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	 The behavioral observation of animals in zoos is indispensable for their health management 
and the improvement of their breeding environment. However, the day-to-day recording of 
animal behaviors is time-consuming for zookeepers. Hence, we aim to automatically generate 
animal behavioral observation reports, called “ethograms”, in cooperation with the Sapporo 
Maruyama Zoo. While studies using contact sensors [e.g., accelerometers, global positioning 
system (GPS) , and radio frequency identification (RFID)] have had some success in zoos, 
noncontact sensors (e.g., cameras and microphones) tend to be avoided because of frequent 
occlusion and the need for nighttime detection. However, noncontact sensors are preferable to 
contact sensors owing to animal welfare concerns. Here, we propose a method for automatic 
elephant behavior recognition based on elephant tracking information using video from 
surveillance cameras. In particular, we focus only on “eating”, which is difficult to detect 
accurately because it requires relatively long-term observation. Therefore, we solve the problem 
by using a method based on temporal action localization (TAL), which is a task of predicting 
when and where a target action is performed over a relatively lengthy period. The TAL method 
has been applied mainly to humans and less to animals. In our experiments, the average 
precision of eating behavior detection using TAL was 0.853. The results show that TAL is also 
effective in animal behavior recognition. 

1.	 Introduction

	 The behavioral observation of animals in zoos is indispensable for their health management 
and the improvement of their breeding environment. Zookeepers regularly observe the behavior 
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of animals, for example, whether they are eating the appropriate amount of food or attacking 
other animals. In addition to direct observation, by watching video footage from surveillance 
cameras in the animals’ breeding area, zookeepers also record the presence or absence of 
abnormal behavior, breeding behavior, growth condition, and sleeping time. Through these 
observations, they can take reform measures, such as changing an animal’s amount and type of 
food or keeping an animal apart from other animals. However, the day-to-day recording of 
animal behaviors is time-consuming for zookeepers.
	 Various sensors have been used in several animal behavioral recognition studies. Many 
studies conducted in zoos using contact sensors [e.g., accelerometers, global positioning system 
(GPS), and radio frequency identification (RFID)] have had some success.(1,2)  Conversely, the 
use of noncontact sensors (e.g., cameras and microphones) tend to be avoided in zoos because of 
the need to hide behind partitions and feeders in the breeding area and the need for nighttime 
detection. However, noncontact sensors are preferable to contact sensors owing to animal 
welfare concerns.
	 We aim to automatically generate animal behavioral observation reports, termed “ethograms”, 
in cooperation with the Sapporo Maruyama Zoo, using only video from surveillance cameras. 
From our research, we have developed a highly accurate method for the individual tracking of 
Asian elephants (hereafter referred to simply as “elephants”). In this study, we propose a method 
for automatic elephant behavior recognition based on elephant tracking information.
	 We focus only on and attempt to detect eating behaviors. Detecting “walking” and “sleeping” 
is also important for checking elephants’ health, but these are easier because tracking 
information allows us to observe how the elephants move throughout the day, and sleeping has a 
distinct appearance compared with other behaviors. By contrast, it is difficult to determine that 
an elephant behavior indicates “eating” without long-term observation of the behavior. This is 
because when it is observed for only a short duration, it is easy to miss the behavior of an 
elephant facing opposite to the camera or to misidentify it as “searching for food”. 
	 In ethograms, it is also important to accurately record the amount of time animals spend on 
each behavior, as well as the number of times the animal performs that behavior. Therefore, 
eating behavior must be detected even if the elephant is eating facing away from the camera. In 
addition, dividing a single eating time into multiple eating times must be avoided.
	 Our method is based on temporal action localization (TAL), which is the task of predicting 
when a target action is performed over a relatively lengthy period. The TAL method has been 
applied mainly to humans and has only been applied to a much lesser extent to animals. Existing 
research on automatic animal behavior recognition is often based on models that predict behavior 
over a short period (10 s to several minutes) and are sensitive to instantaneous movements. We 
show in this study that TAL is also effective for animal behavior recognition. 
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2.	 Related Research 

2.1	 Studies on vision-based human action recognition

2.1.1	 Temporal action classification

	 Temporal action classification was used to classify actions in trimmed video datasets. The 
benchmark video datasets often used are trimmed videos of approximately 10 s [30 frames per 
second (FPS)], such as HMDB-51,(3) UCF101,(4) and Kinetics.(5) Convolutional neural networks 
(CNNs) have shown high performance in image classification, and many action classification 
methods use CNNs. Tran et al. proposed a method using a 3D CNN and demonstrated that it 
could learn spatiotemporal features.(6)  However, it is difficult to train the models, and a large 
amount of video datasets are required. In the case of image classification, pretraining with a 
large amount of data is effective. Carreira and Zisserman proposed a technique called I3D, 
which converts a pretrained 2D CNN to a 3D CNN for video classification, and showed its 
higher performance.(7)  However, 3D CNN is computationally expensive. Wang et al. proposed a 
method called Temporal Segment Network (TSN) that uses features extracted by a 2D CNN 
instead of a 3D CNN. The TSN splits the time series into partitions, extracts a feature from each 
partition, and performs classification by consensus (e.g., averaging) of each feature.(8)  Learning 
methods using optical flows have also been proposed for both I3D and TSN. These are called 
two-stream systems, in which the precomputed optical flow and RGB images are used 
simultaneously for learning.
	 Recent studies have proposed models that compensate for the shortcomings of the TSN and 
I3D. For example, the Temporal Shift Module (TSM) compensates for the disadvantage of TSN, 
which cannot obtain temporal information by swapping feature channels in the time-axis 
direction.(9) X3D successfully reduced the computational cost of I3D for efficient learning and 
estimation.(10) The methods described above mainly use CNNs, but several methods that apply 
vision transformers to videos have also been proposed.(11)  These methods significantly improve 
accuracy.

2.1.2	 Temporal action localization

	 TAL is a task that predicts when a target action is taken from untrimmed videos that are 
longer than the action classification. The benchmark video datasets for TAL were THUMOS 
14(12) and ActivityNet v1.3.(13) The target actions in these datasets often contain multiple events 
or actions rather than a single action. For example, the “SoccerPenalty” class is included in 
THUMOS 14, with the target action section spanning from the moment the ball is kicked to the 
moment it enters the goal. 
	 The typical TAL process is as follows: First, a pretrained action classification model is used 
to extract short-term features. TSN and I3D are frequently used for feature extraction. These 
features are then joined as feature sequences to provide a long-term context. Then, from the 
feature sequence, another network is used to propose intervals of “action”, which is called 
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“proposal generation”. Subsequently, action labels are predicted for each proposed interval. 
	 The boundary-matching network (BMN) is a typical TAL architecture.(14)  BMN outputs 
scores for the start and end boundaries of an action and a confidence score for each interval. The 
BMN can output highly reliable scores by predicting scores as a two-dimensional dense map 
with the axes of start time and duration of the target action. In the case of the TAL, several 
models have been proposed to improve the BMN. The original BMN uses CNN for time feature 
vector aggregation. To obtain long-time features, several methods using graph convolutional 
networks (GCNs) and transformers have been proposed.(15) While these methods have higher 
accuracy than BMN, they are computationally expensive and require additional training data. 
We used a CNN in the BMN as in the original.

2.2	 Studies on vision-based animal behavior recognition

	 DeepEthogram(16) is a method of behavioral analysis of laboratory mice that uses optical flow 
in addition to RGB frames. Unlike our dataset, the background of the videos used in this study 
was almost unchanged, and only single specimens were validated.
	 There have been several studies on behavioral recognition in domestic animals. Yin et al. 
conducted a study on the behavioral recognition of cows.(17) The authors proposed Efficient-
Long Short-Term Memory (LSTM). The experiments were primarily conducted on the basis of 
temporal action classification, and five class labels (drinking, standing, lying down, walking, 
and feeding) were used. Experiments were also conducted on untrimmed videos using 
classification with a sliding window. However, they reported misjudged cases because they 
could predict class labels only for short-term videos. For example, there is a case of misjudging 
“feeding” as “standing” because the behavior of raising the head while feeding looks very 
similar to “standing”.
	 We did not find any studies on automatic detection of animal behavior in zoos. However, 
there is high demand for cost-effective behavioral observations. This is supported by many 
examples of manual behavioral observations using camera traps and CCTV images in zoos.(1) 
Applications for efficient behavioral observations have emerged. For example, ZooMonitor(18) is 
a web application for recording animal behavior. The application allows users to create 
behavioral observation records using a smartphone or tablet, which are stored on a server and 
can be viewed in an analysis report.

3.	 Materials and Methods

3.1	 Datasets

3.1.1	 Basic information on video data

	 The video data used in this study were surveillance camera images of elephants at the 
Sapporo Maruyama Zoo. The video was recorded continuously for 24 h in the indoor breeding 
area of the zoo, except when the camera was operated manually. The recorded data could be 
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obtained every hour as a 5 FPS video file. During daytime (approximately 5:00 a.m. to 6:00 
p.m.), the video was recorded in color; however, during nighttime (approximately 6:00 p.m. to 
5:00 a.m.), the camera automatically switched to night vision and recorded the video in grayscale. 
Figure 1 shows an example of a single video frame (left) and a bird’s-eye view (right) of the 
breeding area. The camera position and shooting angle were always fixed, and the images used 
in this study were captured by looking down on the breeding area from a certain height.
	 Four elephants (three females and one male) were kept at the Sapporo Maruyama Zoo. Each 
elephant was either kept with the others in the same breeding area or in a separate breeding area 
for various reasons. In this study, we focused on the behavior of female and male elephants in a 
specific breeding area. 

3.1.2	 Detection of target behavior

	 We limited behavioral labels to “eating;” furthermore, only one of various feeding methods 
was targeted. The main feeding method was to eat from a suspended net; nonetheless, they 
sometimes ate food in other ways, such as food in tires or food hidden in wall holes. Some of 
these feeding methods were employed on a trial basis for only a short period, and some of them 
were not captured by the camera. If we tried to respond to all of these feeding methods, it would 
be difficult to demonstrate the effectiveness of the proposed method, because people have 
differing judgments on whether such irregular ways mean “eating” or not. Therefore, in this 
study, we limit our method to feeding from a suspended net.
	 The typical eating behavior is as follows: First, the elephant approaches the feeding area (i.e., 
the area under the net) and stops. Next, it grabs hay on the ground or in the net with its trunk and 
brings it to its mouth. It chews for a few seconds and grabs the next piece of hay. After repeating 
this behavior several times, it leaves the feeding area.
	  

Fig. 1.	 (Color online) A video frame (left) and a bird's-eye view (right).
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3.1.3	 Annotation policy

	 On the basis of the above, the following annotation policy was established. Figure 2 shows an 
example of an annotation. 
1.	� The behavior of the elephants eating hay out of the net using their trunk is labeled. 
2.	� The cases in which the eating behavior lasts longer than 3 s are targeted.
3.	� Eating behaviors other than net eating (e.g., taking food from a hole in the wall) are not 

labeled. 
4.	� The start of the behavior is defined as the time when the target individual stops walking and 

starts eating. 
5.	� The end of the behavior is defined as the point in time when the target individual finishes 

eating and begins to leave the area.
6.	� Every “eating” behavior should include both “raises its trunk upward” and “chewing” 

movements; if only one of the two movements is observed, the behavior is not labeled. 
	 Note that by virtue of No. 6, even if the target elephant ate hay on the ground, the behavior is 
not labeled unless the target individual raises its trunk upward. We established this policy 
because this happens only in a situation where the target elephant finds hay on the ground while 
walking. The target situation is limited to when the individual intentionally goes to the feeding 
area for feeding.
	 The dataset for the experiments was created from surveillance camera images from February 
1st to March 31st, 2022, recorded between 11 am and 4 pm or 7 pm and 11 pm. Data captured 
from February 1st to 28th, 2022 were used as training data, from March 1st to 9th, 2022 as 
validation data, and from March 10th  to 31st, 2022 as test data. Consequently, the total length of 
annotated videos for male and female was approximately 130 h. Of this total, 61 h were spent on 
the eating behaviors of both male and female.

Fig. 2.	 (Color online) Annotation of action.
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3.2	 Difficulties
	
	 In this section, we discuss some of the difficulties in determining behavior in our dataset. 

3.2.1		 Little difference between “Searching for food” and “Eating food”

	 We labeled behaviors such as searching for food as “background” instead of “eating”. To 
distinguish “searching” from “eating”, it was necessary to observe the behavior over a relatively 
large number of video frames. 

3.2.2		 Long and varied eating times 

	 The duration of each eating activity ranged from a minimum of 15 frames to a maximum of 
10565 frames. Figure 3 shows the frequency of the number of frames labeled as “eating” and the 
cumulative ratio. More than 60% of “eating” have over 1000 frames.

3.3	 Problem formulation

	 In this section, we formulate the problem to be solved before describing our method. Let 
{ } vl

n nV X ==  be the video data, Xn, a frame image, and lv, the total number of frames in video V. 
The video data V is accompanied by tracking information 1{ } vl

n nT T ==  that indicates the 
rectangular position and ID of each individual in each frame image. For each individual from the 
video V and tracking information T, the model outputs proposals , 1,{( , , )} p

s n e n conf
N
nt t p == , 

Fig. 3.	 (Color online) Frequency of “eating” frames and cumulative ratio.
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indicating the estimation of the start and end of a behavior, where Np is the number of target 
actions in the video V, ts,n, and te,n are the times of starting and ending, respectively, and pconf is 
the confidence score of the interval. 

3.4	 Method overview

	 In this section, we outline the process flow (Fig. 4). First, the video, the estimated rectangular 
position of the elephant, and its identification ID in our proposed method are input. This process 
uses a pretrained model for tracking. Second, each frame image is cut for each individual at the 
estimated rectangular position and resized to a fixed size. Third, from the cut images in the fixed 
length segments, features are extracted using a pretrained temporal action classification model. 
Finally, the features are input to TAL, and the action segment of the target animal is estimated. 
	 In this study, the range of action classification is limited to a situation in which two elephants 
are far from each other. Although the method assumes that the tracking is accurate, the accuracy 
will decrease when there is overlapping with another elephant, and the tracking result flickers, 
making it impossible to recognize the action when it is viewed as a video clip. This problem can 
be solved by improving the tracking accuracy, and in this study, we deal with locations that are 
tracked accurately.

Fig. 4.	 (Color online) Method overview.
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3.5	 Preprocess

	 The tracking information Tn associated with each frame image Xn is used to cut out the 
rectangular position of each individual elephant. The cut image is resized to a fixed size. In our 
experiments, the image size is 256 × 256, and the two cut-out methods are as follows: (1) cut out 
using the raw rectangle (i.e., cut out along the rectangular position of each individual elephant) 
and (2) cut out using a square. In case 1, the aspect ratio is changed by resizing, which may affect 
learning. In case 2, the aspect ratio does not change, but the possibility that another elephant is 
included increases. In addition, we compare the accuracy with and without padding for cut 
images. The padding method is to fill the cut image with black so that it is a square and to resize 
it to 256 × 256.
	
3.6	 Feature extraction

	 Figure 5 shows the feature extraction procedure and TAL inputs. Let x = {xn} be the image 
after cut out and x is divided into non-overlapping short time segments, s1, ..., sL. Here, L is the 
number of segments, each sn has up to σ frames, and the tn-th frame at its center {tn} is selected 
from {1, ..., lv} at equal intervals. For each segment, feature extraction is performed using the 
learned video classification model. As a result, 1{ }L C L

nntF f R ×
== ∈  is obtained, where C

ntf R∈  is 
the feature vector around frame ntx  and C is the feature dimension. In the original study on 
BMN, the feature vectors were the output scores of the classification model. Here, in addition to 
the output scores of the classification model, we also compare the accuracy of the outputs of the 
middle layer of the classification model. 

Fig. 5.	 Feature extraction procedure and TAL inputs.
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3.7	 Temporal action localization

	 The TAL model takes a feature sequence 1{ }n
L
ntF f ==  as input and outputs a proposal . 

However, the dimensions of features input to the model must be a fixed. Therefore, the length of 
the feature sequence ω is determined in advance. If L ≤ ω , linear interpolation is performed to 
make the length of the feature sequence ω. If ω < L, there are two methods. One is to split the 
feature sequence (bottom left in Fig. 5), and the other is not to split it (bottom right in Fig. 5). In 
the former, the sequence is split into multiple sequences of lengths ω, where a sliding window is 
used. In the latter, the sequence is directly resampled to length ω. We show in our experiment 
that splitting the feature sequence is better.
	 The final output is obtained after applying SoftNMS(19) to the model’s predicted proposals. In 
the case of splitting, we take the union of the estimated overlapping intervals with a confidence 
score above a certain threshold.

4.	 Experiments

	 In this section, we first describe the feature extractor training experiments using TAL. The 
TAL models are trained as classification models. Next, we describe the training experiments of 
the TAL models in which a feature extractor is used. Finally, we compare multiple parameters of 
TAL and present the results.

4.1	 Temporal action classification

4.1.1	 Dataset for classification

	 Class labels were defined as “eating” and “background”. The number of data points was 
adjusted to be equal among classes. The existing classification model input was approximately 
300 frames of data, which is called “clip”. Therefore, in our dataset, we set the maximum 
number of frames to 300. Table 1 lists the datasets created. The total number of clips was 3530 
and each clip contained 266.5 frames on average.

4.1.2	 Model

	 Classification models were compared with the widely used TSN and I3D models. All the 
models had a Resnet50 backbone, which was pretrained in ImageNet. Although some methods, 

Table 1
Action classification datasets.
Phase Clips Period
Train 1816 From February 1 to 28, 2022 
Validation 604 From March 1 to 9, 2022 
Test 1100 From March 10 to 31, 2022 
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such as those using optical flow or recently proposed models, are considered more accurate, we 
did not use these for the following reasons. First, optical flow is computationally expensive, and 
its real-time operation is not considered feasible. Second, TSN and I3D are often used as the 
base networks of TAL. We used TSN and I3D to determine whether TAL improved the accuracy 
of behavior detection. 
	 Figure 6 shows the preprocessing of the inputs for the classification models. For a TSN, the 
frames are first divided into partitions. Next, features are extracted from the divided partitions, 
and the TSN outputs a confidence score for each partition. Finally, the scores are averaged 
across the partitions. Because of the high computational cost of training, the number of partitions 
is usually changed between training and testing. During training, one frame is randomly selected 
from each partition. During testing, one frame is selected from each partition such that all 
frames are equally spaced. In the case of I3D, consecutive frames at two intervals are the input, 
and the confidence scores are the output. Then, the scores are averaged.

4.1.3	 Results

	 Table 2 presents the results of the study. In the model column, TSN-x-y indicates that the TSN 
models were trained using x partitions and evaluated using y partitions. I3D-z indicates I3D 
models that use z consecutive frames at two intervals. 

Table 2
Classification of results.
No. Model Padding Preprocess Accuracy (%)
1 TSN – 8 – 30 cut out by a raw rectangle 88.47
2 TSN – 8 – 30 ✓ cut out by a raw rectangle 87.66
3 TSN – 8 – 30 ✓ cut out by a square 88.02
4 TSN – 16 – 60 ✓ cut out by a raw rectangle 87.12
5 I3D – 16 ✔ cut out by a raw rectangle 89.19
6 I3D – 16 ✓ cut out by a square 88.29
7 I3D – 32 ✓ cut out by a raw rectangle 87.03

Fig. 6.	 Preprocessing of classification models. 
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	 The results show that “I3D-16, padding, cut out by a raw rectangle” has the highest accuracy. 
The dataset also contains frames for eating behavior facing away from the camera, and searching 
for food, labeled “eating” and “background”, respectively. However, these behaviors are more 
likely to be misjudged.

4.2	 Temporal action localization

	 In this section, we experiment with TAL using the results presented in Sect. 4.1.

4.2.1	 Model

	 The BMN was used as the TAL model. This is because TAL had not been applied to animals, 
and we wanted to validate its accuracy using a typical model that has been revalidated by many 
researchers.
	 The BMN has 1D convolutional layers to predict the starting and ending times, and 2D and 
3D convolutional layers to evaluate the proposal confidence using the scores of the starting and 
ending times. The trained I3D model is then used for feature extraction. In the original study on 
the BMN, optical flow was used, but it was not used in this experiment. The frame interval σ 
was set to 16. For each video, the I3D outputs confidence scores of eating or not eating as the 
feature sequence. The sequence was then split into multiple sequences of maximum length ω. 
Each element of the feature sequence is a two-dimensional vector representing the probability of 
eating or not eating. This feature sequence is divided into a vector of length ω and input into the 
model as a 2 ω vector. In this section, we describe the case where ω = 100. The learning rate and 
other parameters are set to the same parameters as used for ActivityNet, which are described in 
the original paper on BMN.(14)

4.2.2	 Dataset for TAL

	 Table 3 shows details of the dataset for TAL. In the training and validation datasets, each 
frame sequence contains at least one eating behavior. Conversely, the test dataset contains frame 
sequences without eating behavior. In addition, the minimum number of frames (min. lv) is 
adjusted to 800 for one video. Therefore, the feature sequences from less than 1600 frames are 
unsampled by linear interpolation and stretched by a factor of 2 in the shortest case of 800 
frames.

Table 3
Dataset for TAL.

Phase Videos Period Statistics of “eating” frames Total framesMax. Min. Average Total
Train 271 February 1–28, 2022 4370 15 979 317292 544262
Validation 117 March 1–9, 2022 4109 15 898 124752 263394
Test 353 March 10–31, 2022 4749 15 894 183262 762617
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4.2.3	 Evaluation

	 For comparison with the sliding windows method, the evaluation was based on whether 
each frame was correctly classified. However, because the background accounted for 90% of 
the total, the average precision (AP) was used for the evaluation. The precision is denoted as 
p(r) when the recall is also r. In this case, the interpolated precision pinterp was set as

	 ( ) max ( )i rp rnte r
p r p r

′≤
′= .	 (1)

AP is calculated as

	
1

0
( )interpAP p r dr= ∫ .	  (2)

In practice, the integral interval is approximated by 101 divisions.

4.2.4	 Comparison of TAL and sliding window

	 We also compared TAL-based methods with methods that use classification and sliding 
windows. As the classifier, “I3D-16, padding, cut out by a raw rectangle” was used. The 
classifier estimated 32 frames, each with a 50% overlap.

4.2.5	 Results

	 The APs of “I3D-16 + BMN” and “I3D-16+ sliding window” were 0.853 and 0.801, 
respectively, the BMN AP being 0.04 points higher than that of the sliding window. Figure 7 
shows a precision–recall curve and Fig. 8 shows a part of the result at 14:00 on March 14, 2022, 
where the horizontal axis indicates the time (in seconds) elapsed since 14:00, the green area is 
the “eating” section, and the gray area is the “background” section. For the I3D-16 + sliding 
window, the line was interrupted. In the case of TAL, the estimation results are distinct. 
However, in some cases, multiple segments can become single segments.
	 Figure 9 shows the results of TAL and sliding window for “eating”, including the time for 
eating while facing away from the camera. The green area is the interval where the elephant is 
judged to be as “eating”. In these frames, the elephant eats hay from and under the net while 
changing direction, which cannot be detected in the case of the sliding window when the 
elephant is facing away from the camera. However, on the other hand, the TAL correctly 
detected the elephant eating hay from and under the net while changing direction.

4.3	 Ablation study

	 In this section, we present the comparison of results obtained under several different 
conditions. This is because the TAL method has been studied mainly in humans and less in 
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Fig. 7.	 (Color online) P–R curve.

Fig. 8.	 (Color online) Example of results.

Fig. 9.	 (Color online) Results of detection of eating behavior facing away from the camera. 
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animals, and there have been few reports on the effects of preprocessing and models. We 
describe the means in the columns below. The frame interval σ was set to 16, and the other 
parameters were set to be the same as those in Sect. 4.2, except for the parameters to be 
compared. 
	 Table 4 presents the results. The results show that the difference between the highest AP (i.e., 
0.854 at C-2) and the lowest AP (i.e., 0.794 at C-3 and C-4) is 0.058. This indicates that the 
results can vary considerably depending on the feature processing method and the model used.

4.3.1	 Feature extractor

	 We compared I3D-16 with TSN-8-30 as a feature extractor: the preprocessing involved 
padding and cutting out with a rectangle. The results for A-1 and A-2 show that the I3D-16 AP is 
better than that of TSN-8-30. This is possibly because I3D-16 uses features more effectively than 
TSN-8-30, through dense sampling.

4.3.2	 Splitting
	
	 As described in Sect. 3.7, if the number of segments L is greater than the feature sequence 
length ω, there are two methods: splitting and not splitting the feature sequence. When I3D-16 
was used as a feature extractor (B-1, B-2), the result of “splitting” was better than that of “not 
splitting”. However, when TSN-8-30 was used as the feature extractor (B-3, B-4), the opposite 
was true. This indicates that the results may vary depending on the architecture of the feature 
extractor.
	 In the case of “not splitting”, the longer the feature sequences are, the more accurate an 
estimation can be expected. The sequence length ω was set to 200 in the “not splitting” case. 
However, owing to GPU memory limitations, we did not evaluate the greater ω cases. If longer 
frames were used without reducing the resolution, it was expected that the model would predict 
the intervals more accurately.

Table 4
Results of ablation study.
ID Feature extractor Split Sequence length ω Overlapping ratio Feature type AP
A-1 I3D-16 ✓ 100 0.5 Score 0.853
A-2 TSN-8-30 ✓ 100 0.5 Score 0.816
B-1 I3D-16 ✔ 100 0.5 Score 0.853
B-2 I3D-16 200 0 Score 0.843
B-3 TSN-8-30 ✓ 100 0.5 Score 0.816
B-4 TSN-8-30 200 0 Score 0.824
C-1 I3D-16 ✓ 100 0.5 Score 0.853
C-2 I3D-16 ✔ 100 0.9 Score 0.854
C-3 TSN-8-30 ✓ 100 0.5 Score 0.796
C-4 TSN-8-30 ✓ 100 0.9 Score 0.796
D-1 I3D-16 ✔ 100 0.5 Score 0.853
D-2 I3D-16 ✓ 100 0.5 Middle Layer 0.843
D-3 TSN-8-30 ✓ 100 0.5 Score 0.816
D-4 TSN-8-30 ✓ 100 0.5 Middle Layer 0.809
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4.3.3	 Overlapping ratio
	
	 In the case of frame splitting, the overlapping ratio of frame sequences can be changed. The 
higher the overlapping ratio, the more frame sequences were used. The results for C-1 to C-4 
show that the overlapping ratio has only a slight effect.

4.3.4	 Feature types
	
	 Feature types refer to the types of feature vector in classification models. Besides the output 
score of the feature extractor (“Score” in Table 4), the output of the middle layer (“Middle Layer” 
in Table 4) can also be employed as inputs to TAL. In the experiments, the features after the 
average pooling of Resnet50 were used, and the dimensions of the feature vector were 2048. 
Owing to the increased amount of the GPU memory used, we experimented with only four 
cases. The results for D-1 to D-4 indicate that they may vary depending on the architecture of 
the feature extractor.

5.	 Discussion

	 The aim of this study was to show that TAL is more effective than a classification-sliding 
window for automatic elephant behavior recognition. Although our study was limited to eating 
behavior recognition, our results suggest that accurate automatic behavior recognition is 
possible. In addition, TAL not only achieved a higher AP than a classification-sliding window, 
but also detected eating behavior with the elephant facing away from the camera. 
	 However, there were cases where discontinuous eating events were detected as a single eating 
event. If the number of eating events is essential for daily health checks, this may be problematic. 
	 For more accurate recognition, the following may be considered.
1.	� Learning with longer feature sequences.
	� In Sect. 4.3, we had to reduce the amount of information owing to high GPU memory usage; 

however, more accurate predictions may be possible if the hardware aspect can be resolved. 
2.	� Training the feature extractor with more action labels.
	� In TAL, the localization performance depends on the quality of the feature extractor. In this 

study, the feature extractor was trained with a limited number of action labels, “eating” and 
“background”. The performance of TAL is expected to improve at the cost of annotation, by 
using more action labels to train the feature extractor.

	 In this paper, we described a method for detecting only one behavior; however, it is necessary 
to detect multiple behaviors for more accurate daily health checks. This can be achieved by 
estimating the behavior label for each generated proposal. Specifically, segments within a 
proposal are sampled and fed into a classifier. Next, the weighted average of the classifier scores 
is calculated by taking the average of the softmax scores or using the output of another model 
(e.g., neural network or linear classification) that is pretrained using the classifier scores.(15,20)  
However, human behavior was the main target of detection in these studies. In the case of 
animals, further verification is required.
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6.	 Conclusion

	 Noncontact sensors (e.g., cameras and microphones) tend to be avoided because of frequent 
occlusions and the need for nighttime detection. However, noncontact sensors are preferable to 
contact sensors owing to animal welfare concerns. We proposed a method for automatically 
estimating the “eating” time of elephants in zoos using only video from surveillance cameras. 
This method is based on an existing TAL method, the BMN. A dataset of two months of 
surveillance video frames was created. In the experiments, we compared the classification-
sliding window method with the TAL method. The TAL method achieved a higher AP and 
produced more distinct behavior boundaries than the classification-sliding window method. 
	 Our final goal is to detect changes in the elephant’s physical condition by measuring the time, 
place, and number of occurrences of prespecified behaviors. Although the current model is 
highly accurate, to verify the results, we need to compare them with the elephants’ actual 
physical condition records. We defer this task to a future study. 
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