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 The thermal error of a machine tool can be regarded as an important index of machining 
accuracy. Such an error is reproducible and stable, meaning that machine tools can be easily 
maintained by thermal compensation, ensuring a long-term good machining quality. In this 
study, reliability engineering was applied to increase the mean time between failures (MTBF) of 
a cooling system to maintain the structure temperature and accuracy, and the MTBF was 
increased from 3787 h to more than 23041 h. In addition, the Taguchi method was used with the 
finite element method and multivariate regression analysis to obtain the optimal cooling 
conditions to reduce thermal deformation and stabilize the structure temperature. The variation 
of the temperature of the machine tool structure was improved from ±0.517 to ±0.367 ℃, a 
reduction of 29%.

1. Introduction

 Machining errors of a machine tool can be caused by thermal deformation.(1) Under the 
dynamic operation of a machine tool, the frictional heat generated by the high-speed rotation of 
the bearings in a spindle causes thermal deformation, reducing the machining accuracy. Some 
machining industries have adopted thermal compensation and design methods to improve the 
machining accuracy, such as thermal insulation, heat balance design, and cooling methods; 
cooling methods reduce the generation of heat before a thermal error occurs. The effect of a 
cooling method for reducing the error is better than those of the thermal compensation and 
design methods; however, the design of the cooling channel structure is complicated. Factors 
affecting the accuracy of machine tools include static geometric and dynamic thermal errors, the 
tool wear and thermal deformation of the workpiece during machining, and variations in the 
external working environment. To reduce the thermal deformation of a spindle, Vyroubal(2) 
conducted a simulation analysis and compensated for the axial thermal deformation of the 
spindle to improve the machining precision. Huang et al.(3) designed a cooling channel to 
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increase the efficiency of spindle cooling. Liu et al.(4) proposed a differentiated multiloop 
recirculation system for precision machine tools. The system can adjust the temperature and 
flow according to the machine tool part, thus effectively controlling the temperature field and 
thermal error. This system reduced the thermal error by up to 64.3% compared with that of a 
traditional cooling system. Ngo et al.(5) developed a thermoelectric cooling module as an 
alternative to a traditional air cooling system, in which the temperature and thermal displacement 
of small built-in spindles are controlled, reducing the time to reach a steady-state temperature by 
47%. Li et al.(6) adjusted the oil circulation flow according to the machining load and rotation 
speed of the spindle to remove the heat generated from the spindle. They also built a 
mathematical model of cooling oil flow based on the speed and torque of the spindle. In their 
study, the machining accuracy was improved by 34%. Tang et al.(7) proposed a novel convex 
water-cooling flow channel based on the rectangular water-cooling flow channel of its built-in 
spindle. On the basis of the results of numerical simulation, they built a fluid–solid coupling 
analysis model for the water cooling of the spindle. The convex structure increased the 
convective heat transfer of the fluid and improved the cooling effect. Xia et al.(8) designed a 
cooling water jacket with a novel fractal tree network flow channel based on fractal theory, 
which they compared with a traditional cooling water jacket with a spiral flow channel. The 
proposed water jacket had a lower pressure drop, a more uniform temperature field distribution, 
and a larger performance coefficient and over twice the cooling efficiency than the channel 
cooling water jacket with the spiral flow. Dai et al.(9) used a novel spiral cooling system to 
control the temperature of a built-in high-speed spindle. They analyzed the internal heat transfer 
mechanism of the spindle and used the gradient descent method to optimize the heat transfer on 
the basis of experimental data. The reliability of the gradient descent method for simulation was 
verified, and the cost of developing future built-in spindles was reduced effectively.
 Machine tools made in Taiwan have comparable functional specifications to imported 
machine tools, and Taiwanese manufacturers have better after-sales service than importers as 
well as lower prices. However, imported machine tools have a higher accuracy, a greater 
reliability, and a longer service lifetime. As a result, Taiwan’s machine tool industry is positioned 
in the mid-to-low end of the market. The average unit price of products in Taiwan is about half of 
those in Germany and Switzerland and about two-thirds of that in Japan. Keller et al.(10) studied 
the reliability and maintainability of machine tools, and spent three years analyzing the field 
failure data of 35 machine tools within their warranty period. They found that the lognormal and 
Weibull distributions were effective in defining  the time between failures. Ran et al.(11) believe 
that it is difficult to analyze the overall reliability of machine tools. To improve the stability and 
reliability of machine processing, a meta-action unit (Action unit, MU) was proposed by the 
function–motion–action (FMA) decomposition method to improve the processing stability and 
reliability of the machine tools. Wang et al.(12) proposed an accuracy analysis method to evaluate 
the accuracy and predict the lifetime of a milling machine. In this method, an analytic hierarchy 
process derived a subjective weight through the established function–motion–action–error 
hierarchy. Finally, the comprehensive weight of the error index and sensitivity analysis were 
used to predict the lifetime and evaluate the accuracy of the milling machine. Li et al.(13) used 
the Bayesian network model to analyze the reliability of the main drive system (MDS) of a large 
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boring machine tool. The reliability and mean failure time of the MDS and the subsystems were 
predicted with an error of 10.5%. Zhang et al.(14) proposed a geometric error estimation method 
based on the Rackwitz–Fiessler theory that considers geometric errors, thermal errors, and tool 
wear. They built reliability and sensitivity models to improve the machining accuracy and 
reliability of machine tools. Anikeevaet al.(15) developed a decision-making technology for 
evaluating the reliability and machining quality of machine tools. They reduced the difference in 
accuracy between machine tools by identifying the relationship between the accuracy parameters 
of the machined parts and those of a machine tool. Cheng et al.(16) used multibody system theory 
to develop an error allocation method to optimize the distribution of manufacturing and 
assembly tolerances. They built a volumetric error model to compensate for the errors generated 
during the operation of a machine tool, improving the machining accuracy and reliability of 
five-axis machine tools. Zhang et al.(17) proposed a method of evaluating machining accuracy 
that simultaneously considers geometric and vibration errors, thus ensuring the long-term high 
machining accuracy and reliability of five-axis machining tools. In this study, we adopted the 
DIS-MCS sampling method to establish a machining accuracy reliability model. The application 
results showed the accuracy and competitive performance of the method. Guo et al.(18) used the 
accelerated lifetime test method to evaluate reliability and proposed a multiaxis loading device 
to simulate the overload of a feed system during machine tool operation. The results showed that 
the experimental cost of ensuring reliability was reduced, with an error of less than 10% between 
the experiment and the simulation. Liu et al.(19) utilized the operating data of a grinding machine 
to build a model of each of its subsystems. They optimized the models through corrected gray 
correlation. They found that point estimates based on the Monte Carlo algorithm had a higher 
accuracy reliability model than the traditional method of fitting the entire machine. The Monte 
Carlo algorithm can be used to assess the machine’s reliability in reliability design.
 In this study, reliability engineering was applied to increase the mean time between failures 
(MTBF) of a cooling system, and the Taguchi method was used to optimize the cooling 
conditions and decrease the temperature of a machine tool structure.

2. Experimental Equipment and Methods

2.1 Equipment for cooling experiment

 About 70% of the accuracy errors in machine tools are caused by thermal error. Therefore, 
cooling channels are introduced into the structural design. An oil circulation mechanism is used 
to suppress the effect of thermal deformation. A cooling experiment was conducted on a single-
axis feed platform to investigate the behavior of a structure under thermal deformation and the 
coolant flow rate that suppressed the thermal deformation. Figure 1 shows photographs of the 
experimental cooling system and the single-axis feed platform, and the positions of the 
temperature measurement points.
 In the experiment, the temperature change of the single-axis feed platform was measured 
using a Graphtec GL820 measurement recorder with a Kyowa strain measurement system. The 
temperature of the single-axis feed platform was measured using a thermometer (PT100). All 
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measured temperature data were recorded in the GL820 recorder and used to analyze the 
experimental results. Figure 2 shows the measurement equipment used in this study.

2.2 Methodology

 The cooling oil was circulated to suppress the heat source of the structure. In this study, we  
aim to control the structural temperature changes and improve the MTBF value. Assuming that 
the reliability target of the cooling system is Rs, we use a serial exponential distribution model as 
described by Eqs. (1)–(3) as the reliability, where θ is the MTBF and λ is the failure rate, which 
has a reciprocal relationship with θ.

 ( )
( ) ( / )ss t t
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Fig. 1. (Color online) Experimental platform: (a) cooling system, (b) single-axis feed platform, and (c) temperature 
measurement positions.
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 The MTBF for a series of systems is
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 From the structural deformation of the single-axis feed platform and the heat-induced thermal 
expansion of the material, we can obtain the deformation simultaneously affected by the stress 
and temperature using the principle of superposition. Therefore, when the single-axis feed 
platform is subjected to stress and temperature effects at the same time, the strain in the x 
direction can be obtained from this principle as
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where E is Young’s modulus (the coefficient of elasticity), v is Poisson’s ratio, and σ is the stress. 
In addition, when the stress and temperature effects occur simultaneously, the unidirectional 
strain can be obtained from the same principle.
 The heat dissipation ability of the cooling oil from the single-axis feed platform is calculated 
as

 ( ) ,p o iQ mC T T= −

  (5)

where Q  is the cooling capacity, m is the cooling oil flow rate, Cp is the specific heat of the 
cooling oil, To is the temperature of the cooling oil outlet of the plate heat exchanger, and Ti is the 
temperature of the cooling oil temperature inlet of the plate heat exchanger.

2.3 Research method

 The reliability of electronic equipment is improving rapidly, but the concept of reliability for 
machine tools has not been popularized. Reliability engineering is difficult to implement since 

(a) (b) (c)

Fig. 2. (Color online) Measurement equipment: (a) signal recorder (GL820), (b) strain module, and (c) PT100.
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mechanical equipment is a highly integrated electromechanical system. Reliability work begins 
with the functional specification and evaluation of the cooling system. In this study, the cooling 
system was used to develop appropriate reliability analysis processes and reliability application 
technologies. Figure 3 is a flowchart used for estimating the reliability of a cooling system in 
this study. The MTBF can be calculated using the reliability estimation process. The system’s 
reliability is improved by following reliability design rules.

3. Results and Discussion

 The cooling system is optimized to prevent unpredictable thermal deformation during the 
operation of a single-axis feed system. The oil circulating in the cooling system removes the heat 
generated in a machine tool, thus reducing the thermal deformation of the structure. Reliability 
engineering is very important for ensuring the stability of machine tools, but it is not easy to 
implement. Therefore, reliability work starts with considering the cooling system to establish a 
process suitable for reliability analysis.

3.1 Reliability of cooling system

 In this study, we aimed to improve the reliability of a machine tool cooling system and 
stabilize the structure temperature. To this end, we first created a function block diagram of the 
cooling system for reliability (Fig. 4). Then, we calculated the reliability from the important 
parts of the cooling system to obtain the final MTBF.
 The oil was cooled to the required temperature by a frequency conversion cooling system. 
The cooling oil was supplied to the cooling channel of the single-axis machine and the flow was 
controlled using a solenoid valve to stabilize the temperature of the structure. The set oil 
temperature, pipeline flow, and structure temperature of the cooling system were monitored to 
maintain the required conditions.
 The cooling system is divided into two units: the cooling unit and the flow adjustment unit. 
The cooling unit is a standard item, with the model and specifications selected on the basis of the 
required cooling capacity. The accuracy of temperature control in the cooling system can reach 
±0.1 ℃. The flow adjustment unit uses a flow proportional valve to adjust the flow range to 
0.3–10 L/min. All parts and components are arranged in series. Figure 5 shows the reliability 
block diagram of the system.

Fig. 3. Reliability method.
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 Most parts of the cooling system are purchased products. The manufacturer provides the 
reliability value and related data about conditions of use, so each product must be used within 
the limits of its conditions of use. The US Navy reliability specification NSWC-11(20), hydraulic 
reliability and fault diagnosis, and ALD MTBF calculation software are used as tools to estimate 
the failure rate of each item. Table 1 shows the product lifetime data of the important outsourced 
parts. The calculated failure rate of the cooling system is more reliable than the product lifetime 
data.
 In the failure rate calculation, we use the static seal, proportional valve, and filter as 
examples. The calculation process for each part is presented below.

Fig. 4. (Color online) Function block diagram of the cooling system.

Fig. 5. (Color online) Reliability block diagram of cooling system.
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3.1.1 Reliability of static seal (see NSWC-11 failure rate model)

 The failure rate model of the static seal requires correction coefficients. The failure rate 
model can be expressed as

 , ,SE SE B P DL H F T NC C C C C C Cνλ λ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (6)

where
Basic failure rate λSE,B = 2.4 × 10−6,
Fluid pressure correction coefficient Cp: 0.25 (Ps = 72.5 ≤ 1500 lbs/in2),
Seal size and form correction coefficient CDL = 1.1DSL + 0.32 = 19.57,

Contact stress correction coefficient
4.3/ 14.84,

0.55H
M CC =

 
= 

Contact surface smoothness correction coefficient CF = 0.25 for f ≤ 15 μin,
Fluid viscosity correction coefficient Cv = v0/v = 0.15,
Operating temperature correction coefficient CT = 0.21 for (TR − TO) > 40 ℉,
Contaminant correction coefficient CN = (C0/C10)3 = 1.365 and,
Failure rate of static seal λSE = 0.345 × 10−6 (time/h).

3.1.2 Reliability of proportional valve (refer to NSWC-11 failure rate model)

 The failure rate model of the proportional valve also requires correction coefficients. The 
failure rate model can be expressed as

 , ,SO SO B T K SC C Cλ λ= ⋅ ⋅ ⋅  (7)

Table 1
(Color online) Lifetimes of cooling system parts.
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where 

 

Basic failure rate λSO,B = 2.77 × 10−6,
Temperature correction coefficient CT = (1/1.5t)3 = (1/1.50.5)3 = 0.54,
Application mode correction coefficient
(database)

CK = 1.1,

Usage frequency correction coefficient (number 
of operations/h) (database)

CS = 0.5, and

Failure rate of proportional valve λSO = 0.82 × 10−7 (time/h).

3.1.3	 Reliability	of	filter	(refer	to	NSWC-11	failure	rate	model)

 The failure rate model of the filter also requires correction coefficients and can be expressed 
as

 ,F FB DP V CS CFC C C Cλ λ= ⋅ ⋅ ⋅ ⋅  (8)

where
Basic failure rate λSE,B = 2.53 × 10−6,
Pressure correction coefficient CDP = 1.25 * (PO/PR)x,
Vibration amplification coefficient (database) CV  = 1,
Cold start correction coefficient CCS = (vcold/vop)x = (103/96)0.2 = 1.01,
Circulation flow correction coefficient CCF = 0.15 (coarse filter), and
Failure rate of the filter λF = 8.04 × 10−7 (time/h).

3.2 Prediction of reliability

 The MTBF of the cooling system can be preliminarily calculated through the reliability 
estimation process in Fig. 6, and the cooling system reliability is improved to the target value by 
applying the reliability design rules. The failure rates of all parts and components and the 
lifetime data provided by the manufacturer are integrated and substituted in the reliability model 
of the series system expressed as Eq. (3) to obtain the MTBF of the entire cooling system. The 
calculation results are as follows:
Cooling system λs1 = 0.000026 (time/h), MTBF = 1/λs1 = 15151 h,
Flow adjustment device λs2 = 0.0000174 (time/h), MTBF = 1/λs2 = 57471 h,

Single-axis cooling system
λs = λs1 + λs2 = 0.000026 + 0.0000174 = 0.0000434, and
MTBF = 1/λs = 23041.

The MTBF of the cooling system was improved from 3787 to 23,041 h by reliability engineering 
methods.

3.3 Simulation and experiment of cooling system

 We used the orthogonal array of the Taguchi method to perform the finite element analysis of 
the preliminary design of the single-axis feed platform and to analyze the parameter planning. 
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The orthogonal array is improved from that of the full factorial experimental method, which is 
very inefficient and has an excessive experimental cost. The Taguchi orthogonal array is an 
important tool for reducing the experimental cost while maintaining accuracy. Before using the 
Taguchi method to simulate the cooling flow channel conditions, we found several control 
factors that considerably affect the cooling efficiency. Tables 2 and 3 show a screening table of 
the factors expected to affect the structure temperature and the L16(45) orthogonal array, 
respectively. The possible factors affecting the cooling efficiency must be screened using a 
simple method based on cost considerations to determine the important factors, because 
incorrectly selected or repeated factors would reduce the effectiveness of the experiment. 
 The Taguchi method is used to plan the parameters for the verification of vehicle design. 
Finite element analysis software is used for cooling channel analysis. The design parameters of 
the important factors that affect the structure temperature are found through the experimentally 
designed orthogonal array and variation analysis. Figure 7 is the simulation analysis diagram in 
the study. The mesh method is automatically generated by software and the orthogonality of 
mesh quality is >0.1 or above. The red part is the setting of the cooling channel. The diameter of 
the circular cooling channel is 25.4 mm and the square cooling channel is 200 mm*50 mm. In 
the heat exchange mode, cooling oil is used to take away the heat energy generated during the 
operation of the single-axis feed platform.
 In this study, the signal-to-noise (S/N) ratio is used as a quality indicator. The expected 
variation of the structure temperature is 23 ± 0.5 ℃. The required quality characteristic is that a 
smaller accuracy error is better. The statistical smaller-the-better formula is used to calculate the 
S/N ratio. The response values of the S/N ratio and quality characteristic factors at various levels 
in Table 3 are observed to determine the optimal cooling parameters. The variation of each 
factor between different levels is observed, then the variations of the parameters are subtracted 
to observe the sensitivity of each factor. When its sensitivity is high, a factor is considered 
important, and when its sensitivity is not obvious, a factor is considered unimportant. Finally, a 
set of optimal cooling parameters is obtained, as shown in Table 4.
 Multivariate regression analysis is used to statistically analyze the sampling temperature and 
thermal deformation to establish a mathematical relationship between the temperature increase 
and the thermal error at a specific point. The sampling temperature point and thermal 
deformation must have a significant correlation for the data to be processed. The position set for 

Fig. 6. (Color online) Reliability estimation process.
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Table 2
Screening table of factors affecting structure temperature.

Body isotherm factor screening table

Major effect Easy to operate 
and control

Cost-effective and 
economical Easy to predict

a. Oil heat transfer coefficient v v v v
b. Ambient temperature v v
c. Ambient humidity v v
d. Cooling channel diameter v v v v
e. Cooling flow v v v v
f. Cooling temperature v v v v
g. Structural material composition v v
h. Oil fluidity v v v v
i. Feeding velocity v v v
j. Feed stroke v v

Table 3
Orthogonal array.
Factor Level Unit
A. Flow rate 1.5 2 2.5 3 L/min
B. Temperature 19 20 21 22 ℃
C. Tube dimension 14 16 18 20 mm
D. Coolant heat transfer coefficient 60 122 198 250 W/m2·m
E. Coolant fluidity 2.1 4.8 9.9 15 Pa‧S

Fig. 7. (Color online) Simulation analysis.

Table 4
Optimal cooling parameters.

A. Flow B. Temperature C. Tube diameter D. Oil heat transfer 
coefficient E. Oil fluidity

A2 B2 C4 D1 E2
2 (L/min) 20 (℃) 20 (mm) 60 (W/m2·K) 4.8 (Pa‧S)
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the temperature point will directly affect the accuracy of the regression equation. Figure 8(a) 
shows the result of our preliminary experiment, where the temperature change is ±0.943 ℃. 
Figure 8(b) shows the result obtained after multivariate regression analysis is used in the 
experiment. The temperature variation of the structure is reduced to less than ±0.517 ℃.
 The set of cooling parameters obtained using the Taguchi method (Table 3) is reintroduced 
into the verification platform to conduct the cooling experiment. The structural thermal 
equilibrium temperature variation of multivariate regression analysis decreases from ±0.517 to 
±0.465 ℃, a reduction of 10.1%, as shown in Fig. 9.
 The experiment revealed the optimal cooling conditions shown in Table 4. The five control 
factors are a flow rate of 2 L/min, a cooling temperature of 20 ℃, a cooling channel diameter of 
20 mm, an oil heat transfer coefficient of 60 w/m2.K, and an oil fluidity of 4.8 Pa·S. However, to 

Fig. 8. (Color online) Results of cooling experiment: (a) preliminary results and (b) results of multivariate 
regression analysis.

Fig. 9. (Color online) Structural temperature of cooling obtained with the Taguchi method.

(a) (b)
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Table 5
Control factor levels for tolerance design.

L1 L2 L3 Unit
A. Flow 1.75 2 2.25 L/min
B. Temperature 19.5 20 20.5 ℃
C. Tube diameter 19 20 21 mm

Fig. 10. (Color online) Experimental results of optimized cooling parameters.

Table 6
Optimal cooling parameters after tolerance design.

A. Flow B. Temperature C. Tube diameter D. Oil heat transfer 
coefficient E. Oil fluidity

L2 L3 L3 D1 E2
2 (L/min) 20.5 (℃) 21 (mm) 60 (W/m2·K) 4.8 (Pa·S)

obtain cooling conditions better than those in Table 4, the tolerance design is used in the cooling 
experiment again. An increase in cost usually accompanies tolerance design. However, in the 
experiment in this study, we only made slight adjustments to the upper and lower limits of the 
variations of the flow, temperature, and tube diameter among the cooling parameters (as shown 
in Table 4). We selected a suitable orthogonal array to perform another experiment using the 
Taguchi method, then selected the levels with the best values of the control factors within each 
variation range. The optimized process was matched to the factor level table after this experiment 
to obtain the optimal operating parameters.
 The L9(43) orthogonal array was used in the experiment on tolerance design. Each experiment 
was performed twice, and the average value, standard deviation, and S/N ratio (smaller-the-
better characteristic) were obtained. After normalizing the data, a confirmation table for the 
optimal cooling parameters after the tolerance setting was obtained. Finally, the S/N ratios 
corresponding to each factor at three levels were averaged, as shown in Table 5. Finally, the 
optimal cooling parameters after the tolerance design were obtained, factor A at L2, factor B at 
L3, and factor C at L3, as shown in Table 6.
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 The final experiment verified the optimal cooling parameters, and the entire original process 
was compared with the optimal process to minimize the variation of the structure temperature. 
The experimental results with the optimized cooling parameters are shown in Fig. 10. The 
temperature change in the structural thermal balance is reduced from ±0.465 to ±0.367 ℃, a 
decrease of 21.1%.

4. Conclusions

 We used the reliability engineering technique to develop a cooling control system, simplify 
the design method, and improve the cooling system. The MTBF of the cooling system was 
increased from 3,787 h to more than 23,041 h. When the Taguchi method was used in the design 
of experiments on structural cooling, the number of experiments and their cost were reduced, 
thus simplifying the data analysis. Additionally, the technical research indicators, such as 
cooling temperature control, machining accuracy, and thermal suppression method, can be 
improved using the tolerance design method. Finally, the main conclusions are as follows:
1. In the technology development process, reliability engineering is applied to enhance the 
MTBF of a cooling system to maintain the structure temperature.
2. Using the Taguchi method with the finite element method and multivariate regression 
analysis, we found the best cooling channels and conditions, which were verified by experimental 
data.
3. The temperature variation of the structure was reduced from ±0.517 to ±0.367 ℃, a decrease 
of 29%.
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