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 With the advancement of automatic navigation, navigation control has become an 
indispensable core technology in the movement of unmanned vehicles. In particular, research on 
navigation control in outdoor wooded environments, which are more complex, less controlled, 
and more unpredictable than indoor environments, has received widespread attention. To realize 
the movement control and obstacle avoidance of unmanned vehicles in unknown environments, 
in this study, we use light detection and ranging (LiDAR) sensors to sense the surrounding 
environment. By plane meshing the point cloud reflected from LiDAR, we can instantly 
establish feasible regions. At the same time, using the artificial potential field algorithm, a stable 
obstacle avoidance and navigation path is planned for use in an unknown environment. In an 
actual woods navigation experiment to evaluate our proposed LiDAR detection method, we used 
an independently developed unmanned vehicle with Ackermann steering geometry. 
Experimental results indicate that the proposed method can effectively detect obstacles. The 
accuracy requirement is within 30 cm from the navigation target, and the experimental results 
show that the average navigation success rate of the proposed method is as high as 85%. The 
experimental results demonstrate that the system can stably and safely navigate in scenarios with 
different unknown environments.

1. Introduction

 One of the main goals of robotics research is to develop unmanned vehicles that can navigate 
autonomously in unknown environments.(1–3) In the autonomous navigation of unmanned 
vehicles, the perception of the environment is a crucial factor. Therefore, high-precision and 
high-reliability sensors are of great significance for unmanned vehicles.(4) Ortiz et al.(5) 
discussed the advantages and disadvantages of various external sensors. The camera is the most 
common sensor used to simulate the image perceived by the human eye. It can obtain detailed 
color and texture features from the environment, but it is easily affected by light and weather.(6) 
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Radar has the advantages of long detection range and small size, but it has the disadvantage of 
being expensive. Moreover, the data must be preprocessed before the information obtained from 
the radar can be seen.(7) To avoid the above problems, Roriz et al.(8) used light detection and 
ranging (LiDAR) sensors for intelligent transportation systems. The advantages of LiDAR are 
its long detection distance and wide viewing angle. The data obtained by its sensing environment 
is also very accurate and not easily affected by changes in lighting. Although the amount of 
input data is huge, the stability of LiDAR exceeds that of other sensors.
 Research on autonomous navigation is mainly divided into two types: map-based 
navigation(9–10) and mapless navigation.(11–14) For map-based navigation, simultaneous 
localization and mapping (SLAM) using LiDAR is a common method used to traverse the entire 
map, construct a global map, and plan a feasible path. Its disadvantage is that every time a new 
map is employed, it is necessary to rebuild the map. Therefore, its general applicability is poor. A 
mapless navigation method is commonly used to navigate through machine learning methods.(15) 
This method uses sensors to sense information about the surrounding environment. On the basis 
of the perceived information, machine learning technology is used to learn how to avoid 
obstacles and navigate. Commonly used mapless navigation learning methods are divided into 
supervised learning(16,17) and reinforcement learning.(18–20)

 The supervised learning navigation and obstacle avoidance method involves collecting 
training data through sensors and labeling the correct answers, which are used to navigate and 
avoid obstacles. Hua et al.(21) proposed a supervised visual navigation method based on RGB-D 
sensors. They input the image into their proposed two-stage RGB-D semantic segmentation 
network to segment the feasible area and plan obstacle avoidance angles to achieve visual 
navigation. However, a disadvantage of the supervised navigation system is that the time cost of 
collecting data in the early stage is relatively high, and changes in the image light and bad 
weather will also affect the stability, making it easy to obtain incorrect results for unlearned 
data. The navigation and obstacle avoidance method of reinforcement learning(22) is usually used 
for problems where training data is not available. During the learning process, the robot interacts 
with the environment. Reward and punishment mechanisms are used to evaluate the robot’s 
movement quality so that the robot gradually learns the desired movement direction. Lin et al.(23) 
used a type-2 fuzzy neural network with an improved particle swarm algorithm to solve the 
problem of the traditional particle swarm algorithm easily falling into a local optimal solution. 
Although reinforcement learning can successfully achieve navigation and obstacle avoidance, it 
may suffer as a result of differences between the simulated environment and the actual 
environment, resulting in poor performance in actual obstacle avoidance. Therefore, some 
scholars use fuzzy controllers and allow experts to define fuzzy rules for navigation with 
obstacle avoidance.(24) Lin et al.(25) proposed a wall-following strategy based on a fuzzy 
controller and defined fuzzy rules. They used the center of gravity method to resolve 
fuzzification to obtain the angle of navigation obstacle avoidance. However, because the fuzzy 
rules are designed by experts, the objects in the environment are too small to be detected.
 In addition, some researchers(26,27) have used sensors to sense the surrounding environment 
to obtain information about obstacles in real time, and LiDAR sensors have been used to 
construct obstacles. The point cloud clustering method(26) is often used to cluster obstacle 
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information, but the number of point clouds is huge and the method has high time and computing 
costs. Therefore, the detection of feasible areas has been proposed, with the remaining point 
clouds considered as obstacles. Castejon et al.(27) proposed a threshold setting for the feasible 
areas of an outdoor area based on the traversal ability of the unmanned vehicle. They used 
LiDAR to obtain feasible areas and achieved good results in actual outdoor verification. 
However, the commonly used local path planning algorithms include the fuzzy logic method,(28) 
dynamic window method,(29) and artificial potential field method.(30) Among these methods, the 
artificial potential field method requires the least calculation, has the simplest model, and is the 
most widely used. Li et al.(31) proposed an improved artificial potential field method for local 
path planning, in which the gravitational and repulsive functions in the traditional artificial 
potential field method are modified. The obtained results show that the safe distance is increased 
and that the local minima can be bypassed to successfully reach the destination.
 In this study, a LiDAR-sensor-based detection and navigation system for unmanned vehicles 
in feasible areas in wooded environments is proposed. It uses LiDAR to construct obstacle 
information in real time and artificial potential field algorithms to make obstacle avoidance 
plans. Finally, the proposed method is applied to various terrain scenarios. The major 
contributions of this study are as follows.
1. We propose a LiDAR-sensor-based detection and navigation system for unmanned vehicles.
2. A novel artificial potential field algorithm is used in the proposed system for planning a 

stable obstacle avoidance and navigation path in an unknown environment.
3. Experimental results indicate that the proposed LiDAR detection method can achieve an 

accuracy rate of 99.8% in a wooded environment.
4. The accuracy requirement is within 30 cm from the navigation target, and the experimental 

results show that the average navigation success rate of the proposed method reaches 85%.
 The remainder of the paper is organized as follows. Section 2 presents the proposed LiDAR-
sensor-based detection and navigation system. Section 3 introduces the experimental results of 
detection and navigation in a wooded environment. Section 4 provides the conclusions.

2. Materials and Methods

 This section introduces the detection and navigation of unmanned vehicles in feasible areas 
in a wooded environment using LiDAR sensors, as shown in Fig. 1. In the system, we input the 
LiDAR point cloud and the target direction into the embedded system (Jetson AGX Xavier), and 
perform navigation and obstacle avoidance path planning using the artificial potential field 
algorithm. Finally, the rotation angle of the unmanned vehicle is output.

2.1 Embedded systems

 For feasible area detection in an outdoor wooded environment, movement cannot be 
controlled by returning to the server under limited resources. Therefore, embedded systems are 
installed on unmanned vehicles. After the embedded system completes the calculation, it issues 
instructions to control the unmanned vehicle, thus eliminating the bandwidth and transmission 
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delays due to the transmission of large amounts of data transmission. In this study, the Jetson 
AGX Xavier embedded edge computing system was selected, which is a compact and energy-
saving system with a hardware size of 100 × 87 mm, a 512-core NVIDIA Volta™ GPU, 8 MB of 
L2 temporary storage, 4 MB of L3 temporary storage, and an 8-core ARM v8.2 64-bit CPU. The 
development kit uses 32 GB of double data rate synchronous dynamic random access memory 
(LPDDR4x).

2.2 LiDAR sensors

 We use LiDAR sensors to sense environmental changes in real time. The VLP-16 Puck 3D 
LiDAR model shown in Fig. 2(a) is selected as our LiDAR. The horizontal measurement angle is 
360°. The 16-line 3D LiDAR can reflect the spatial structure of the woods. The detection range 
of the LiDAR sensor is 50 cm to 100 m, as shown in Fig. 2(b). The image of the actual 
environment and the LiDAR scanning imaging image are shown in Figs. 2(c) and 2(d), 
respectively. In this study, we only consider the distances within 5 m, which is sufficient to make 
immediate judgments for obstacle avoidance.

2.3 Feasible area detection

 In this subsection, we mainly explain how to use point clouds reflected from obstacles to 
detect feasible areas. The detection process can be divided into three steps: (1) determination of 
the height range of obstacle point clouds; (2) point cloud plane meshing; (3) obstacle expansion.

2.3.1 Determination of height range of obstacle point clouds

 Since a large amount of point cloud information is collected by LiDAR, we use filtering to 
simplify the point cloud and reduce the number of subsequent calculations. The formula 
describing the filtering is

Fig. 1. (Color online) Overall architecture of system.
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 [ ]  | ,Reserve original Z min maxPC PC PC H H= ∈ , (1)

where PCoriginal is the 3D point cloud before filtering and PCReserve is the remaining 3D point 
cloud after filtering. In this study, only point clouds whose height (PCz) falls between the 
greatest height (Hmax) and the least height (Hmin) are retained. Hmax and Hmin depend on the 
height and spanning capability of the unmanned vehicle. In this study, we set Hmax and Hmin to 
50 and 20 cm, respectively.

2.3.2 Point cloud plane meshing

 The amount of point cloud data is still very large even after filtering out non-obstacles. We 
propose a point cloud plane meshing method to effectively process the point cloud data. As 
shown in Fig. 3, the point cloud is divided into a 50 × 50 flat grid space based on distance. On 
the basis of the radius of 5 m detected by LiDAR, the plane grid space can be divided into a 

(a) (b)

(c) (d)

Fig. 2. (Color online) (a) VLP-16 LiDAR sensor, (b) LiDAR detection range, (c) image of actual environment, and 
(d) LiDAR scanning imaging image.

–
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square of 20 × 20 cm2. The 3D point cloud data is mapped into a flat grid space in accordance 
with the distance and is presented quantitatively. Owing to the characteristics of LiDAR, only 
when the laser hits an obstacle is it reflected back to form a point cloud. Therefore, the number 
of point clouds can reflect the feasible areas within the planar grid.
 As shown in Fig. 3(c), the determination of feasible areas and obstacles is based on the 
number of point clouds, where the following formula is used.
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 In this study, the point cloud number threshold (Pth) is set to 15. When the number of point 
clouds in the plane grid is less than the threshold, that part of the grid is judged to be a feasible 
area, otherwise it is an infeasible area or obstacle. Therefore, unmanned vehicles can use the 
planar grid to instantly obtain the feasible areas of the surrounding environment.

2.3.3 Obstacle expansion

 Owing to the blind spot of the LiDAR sensor, it cannot detect obstacles within a radius of 50 
cm from the center of the sensor. To avoid the risk of collision due to this limitation, obstacles 
are expanded to be larger than their actual size to ensure that the unmanned vehicle does not fail 
to detect them, as shown in Fig. 4.

(a) (b) (c)

Fig. 3. (Color online) VLP16 LiDAR sensor: (a) LiDAR detection range, (b) image of actual environment, and (c) 
LiDAR scanning image.
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2.4 Creation of target information

 To obtain the position of a target, the angle between the front of the unmanned vehicle and 
the target must be calculated, as shown in Fig. 5. Subsequently, the following formulas are used 
to convert the target angle into 2D (x, y) coordinates:

 x = r(cosθ), (3)

 y = r(sinθ), (4)

where x and y represent the coordinates of the target point, and r denotes the distance between 
the target and the unmanned vehicle.

2.5	 Artificial	potential	field

 In the artificial potential field method, the environment is transformed into a virtual energy 
field. In this virtual energy field, the goal point exerts an attractive force on the unmanned 
vehicle, whereas obstacles generate a repulsive force. Combining the attractive and repulsive 
fields results in a resultant force field that determines the path of the unmanned vehicle, allowing 
it to navigate around obstacles and reach the target point, as shown in Fig. 6.
 The artificial force acting at the position within the unmanned vehicle’s space can be 
calculated as

 ( ) ( ) F p G p=−∇ , (5)

Fig. 4. (Color online) Expansion of obstacles to avoid limitation of blind spot of LiDAR sensor.
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where F(p) is the resultant force and ( )G p∇  is the gradient vector of G at the unmanned vehicle 
position p = (x, y). The unmanned vehicle experiences the effect of the potential field. This 
artificial potential field is computed by summing the attractive force Fatt(p) from the goal and 
the repulsive force Frep(p) from each obstacle:

 ( ) ( ) ( ) ,att repG p F p F p= +  (6)

 ( ) 1
2att gF p p pα= − , (7)

Fig. 5. (Color online) Angle between target and front of unmanned vehicle.

Fig.	6.	 (Color	online)	Combination	of	the	attractive	and	repulsive	fields	in	artificial	potential	field.
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where α is the scaling factor of the attractive force and p	−	pg is the Euclidean distance between 
the unmanned vehicle position p and the target position pg. The repulsive field function Frep(p) is
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where β is the scaling factor of the repulsive forces, D(p, po) is the distance between the 
unmanned vehicle and the obstacle, Dth is the threshold of the range of the effect of the obstacle 
on the unmanned vehicle. In this study, this threshold is set to 12 grids. That is, the repulsive 
force is generated only when the obstacle appears within the threshold.
 In this study, the artificial potential field algorithm is employed to plan obstacle avoidance 
navigation paths. Figure 7 shows path planning using the artificial potential field method. The 
red points represent obstacles, which exert repulsive forces, detected by the autonomous vehicle. 
The green point denotes the target, which exerts an attractive force. By constructing the resultant 
of the attractive and repulsive forces in the environment, the unmanned vehicle can move toward 
the target while avoiding obstacles. The blue points represent the path planned by the artificial 
potential field algorithm, which is also a representation of the resultant force.

3. Experimental Results

 This experiment is explained in three parts. In Sect. 3.1, we describe the Ackermann 
unmanned vehicle designed in this study. In Sect. 3.2, we evaluate the performance of the 
proposed method through three virtual scenarios. In Sect. 3.3, we place the unmanned vehicle in 
a real environment to validate its performance. The parameter settings of this experiment are 
shown in Table 1, which includes the LiDAR detection range, the number and size of grids, the 
point cloud threshold, the obstacle height, and the expansion coefficient.

Fig.	7.	 (Color	online)	Path	planning	using	artificial	potential	field	method.
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3.1 Newly developed Ackermann steering system for unmanned vehicle

 The developed unmanned vehicle adopts the Ackermann steering system and has the 
advantages of high stability of movement and small turning radius. Two important control 
parameters in unmanned vehicle control are linear velocity (m/s) and angular velocity (rad/s). 
The unmanned vehicle detects information in the environment through LiDAR, and the 
information is input to the AGX edge computing device for inference. Finally, the linear and 
angular velocities are output to control the unmanned vehicle to achieve the functions of 
navigation and obstacle avoidance. The length, width, and height of the designed unmanned 
vehicle are 67, 40, and 35 cm, respectively, as shown in Fig. 8.

3.2 Navigation simulated in virtual scenarios
 We demonstrated the proposed navigation algorithm in three virtual scenarios. We also 
compared the proposed method with a reinforcement learning controller(23) and a fuzzy 
controller(25) to verify its performance. Three different virtual scenarios, a maze map, an 
irregular obstacle map, and a sharp-corner map, were constructed for simulation and validation, 
as shown in Fig. 9.
 The results of the navigation simulation for the virtual scenarios are shown in Fig. 10. For 
Scenario A, the reinforcement learning and fuzzy controllers required a longer time and path 
than the proposed method to reach the destination, because the navigation mechanism used 
movement along this obstacle. In Scenarios B and C, all three methods successfully reached the 
destination. However, the proposed artificial potential field method relies on the combined 
resultant force calculated from attraction and repulsion. As an unmanned vehicle moves, such 
forces continuously change, resulting in larger path oscillations and less smooth trajectories 
during movement. The movement distance and time of the path for each scenario and method are 
shown in Table 2. Although the proposed method has a less smooth path, it is superior to the 
other methods in terms of moving distance and time.

3.3 Unmanned vehicle navigation in real environments

 To evaluate the obstacle avoidance and navigation capabilities of the proposed Ackermann 
unmanned vehicle, and verify the stability of the proposed method, we performed experiments 
in two different outdoor wooded environments.

Table 1
Experimental parameter settings.
LiDAR detection range 50 cm–5 m
Number of grids 50 × 50
Grid size 20 × 20 cm2

Point cloud threshold >15
Obstacle height range 20–50 cm
Obstacle	expansion	coefficient 10
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Fig. 8. (Color online) Our developed Ackermann unmanned vehicle.

(a) (b) (c)

Fig.	9.	 (Color	online)	Virtual	verification	environment:	(a)	maze	map,	(b)	irregular	obstacle	map,	(c)	and	sharp-
corner map.

(a)

Fig. 10. (Color online) Results of navigation simulation: (a) reinforcement learning controller, (b) fuzzy controller, 
and (c) proposed method.
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(c)

(b)

Fig. 10. (Continued) (Color online) Results of navigation simulation: (a) reinforcement learning controller, (b) 
fuzzy controller, and (c) proposed method.

Table 2
Navigation performance in three virtual scenarios.
Method Virtual scenario Distance (m) Time (s)
Proposed method

A
220.5 20.5

Reinforcement learning controller(23) 263.5 24.7
Fuzzy controller(25) 579.2 46.6
Proposed method

B
289.5 27.3

Reinforcement learning controller(23) 271.7 25.6
Fuzzy controller(25) 245.6 22.6
Proposed method

C
312.2 29.1

Reinforcement learning controller(23) 332.9 31.3
Fuzzy controller(25) 370.4 34.2
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3.3.1 Wooded environment A

 Details of wooded environment A are shown in Fig. 11. In this environment, there are many 
slender trees with a spacing of 1 to 1.2 m between them. We chose a destination that was 
surrounded by trees to verify that the proposed method can effectively navigate around obstacles 
and reach the destination. The navigation path of the unmanned vehicle is shown in Fig. 12, 

Fig. 11. (Color online) Wooded environment A.

Fig. 12. (Color online) Navigation path of unmanned vehicle in wooded environment A.
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where the blue point represents the current position of the unmanned vehicle and the yellow 
point represents the next position planned using the artificial potential field method. It can be 
observed that the unmanned vehicle successfully avoided obstacles and reached the destination.

3.3.2 Wooded environment B

 Wooded environment B also contains many side-by-side and sparse trees, as shown in Fig. 13. 
In this experiment, we set a more distant destination to evaluate the stability of long-distance 
navigation. The path of the navigation experiment is shown in Fig. 14. Initially, the unmanned 
vehicle proceeded directly toward the destination as there were no obstacles in its vicinity. When 
the unmanned vehicle encountered obstacles, it avoided them and navigated through the trees to 
reach the destination.

Fig. 13. (Color online) Wooded environment B.

Fig. 14. (Color online) Navigation path of unmanned vehicle in wooded environment B.
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3.3.3 Experimental evaluation of stability

 We next conducted navigation experiments in wooded environments A and B, with five trials 
for each environment. The initial and target points were the same for each trial, and successful 
navigation was defined as reaching the destination without colliding with obstacles and 
remaining within a 30 cm margin of error. The results are shown in Table 3. It can be observed 
that the error from the destination for the proposed method remained within 20 cm. However, in 
wooded environment B, the distribution of trees is less ordered, leading to misjudgments by the 
unmanned vehicle regarding feasible areas and collisions with obstacles.
 The LiDAR sensor of the unmanned vehicle has blind-spot regions with a radius of 50 cm, 
meaning that obstacles in this area cannot be effectively detected. In this study, we utilized 
seven different directional sensing angles, as illustrated in Fig. 15, to ensure that the navigation 
process avoided blind-spot regions The sensing distances for each direction during navigation 
were also recorded and are shown in Fig. 16. As also shown in the figure, the sensing distance 
for each angle remained at least 1 m. This indicates that during obstacle avoidance in the two 
real-world environments, the unmanned vehicle moved within a safe range.
 To verify the navigation performance of the proposed method and other methods, we used the 
RGB-D semantic segmentation network,(21) the reinforcement learning controller,(23) and the 
fuzzy controller(25) for comparison. As shown in Table 4, the performance of the image-based 
RGB-D semantic segmentation network method was unsatisfactory in wooded environments A 
and B; the complexity of the environments made it challenging for it to effectively differentiate 
obstacles. For the reinforcement learning and fuzzy controller methods, the number of sensing 

Table 3
Results of experimental stability evaluation.

Target distance Number of 
trials

Number of 
successful 

trials

Success rate 
(%)

Average error 
(m)

Moving time 
(s)

Wooded 
environment A

7 m ahead, 1 m 
to right 5 5 100 0.13 11.3

Wooded 
environment B

2 m behind, 19 
m to left 5 4 80 0.29 25.3

Fig.	15.	 Sensing	angles	in	seven	different	directions	for	unmanned	vehicle.
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angles was limited to four, which resulted in the inability to accurately detect slender trees 
during navigation and obstacle avoidance. The proposed method achieved the highest success 
rate in the navigation and obstacle avoidance experiments, effectively navigating through both 
wooded environments to reach the destination.

4. Conclusions

 We presented a novel and widely applicable method for navigation with obstacle avoidance in 
outdoor wooded environments. The proposed method can be directly applied to unmanned 
vehicles without an extensive training time. The designed feasible area detection method 

(a)

(b)

Fig. 16. (Color online) Obstacle distance sensing: (a) wooded environment A and (b) wooded environment B.

Table 4
Performances of proposed and other methods.

Wooded environment A Number of trials Number of 
successful trials Moving time (s)

RGB-D semantic segmentation network(21) 5 4 12
Reinforcement learning controller(23) 5 3 13
Fuzzy controller(25) 5 3 15
Proposed method 5 5 11.3

Wooded environment B Number of trials Number of 
successful trials Moving time (s)

RGB-D semantic segmentation network(21) 5 3 26
Reinforcement learning controller(23) 5 4 27
Fuzzy controller(25) 5 3 27
Proposed method 5 4 25.3
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effectively processes large volumes of LiDAR point cloud data, enabling real-time navigation 
control. In various experimental environments, the proposed method successfully completed 
navigation tasks and reached specified destinations with errors relative to the targets consistently 
within 30 cm. The average navigation success rate was 85%. The experimental results 
demonstrated that the proposed navigation method is suitable for complex outdoor wooded 
environments.
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