ŷ. With this probability distribution and the one-hot encoding of 
the actual category at hand, the cross-entropy loss function L can be computed.

4. Experiment

 In this section, we focus on the use of the Sapporo Maruyama Zoo polar bear dataset and the 
experimental setup for the YOLOv5s model. We also discuss the detection settings used for 
stereotypical behavior, highlighting the importance of accurate and efficient detection methods.
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4.1 Dataset

 The polar bear dataset used in this study is provided by Sapporo Maruyama Zoo. Figure 3 
illustrates examples of frames from the videos. The footage is captured by one of the four 
surveillance cameras installed in the polar bear enclosure. As depicted in Fig. 3, the polar bear 
exhibits various behaviors in different situations, such as walking, eating, resting at night, and 
swimming in a pool. In addition to these behaviors, the polar bear also engages in sitting and 
stereotypical behaviors, which constitute the six primary actions we aim to detect in this study.
 The dataset employed in this experiment comprises a continuous video and two types of 
label. One label pertains to the polar bear’s location, providing information on the center point, 
top-left and bottom-right coordinates, as well as the length and width of the bounding box. The 

 Fig. 3. (Color online) Frame of the video used as the dataset.

(f) Stereotypical behavior(e) Sitting

(d) Swimming(c) Resting

(b) Eating(a) Walking
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other label indicates the behavior of the polar bear, denoting whether it is performing a periodic 
movement (stereotypical behavior) or any of the other five behaviors. We annotated the periods 
when the polar bear exhibited constant motion as stereotypical behavior. These labels are 
assigned to each frame in the videos, with annotation performed by a human annotator under the 
guidance of zookeepers. In our experiment, we consider the repetitive pacing of the polar bear in 
the white-shaded area shown in Fig. 3(f) as an indication of the animal’s stereotypical behavior. 
The long-duration pacing in this specific location serves as a basis for detecting and analyzing 
the stereotypical behavior of the polar bear in our dataset. In Fig. 3(a), where there is no specific 
location and apparent repetitive behavior in the polar bear’s walking, we categorize these 
instances as normal walking behavior. In this context, we consider the polar bear’s stereotypical 
behavior to be a special manifestation within its walking behaviors.
 Recognizing the complexity of animal behavior, we aimed to capture the nuances of polar 
bear activities through a robust labeling process. We focused on visible physical activities such 
as walking, swimming, and eating, understanding that these categories may not encompass all 
possible behaviors or variations. To ensure a comprehensive and accurate representation, we 
involved seasoned zookeepers and multiple annotators, allowing for diverse perspectives and 
cross-verification. Despite these measures, we acknowledge that some level of uncertainty may 
persist in distinguishing complex or subtle behaviors, a challenge we aim to address as we refine 
our methodology. 
 We utilized pretrained COCO weights as the backbone for YOLOv5s. We adjusted the final 
prediction layer to accommodate our detection targets and further fine-tuned the model using 
the polar bear dataset. For fine-tuning YOLOv5s for polar bear detection, we utilized the video 
footage captured by one camera between 12:00 a.m. on August 26, 2020 and 24:00 a.m. on 
August 31, 2020. To train the behavior recognition model, we collected video data between 
September 22 and 28, 2020, from 05:00 to 20:00 each day. The complete dataset contains 
approximately 3200 frames per hour. The video features approximately have five frames per 
second, with a frame size of 368 × 640. 
 The polar bear is housed individually, which means that only one individual appears in the 
camera view. Moreover, the likelihood of mistakenly detecting people is relatively low, as zoo 
visitors observe the polar bear through tunnels set into the pool. Although zookeepers can enter 
the camera’s visible area, their presence is infrequent.

4.2	 Settings	for	fine-tuning	model

 In our experiments, we scale all training set images to a size of 640 × 640. Throughout the 
training process, we employ general data preprocessing techniques, as described in Ref. 20, such 
as random flipping, geometric distortion, light distortion, image masking, random erasing, 
cropping, and blending. Our implementation is based on the PyTorch framework, and we conduct 
both training and testing on a single NVIDIA RTX A5000 GPU. To optimize our network, we 
utilize the stochastic gradient descent (SGD) optimizer with a learning rate of 0.01 and a 
momentum of 0.9. Additional experimental hyperparameters are detailed in Table 1.
 The behavior recognition model consists of a fully connected neural network, with ReLU 
activation functions for the hidden layers and a SoftMax activation function for the output layer. 
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To mitigate overfitting, dropout layers are incorporated between the hidden layers. The 
ResNet-18 encoder is employed to extract high-level features from the input images.
 In our study, we employed the PyTorch deep learning framework(14) to implement our model. 
Specifically, we used the pretrained ResNet-18 model as the feature extractor, which was 
originally trained on the ImageNet dataset. To adapt the pretrained model to our animal behavior 
recognition task, we fine-tuned the last few layers of the ResNet-18 model. By leveraging the 
pretrained ResNet-18 model and the PyTorch framework, we were able to efficiently and 
effectively train our model for the classification of various animal behaviors.
 For the training process, we use the cross-entropy loss function to optimize the classification 
model and also the SGD optimizer with specified learning rate and momentum values. A 
detailed overview of the behavior classification model configurations and training 
hyperparameters is shown in Table 2.

4.3 Setting for stereotypical behavior’s serialization and compression

 For monitoring the health condition of polar bears, it is desirable to be able to discriminate 
the stereotypical behavior at a time interval. Thus, to evaluate the stereotypical behavior, the 
detected trajectories of the polar bear were divided every 160 frames, which is three minutes of 
real time, and converted into a string. This enables us to determine whether the polar bear’s 
behavior is stereotypical every 3 min.

5. Results and Analysis

 In this section, we present the detection and behavior recognition results obtained by our 
method using the Sapporo Maruyama Zoo polar bear dataset. First, we present the training 
results of the YOLOv5s model, which showed high accuracy and low background false detection 
rate. Then, the results of behavior recognition including both stereotypical and other behaviors 
are presented.

Table 1
Detailed settings for fine-tuning the YOLOv5s model.
Parameter Value
Learning 0.01
Learning rate decay 0.999
Learning rate decay step 1
Weight rate decay 5e−4
Momentum 0.937
Batch size 64
Number of epochs 50
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5.1 Preprocessing and detection of animal’s position

 Before starting the formal training, we preprocessed the video frames. Figure 4 shows the 
effectiveness of background subtraction across various scenarios involving polar bears, 
particularly when they are in motion. Figures 4(a), 4(c), and 4(e) show a polar bear performing 
different actions in various scenarios, whereas Figs. 4(b), 4(d), and 4(f) present the same scenes 
after applying background subtraction. Our data preprocessing method successfully filters out 
background elements unrelated to the detection object and proves especially useful for detecting 
moving polar bears.
 Figure 5 depicts the training curve, illustrating the loss values for both the training and test 
sets. The test loss is presented in Fig. 5 to indicate the fine-tuned model’s effectiveness in 
locating the object’s center and the precision with which the predicted bounding box covers the 
object. The model exhibits rapid improvement in terms of precision, recall, and average 
precision, with performance converging after approximately 50 epochs. The test loss also 
displays a rapid decrease until about 50 epochs. We employ early stopping to select the optimal 
weights.
 To better show our experimental results, we visualized examples of the detection results in 
Fig. 6. The examples demonstrate that the polar bear was detected with a high degree of 
confidence. Notably, even when the polar bear was swimming in the pool and appeared small 
within the image frame, detection was successful. This successful detection can be attributed to 
the use of preprocessing. We will further validate the effectiveness of preprocessing in the 
subsequent section.
 The primary cause of erroneous detection is intermittent illumination reflection that affects 
video data, as shown in Figs. 7(a) and 7(b) for daytime and nighttime scenarios, respectively. Our 
preprocessing step, which includes a background subtraction algorithm, has significantly 
mitigated this issue, but a minimal number of misclassifications still arise. In Fig. 7(a), during 

Table 2
Overview of classification model aspects.

Classification model
Architecture FCN
Activation function (hidden layers) ReLU
Dropout rate 0.5
Output layer activation SoftMax

Encoder
Architecture ResNet-18
Pretrained yes

Training
Loss function Cross-entropy loss
Optimizer SGD
Learning Rate 0.01
Momentum 0.9



3960 Sensors and Materials, Vol. 35, No. 11 (2023)

the day, sunlight reflects off the glass, leading to misclassifications. Similarly, in Fig. 7(b), 
artificial lighting at night can also cause reflections that disrupt accurate detection. These 
detection errors exhibit noncontinuous, random occurrences, making them particularly 
challenging to address. The instances of erroneous detection, while low, can impact the 
subsequent action recognition accuracy, demonstrating the critical need for ongoing optimization 
and improvements in the detection algorithm.

5.2 Robustness of detection

 To evaluate the performance of our proposed method in terms of robustness, we trained the 
detection models with four different noise conditions. Figure 8 shows the four different noises 
added to the original video frames. Figure 8(a) shows the Gaussian noise condition with mean 

Fig. 4. (Color online) Comparison of video frames before and after.

(a) Walking (b) After background subtraction

(c) Stereotypical behavior (d) After background subtraction

(e) Swimming (f) After background subtraction
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Fig. 7. (Color online) Our erroneous (a) daytime and (b) nighttime detection experimental results.

Fig. 6. (Color online) Our detection experimental results, given a video frame, output position information, and 
confidence.

Fig. 5. (Color online) Learning curve during fine-tuning of the YOLO-based model on our dataset.

(a) (b)
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μ = 0 and variance σ2 = 10, which increases the values on three different channels. Figure 8(b) 
shows the salt and pepper noises where the probabilities of setting each pixel to white and black 
are both 0.05. Figure 8(c) is the Poisson noise, and we set both the mean and the variance to 0.8. 
Figure 8(d) is the speckle noise, which differs from the other noises; this type of noise is 
determined by the image data: each pixel value in the image is scaled by random noises. For 
scaling random noises, we use mean μ = 0 and σ2 = 1. Half of the pixels in an image are scaled by 
the noises.
 Table 3 shows the comparison of the average precision (AP) values of the detection results 
obtained by the models trained with or without data preprocessing and noise added to the video 
frame. Here, “Baseline” means the dataset without noise and without preprocessing for training, 
“Preprocessing” means the dataset without noise and with preprocessing for training, and “Noise 
Train” means the dataset with noise and without preprocessing for training.
 In the first row, we use 20,000 video frames with continuous time as a train data set. In the 
second row, 1000 randomly selected discontinuous video frames are used as the training and test 
sets to obtain the results. These second results are provided to show the performance in the case 
of small data volume. In the last four rows, we compare the detection results with and without 
preprocessing for the noise-added frames. The detection models were trained using two datasets: 
one with 2000 continuous-time original video frames and another with 2000 preprocessed video 
frames. All models were initialized with weights from a pretrained YOLOv5s model.

(a) Gaussian noise (b) Salt and pepper noise

(c) Poisson noise (d) Speckle noise

Fig. 8. (Color online) Adding Gaussian (a), salt and pepper (b), Poisson (c), and speckle (d) noise to the original 
frame for testing the robustness of detection.
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 The results in Table 3 show that the recognition results on the completed training model after 
using data preprocessing are generally better than those without data preprocessing. Even if the 
model is trained using noisy data in the Noise Train setting, it cannot achieve the same 
recognition accuracy as that after preprocessing. Here, we believe that the preprocessing 
approach has good robust performance corresponding to different noises.

5.3 Recognition of animal behaviors

 In this study, we perform both the recognition of various behaviors and the detection of 
stereotypical behaviors exhibited by polar bears. We employed a behavior recognition model to 
identify five different types of behavior, namely, swimming, walking, eating, sitting, and resting. 
The behavior recognition model was trained using a dataset containing instances of these five 
behaviors, and its performance was evaluated by monitoring the decrease in loss during training.
 Figure 9 shows the training curve of the behavior classification model, illustrating the loss 
values during training. The loss value started at 2.5 and showed a significant decrease within the 
first 100 epochs, indicating that the model achieved satisfactory performance in a relatively 
short training period. This rapid decrease in loss demonstrates the model’s effectiveness in 
learning the underlying patterns and distinguishing among the five types of behavior.
 We performed a comparative experiment to show the impact of integrating image features, 
extracted by the encoder, into our model. The experiment involved training the FCN model on 
differing input sets: exclusively the coordinates, solely the speed information, and a combination 
of both the coordinates and the speed information. As the experiment was designed, these 
control groups did not utilize any image information and hence did not use a ResNet encoder. As 
delineated in Table 4, the experimental outcomes underscored our proposed method’s superior 
performance. The highest accuracy achieved by the FCN model was 71.9%, significantly below 
89.5% achieved by our method. Our model’s distinct advantage stems from the amalgamation of 
three different types of information: coordinates, speed, and image features extracted via the 
ResNet encoder. This comparison clearly demonstrates that the integration of image features, 
derived from the ResNet encoder, has significantly contributed to the increased accuracy of our 
model in animal behavior classification. This increase highlights the effectiveness of our 
proposed method.

Table 3
Results of AP values for polar bear detection under different conditions.
Type Preprocessing Baseline Noise train
20000 samples 0.983 0.991 —
1000 samples 0.974 0.907 —
Gaussian noise 0.759 0.850 0.792
Salt and pepper noise 0.921 0.774 0.823
Poisson noise 0.922 0.938 0.921
Speckle noise 0.870 0.497 0.675
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 After detecting the walking behavior, we then detected the stereotypical behavior (Fig. 10). 
Firstly, the polar bear trajectory was serialized into strings according to the detected positions. 
Then, compression was applied to the strings, and the result was evaluated for detecting the 
stereotypical behavior. Figure 11 presents the results of detecting the walking and non-walking 
behaviors before applying the detection algorithm. Figure 12 shows the results after stereotypical 
behavior detection. 
 To perform the stereotypical behavior detection, the threshold was changed from 0.0 to 0.8 in 
increments of 0.1 and compared with the ground truth labels on September 22. We set the 
compression ratio of 0.6 as the threshold, and the time above this threshold was considered the 
time of stereotypical behavior. Then, we evaluated the accuracy of the stereotypical behavior 
detection. The results showed that when using a moving average with a length of 500 frames, the 
accuracy reached 0.906.
 Figure 13 indeed provides a visual representation of the detection results for the six different 
behaviors of the polar bear throughout the day, with a comparison between the predicted and 
actual behaviors. This juxtaposition allows for an effective evaluation of our model’s 
performance.
 One crucial factor we need to take into account is the effects of environmental elements, 
specifically the lighting conditions, on the accuracy of behavior detection. A prominent instance 
of this can be observed in Fig. 13, around 3 PM. Here, an incorrect detection occurred owing to 
the reflection of sunlight on a rock, leading to a prolonged period of error in our analysis. We 
have identified that abrupt changes in lighting conditions, such as sudden shifts in illumination 

(a) (b)

Fig. 9. (Color online) Learning curve of the classification model on our dataset.

Table 4
Comparison of classification accuracy across different input types and models.

Epoch Coordinates Speed Coordinates & speed Coordinates & speed & image
(Our Model)

50 65.4 62.3 67.4 87.2
100 67.2 64.6 71.9 89.5
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Fig. 11. (Color online) Before stereotypical behavior detection. The yellow segments represent the walking periods, 
whereas the dark blue segments indicate the time spent on activities other than walking.

Fig. 10. (Color online) Stereotypical behavior’s serialization and compression.

FFFFFFFFFFGGGGGBFFFFFGGGBGGG
FFFFFFFFFFGGGGGBFFFFFGGGBGGG

GGGGFFFFFFFFFGGGG......
IHMMMNLILLJ......

Serialization

FGBFGBGFGBFGBGFG......IHMNLILJCompression

Pre-process

due to weather variations, can introduce noise into our detection system. In particular, when 
light reflections on objects in the animal’s environment, like a rock, are erroneously detected as 
part of the animal, it can momentarily affect the animal’s perceived location. This 
misinterpretation consequently affects the speed estimation, resulting in incorrect behavior 
detection. Therefore, while our model maintains high overall accuracy, there are instances where 
environmental factors such as lighting can pose challenges to the detection process.
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 Such variations can lead to inaccuracies in speed calculation, which subsequently affect the 
behavior classification output of our model. Despite our preprocessing steps to mitigate this 
issue, sporadic discrepancies can still occur. It is important to understand that these limitations 
represent common challenges in outdoor animal behavior analysis, and continuous improvements 
to our method will aim to further minimize their impact on the classification accuracy.

6. Conclusion and Future Work

 In this study, we presented a comprehensive method for leveraging IoT sensor technologies, 
specifically surveillance cameras, to detect and analyze the daily behavior of animals, 
particularly polar bears. Recognizing and understanding these behavioral patterns are crucial for 
efficient health monitoring and timely intervention in animal welfare. Our method integrates a 
deep-learning-based object detection model, YOLOv5s, with a behavior classification model, 
turning raw video data into valuable insights about the animal’s activities. Our data 
preprocessing technique involving background subtraction has effectively minimized the effect 
of dynamic background noise, enhancing the detection performance of our model.

Fig. 12. (Color online) After stereotypical behavior detection. The yellow segments represent the walking periods, 
the grey segments indicate the time spent on stereotypical behaviors, and the dark blue segments represent the time 
dedicated to activities other than walking.

Fig. 13. (Color online) Comparison of predicted and ground truth full day behavior detection results.
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 Nevertheless, there remain limitations to address, such as the limited number of identifiable 
behaviors and challenges in analyzing brief, nontypical, or subtle behaviors. Furthermore, the 
unique potential of IoT technology to provide real-time analysis and remote monitoring is yet to 
be fully utilized. In our future work, we plan to expand the range of detectable behaviors and 
enhance the descriptiveness of the models. Additionally, we aim to incorporate more IoT 
capabilities to improve our system’s real-time functionality, enabling prompt responses to 
critical changes in animal behavior. We also intend to apply our method to other animal species, 
broadening its applicability and impact.
 By demonstrating the effectiveness of deep learning and IoT sensor technologies in detecting 
and analyzing animal behavior, we provide valuable tools for researchers, animal caregivers, and 
wildlife conservationists. As we address the existing limitations and continue refining our 
models, we hope to contribute significantly to the development of more effective, efficient, and 
responsive animal health monitoring systems in the future.

Acknowledgments

 This work was supported by JSPS KAKENHI Grant Number 22H03637. The authors wish to 
thank Sapporo Maruyama Zoo for providing the animal data.

References

 1 E. J. Bethell: J. Appl. Anim. Welfare Sci. 18 (2015) S18. https://doi.org/10.1080/10888705.2015.1075833
 2 L. Nóbrega, A. Tavares, A. Cardoso, and P. Gonçalves: 2018 IoT Vertical and Topical Summit on Agriculture-

Tuscany (IOT Tuscany, IEEE) 1–5. 
 3 D. J. Anderson and P. Perona: Neuron 84 (2014) 18.
 4 B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba: 2016 IEEE Conf. Computer Vision and Pattern 

Recognition (CVPR, IEEE) 2921–2929.
 5 S. Zhang, C. Zhang, and Q. Yang: Appl. Artif. Intell. 17 (2003) 375. https://doi.org/10.1080/713827180
 6 M. S. Dawkins: Behav. Brain Sci. 13 (1990) 1. https://doi.org/10.1017/S0140525X00077104
 7 K. Kobayashi, S. Matsushita, N. Shimizu, S. Masuko, M. Yamamoto, and T. Murata: Sci. Rep. 11 (2021) 658. 

https://doi.org/10.1038/s41598-020-79965-w
 8 H. Chen, Z. He, B. Shi, and T. Zhong: IEEE Access 7 (2019) 157818.
 9 N. Sakamoto, K. Kobayashi, T. Yamamoto, S. Masuko, M. Yamamoto, and T. Murata: Front. Behav. Neurosci. 

16 (2022) 797860. https://doi.org/10.3389/fnbeh.2022.797860
 10 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi: 2016 Proc. IEEE Conf. Computer Vision and Pattern 

Recognition (CVPR, IEEE) 779–788.
 11 K. He, X. Zhang, S. Ren, and J. Sun: 2016 Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR, 

IEEE) 770–778.
 12 J. Hunter, C. Brooking, W. Brimblecombe, R. G. Dwyer, H. A. Campbell, M. E. Watts, and C. E. Franklin: 2013 

IEEE 9th Int. Conf. e-Science (IEEE 9th Int. Conf. e-Sci) 140–147. 
 13 M. L. Williams, N. Mac Parthaláin, P. Brewer, W. P. J. James, and M. T. Rose: J. Dairy Sci. 99 (2016) 2063. 

https://doi.org/10.3168/jds.2015-10254 
 14 C. Umstätter, A. Waterhouse, and J. P. Holland: Comput. Electron. Agric. 64 (2008) 19. https://doi.org/10.1016/j.

compag.2008.05.004
 15 R. Clubb and G. J. Mason: Appl. Anim. Behav. Sci. 102 (2007) 303. https://doi.org/10.1016/j.

applanim.2006.05.033
 16 A. Krause, S. Neitz, H. J. Mägert, A. Schulz, W. G. Forssmann, P. Schulz-Knappe, and K. Adermann: FEBS 

Lett. 480 (2000) 147. https://doi.org/10.1016/S0014-5793(00)01920-7
 17 A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, and M. Bethge: Nat. Neurosci. 21 

(2018) 1281. https://doi.org/10.1038/s41593-018-0209-y

https://doi.org/10.1080/10888705.2015.1075833
https://doi.org/10.1080/713827180
https://doi.org/10.1017/S0140525X00077104
https://doi.org/10.1038/s41598-020-79965-w
https://doi.org/10.3389/fnbeh.2022.797860
https://doi.org/10.3168/jds.2015-10254
https://doi.org/10.1016/j.compag.2008.05.004
https://doi.org/10.1016/j.compag.2008.05.004
https://doi.org/10.1016/j.applanim.2006.05.033
https://doi.org/10.1016/j.applanim.2006.05.033
https://doi.org/10.1016/S0014-5793(00)01920-7
https://doi.org/10.1038/s41593-018-0209-y


3968 Sensors and Materials, Vol. 35, No. 11 (2023)

 18 R. Girshick: 2016 Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR, IEEE) 580–587.
 19 F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, and Q. He: 2020 Proc. IEEE (Proc. IEEE) 43–76.
 20 F. Zhou, H. Zhao, and Z. Nie: 2021 IEEE Int. Conf. Power Electronics, Computer Applications (ICPECA, 

IEEE) 6–11.

About the Authors

 Ruqin Wang received her B.S. degree in information science and technology 
from Ritsumeikan University, Japan, in 2022. She is currently pursuing her 
M.S. degree in information science and technology at Hokkaido University, 
Japan, and is in her second year of study. Her primary research interest is in 
the application of artificial intelligence (AI) to ethology, focusing on 
understanding animal behavior and improving animal welfare through 
advanced technology. (ruqin.wang.q3@elms.hokudai.ac.jp)

 Wataru Noguchi received his Ph.D. degree in information science and 
technology from Hokkaido University, Japan, in 2019. From 2019 to 2023, he 
was a postdoctoral researcher at Hokkaido University. Currently, he is a 
specially appointed assistant professor at the Education and Research Center 
for Mathematical and Data Science, Hokkaido University. His research 
interests include artificial intelligence, deep learning, and cognitive modeling. 
(w.noguchi@mdsc.hokudai.ac.jp)

 Koki Osada received his B.S. degree in information science and technology 
from Hokkaido University, Japan, in 2021. He is currently pursuing his M.S. 
degree in information science and engineering at Hokkaido University, Japan, 
and is in his second year of study. His primary research interest is in the field 
of artificial intelligence (AI), focusing on deep learning techniques and their 
applications in various domains. (kosd@ist.hokudai.ac.jp)

 Masahito Yamamoto received his Ph.D. degree from the Graduate School of 
Engineering, Hokkaido University, Japan, in 1996. From 1996 to 1997, he was 
a research fellow of the Japan Society for the Promotion of Science. He was an 
assistant professor from 1997 to 2000 and an associate professor from 2000 to 
2012 of Hokkaido University. Currently, he is a professor at the autonomous 
systems engineering laboratory, Hokkaido University, Japan (2012–). He is 
also a concurrent faculty member of the Center for Human Nature, Artificial 
Intelligence, and Neuroscience, Hokkaido University (2020–). His research 
interests include artificial life and intelligence, swarm intelligence, 
combinatorial optimization, and board game artificial intelligence (AI) 
programming. (masahito@ist.hokudai.ac.jp)

mailto:ruqin.wang.q3@elms.hokudai.ac.jp
mailto:w.noguchi@mdsc.hokudai.ac.jp
mailto:kosd@ist.hokudai.ac.jp
mailto:masahito@ist.hokudai.ac.jp

