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 The autonomous fault diagnosis of mechanical systems is crucial to addressing smart 
manufacturing product issues. In this article, we propose intelligent diagnosis and prediction 
technologies based on acoustic emission (AE) for mechanical motors. The integration of 
practical technologies, such as acoustic analysis, artificial intelligence (AI), edge computing 
(EC), electromagnetics, communication, and other theory-based subjects, is convenient for 
achieving flexible changes made in response to the edge operation trend. The proposed model, 
developed using acoustic information links with machine learning (ML) platforms to collect 
acoustic information via feature extraction (FE), is novel in that it can detect system health and 
prevent system failures. It can inspire innovative design concepts once the above model is 
combined with the EC migration module. In addition, in this paper, we discuss the embedded 
system in smart manufacturing applications, including AE, to establish an ML framework that is 
trained using audio emission data. The valuable results from the proposed algorithm experiments 
show that the audio judgment accuracy rate can be above 90%. At the current stage, the metric 
accuracy and precision of mechanical motor discrimination can reach 93.5% and 0.97, 
respectively. In this paper, we present an analytical method for performing motor axis 
misalignment judgment based on tiny machine learning (TinyML) techniques, which will enable 
the IoT field to move toward smart energy savings. 

1. Introduction

 Industrial development is gradually shifting towards intelligent autonomy in line with the 
Industry 4.0 development trend. A well-known technique for obtaining information about the 
critical conditions of structural systems is acoustic emission (AE), which is developed from the 
acoustic data obtained using a data-driven machine learning (ML) system. The AE system could 
be a tectonic plate with a characteristically large length or an electronic device with a length of 
millimeters. Its various sources include force input or other mechanical excitations that produce 
AE events that would merit necessary research. Using the gathered AE data can identify several 

mailto:jchen@mail.dyu.edu.tw
https://doi.org/10.18494/SAM4545
https://myukk.org/


4598 Sensors and Materials, Vol. 35, No. 10 (2023)

global parameters, and it is known that the evolution of these parameters under certain 
circumstances defines when and how the structural damage process evolves to the point of 
collapse. With better artificial intelligence (AI) development, machine intelligence autonomy is 
not far away. Saucedo-Dorantes et al. decomposed the vibration signal in multiple IMFs and 
identified the vibration modes under different fault conditions.(1) Generally, the damage process 
is difficult to prove. The AE signals used in a bidirectional, unique link with pure information, 
collected from an autonomous system, can be utilized to identify the damage process. In 
addition, fault detection devices for wind turbines have been designed,(2,3) and in other works, 
accelerometers (acceleration) and GPS tracking wireless systems have been employed.(4) Adding 
sound leakage judgment technology makes it possible to accurately monitor the device repair 
and maintenance process in a dynamic location. Using a radio-frequency-transmitting chip on a 
circuit board,(5) information transmission can be achieved to create an interface for exchanging 
messages and accomplish remote monitoring. The acoustic application discussed in this article is 
not limited to industrial motors but is also applied to households. For example, the signal that 
comes from the square current signal used to compare the differences can be employed to make 
the model more accurate.(5) A study on acoustic systems revealed that speech pathology can also 
adopt abnormal sound detection using autocorrelation as a feature to detect and classify 
pathological samples.(6) These features were investigated analytically in different frequency 
bands to assess their contribution to the detection and classification process for each band. For 
example, the above research data were used in combination with an array of microphones and 
signal characteristics for monitoring.(7) Furthermore, in order to complete signal collection and 
application, a context-gated convolution was adopted to build an end-to-end learning framework, 
enabling convolutional layers that dynamically capture representative local patterns and 
compose local features of interest under the global context.(8)

 Edge computing (EC) has been widely adopted in industries such as industrial manufacturing, 
agricultural production, medical applications, and environmental monitoring. Some of the main 
advantages of using EC in IoT applications are summarized here: the overall system delay is 
significantly reduced, the data leakage risk during data transmission can be avoided, data 
management resiliency and reliability are improved, reliability is better, the latency, bandwidth 
consumption, and energy requirements are significantly reduced, and most of the recent AI and 
ML applications are supported.(9,10) Generally, building a model through ML and applying it to 
the machine automation process is nothing more than saving manpower and reducing erroneous 
actions caused by human error. Therefore, a set of training sites suitable for automated 
production lines with self-diagnosis capabilities and even error correction functions is worth 
establishing for ML applications.(11) This is an interesting issue addressed by Ren et al., who 
embedded frameworks trained by tiny ML (TinyML) into the proposed system, which could 
receive the computational results from the EC components.(12) Incidentally, Zhan et al. presented 
a resource scheduling model for EC using the Markov decision process and deep reinforcement 
learning algorithm.(13) Collaborative learning procedures and deep learning models have also 
been used to address resource scheduling issues in mobile edge computing.(14)

 As previously discussed, many upcoming concepts will be used to implement a smart 
industrial robot in this study. Accordingly, a context-gated convolution is adopted to build an 
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end-to-end learning framework that enables convolutional layers to dynamically capture 
representative local patterns and compose local features of interest under the global context.(15)

 IoT is currently a thriving technology trend that is being discussed around the world. There 
has been increasing growth in modern low-latency computing applications, including 
(i) augmented reality (AR) applications, (ii) real-time traffic control systems that require low-
latency responses to avoid potential collisions,(16) and (iii) real-time smart grid management 
systems that aggregate data from distributed geosensors and control the grid in real time.(17) 

Moreover, Ma et al. demonstrated a switching multitier control (SMC) architecture that can be 
optimized and controlled by local and edge controllers over a multi-tier network.(18) A case study 
of an industrial robot is used to prove that the SMC significantly outperforms both a local and an 
edge controller in a wireless network. In addition, Kianoush et al. focused on a heterogeneous 
ecosystem design for IoT radio-based systems that combine and transform multiple RF sources/
detectors into different virtual sensors.(19) They also applied long-short term memory (LSTM) 
and convolutional neural network (CNN) tools to capture photo frames and perform the position/
activity classification at the cloud backend. 
 Edge computing complements the backend computing provided by the cloud to fill up the 
critical latency gaps between the endpoints and the cloud.(20) To achieve efficient processing at 
the edge, smart gateways and micro-data centers are two key methods proposed in the literature.
(21) The primary benefit of edge computing comes from its ability to offer low-latency computing 
resources on the fly for applications that have strict latency requirements. All the above-
mentioned solutions assume the resource sharing and latency benefits of the edge computing 
model. To the best of our knowledge, the work presented in this paper is the first research effort 
on the fault detection of motors and is focused on fault diagnosis and dynamic edge computing. 
 Several traditional data extraction methods are used for classification that could provide 
sufficient information for further data analysis classification steps. The dimension reduction 
method plays an inevitable role in analyzing and visualizing high-dimensional multisource data. 
Fanaee and Thoresen adopted quality metrics to compare the performance for multi-ohmic 
integrative analysis datasets from the multiview category to evaluate benchmark method 
performance.(22) In Ref. (23), maximal independent classification information and minimal 
redundancy (MICIMR), a hybrid altered FS algorithm based on information theory, was 
proposed. It outperforms other FS algorithms. In addition, classical ML methods were applied to 
provide expert support in terms of time and effort by making sense of features.(24) However, 
images may be affected by different lighting conditions during image acquisition, which causes 
worse performance results.(25) Fira and Goras utilized nonlinear approaches to reduce 
dimensionality for ECG signal detection.(26) Also, the nonlinear dimensionality reduction 
approaches with different degrees of effectiveness were investigated using electrocardiography 
(ECG) signals as to multiple classifier performance.(27) Furthermore, Alshorman et al. and Liu 
et al. conducted comprehensive discussions to establish the current state-of-the-art techniques 
for fault detection in mechanical motors using the AE method.(28,29) The above-mentioned 
research groups reviewed condition monitoring (CM) and fault diagnosis (FD) studies in terms 
of sound and AE for four types of fault bearing, rotor, stator, and compound.  
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 The motivation and objective outcomes of the contribution of our proposed algorithms are 
summarized below.
1. Develop a framework employing ML with AE datasets gathered, trained, and validated with 

six situations in the current research. 
2. Develop different methods for the collection of datasets, which are preprocessed by feature 

extraction. The results confirmed that dataset preprocessing promotes an accurate rate of 
performance for the training results.  

3. Apply the EC combined with the proposed ML model to a practical scenario that validates 
the experimental results.

4. The proposed fault detection system would be implemented by manufacturers if the “noise 
constraint” could be avoided. 

 The remainder of this paper is organized as follows. Section 2 is dedicated to the theoretical 
methodologies deployed in the development. In Sect. 3, we present the development stages of the 
proposed algorithms and applied methods for the implemented systems. The results and 
discussion are provided in Sect. 4. The conclusions are presented in Sect. 5.

2. Preliminaries of the Proposed Methodologies 

 In this section, all applied methodologies are described in detail with four schemes: the 
proposed application to establish the neural network (NN) model framework, the dimensionality 
reduction scheme, the EC scheme, and the feature extraction scheme. 

2.1 Proposed scheme with CNN framework 

 This research is based on the supervised neural network framework technology and uses the 
CNN ML model to collect the AE characteristics generated by rotating shaft drive devices. The 
system then trains and builds models for different AE characteristics.(30) The proposed 
mechanism is based on the CNN ML structure and is shown in Fig. 1.(31) The basic idea behind 
the CNN module is the convolution process, which can be regarded as correlated. The above-
mentioned process is useful to help the feature correlation adopted later in this work. The CNN 
model used in the developed mechanism initially converts the input into subclasses based on the 

Fig. 1. (Color online) Proposed scheme with CNN framework.
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requirements and is first provided to the convolution layer. The convolution layer and maximum 
pooling layers are used in the proposed architecture to extract useful AE signals from the 
resource requirements.(28) The CNN data processing capability is much better and can maintain 
neighborhood relationships compared with traditional neural network models. The automatic 
training process makes the network adopt various data features while representing those 
features. Let us carry out a simple review of the CNN model. Consider the weights of the one-
dimensional kernel as 1 2 }, ,   ,{ nkk k… , where n represents the length of the kernel. Accordingly, 
the convolution process is mathematically derived as
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 Max pooling is employed in the proposed architecture after the convolution layer to reduce 
the feature dimensions. It is mathematically expressed as

 , , ( -1)( )v w v n w rMp MAX h += , (3)

where ( )MAX ⋅  is a function that extracts the maximum value. The filters are presented as v, 
then w and n represent the maximum pooled band and the pooling shift allowed between the 
regions, respectively. After this simple convolution operation is completed, the result is passed 
through the round-robin layer, and then the flatten layer operation is performed to convert 
the characteristic sound leak data into vector data that can be calculated. In general, the max 
pooling layer down-samples the convolution layer output to reduce variability. Its operator 
yields the maximum value. The next step after the pooling function is batch normalization in 
which the features are normalized to improve the training performance. Batch normalization 
features are expressed mathematically as 
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 ˆ ( )nk k µ χ ζ= − + , (6)

 ˆ
pO kγ δ= + , (7)

where the batch size is represented as nbatch and the input data is represented as kn. μ represents 
the mean and χ represents the batch variance. The normalized data are represented as k̂ , and to 
avoid zero gradients, a constant ζ is included in the normalized data. The vector learning 
parameters are represented as γ and β. The output feature is represented as Op. Finally, the 
obtained characteristic signal is input through the fully connected layer. To complete the CNN 
ML signal model used throughout the text, each mixed feature model is established. This work 
will be explained later.

2.2 Feature extraction schemes

 FE terminology is an important issue addressed in NN deep training and testing. The 
literature reviews of ML and deep learning are discussed in this section. FE techniques are used 
to find the best subset of the original set of features to improve the model performance. If a 
feature can be used to predict the class or is related to the class, it is valuable. Otherwise, it is 
useless. In addition to irrelevant features, empirical data from the feature selection literature 
suggest that duplicate information should also be removed.(32,33) By selecting the appropriate 
linear methods, it is possible to solve gene expression datasets that are not linearly separated and 
thus perform better classification. Key components of the preprocessed data can be represented 
in the compact form of feature vectors using the dimensionality reduction approach; this is 
known as feature extraction.
 Canonical correlation analysis (CCA) is one of the statistical methods used to determine how 
the derived features are related to each other. On the other hand, CCA is also a multivariate 
statistical method that is used when there are two sets of data that may have some underlying 
correlation. It finds a pair of linear combinations for two sets, such that the correlation between 
two canonical variables is maximized. CCA extends ordinary correlation to two sets of variables 
and is widely used in statistical and information mining. For example, CCA finds pairs of 
directions wg and ws that maximize the correlation between the projections  T

gg w=  and  T
ss w=  

for two random vectors  pg R∈  and  qs R∈ . These representations are also known as canonical 
variates. In most cases, the directions can be determined by finding the maxima of the function 
given by Bach and Jordan:(32)
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where ρ represents the canonical correlation and E indicates the expectation. p p
ggc R ×∈  and 

q q
ssc R ×∈  indicate within covariance matrix sets of g and s, respectively, and p q

gsc R ×∈  
represents that g and s are between the covariance matrix set. As the equivalent eigenvalues, the 
highest results ( )iwρ  are considered canonical correlations.

2.3 Proposed scenario design and structure (edge computing)

 A developed EC scheme embedded within a framework trained by TinyML techniques and 
many different sensors used to collect surveillance data are described in this subsection. Because 
the existing traditionally designed, fault detection operating mode for inline working schemes 
cannot meet the ML computational data or audio requirements, it is difficult to adapt the 
developed system to remote environments. In particular, it cannot be applied to a scenario where 
the computing is for the data driven at the edge (local but not through cloud operation). Because 
of the existing critical shortcomings, in the current work, ML, edge computing, and inline 
operation are intelligently integrated with a model trained using TinyML techniques. Eventually, 
different parts of the ML algorithm deployed in cloud and edge computing ends are set up in and 
assessed using two typical scenarios over the IoT network for the mentioned detection algorithm. 

3. Development Stages of Proposed Algorithms

 The first step in establishing the proposed fault detection model based on the CNN 
framework and technique of FE is the selection of parameters that determine the structure. Once 
the parameter identification is complete, the second step is the elimination of similar parameters. 
After that, there are three stages for the proposed fault detection model, as shown in Fig. 2. 
When the driving rotating element (such as a motor) is in a faulty operation, the sound leakage 
phenomenon caused by the fault is produced. In order to diagnose the cause of the fault, the 
proposed fault detection system uses the development process shown in Fig. 3 as its operation for 
the entire process. First, the possible data from the original sound leakage are obtained and then 
preprocessed. These processes include data cleaning, data feature selection, and dataset 
reconstruction. Random data sampling is then performed during this process. The system will 
judge the usable (positive) and unavailable (negative) data in the dataset. It then randomly 
processes the leakage data obtained in accordance with the model trained beforehand using 
different AE data to judge the fault. Eventually, the prediction can be prediagnosed on the basis 
of the possible factors that cause the driving rotating element failure. As might be expected, in 
the fault diagnosis and prediction results using the drive component failure caused by the 
leakage, the classifier based on the pretrained dataset can be used to classify the predicted fault 
types caused by the AE. The recursive method is then used to select the tone type determined by 
the best classifier. The identification results are finally obtained using the proposed supervised 
CNN platform shown in Fig. 1.
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Fig. 3. (Color online) Proposed prediction model for rotating device fault detection.

Fig. 2. (Color online) FFT spectrums of different types of AE (m0, rm0, and mub0) and sound audio signals (Yes, 
No, and off ).
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3.1 Gaussian approximation for single distributed layer of the utilized NN mode

 Figure 2 shows FFT spectrums for individual signals, which consist of five types of AE (m0, 
m1, rm0, rm1, and mub0) and three types of sound audio signal (Yes, No, and off ). In Fig. 2, the 
graphs from (A) to (H) respectively represent the signal frequency spectrums recorded by the 
motor at a certain sampling time after FFT conversion. Among them, the x-axis represents 
frequency and the y-axis sampling denotes signal power. For example, Fig. 2(A) shows the FFT 
conversion results collected when the motor rotated forward (m0) during a certain sampling 
time. From the information in Fig. 2, it is observed that multiple similar features are presented. 
The direct classification of these signals consumes much time and reduces accuracy. Hence, 
feature selection is required before classifying the signals. Moreover, the feature selection 
algorithm selects relevant features, removes redundant features, and elucidates dependences 
among these features. Figure 2 shows the FE output. The features are optimized using a suitable 
optimization algorithm [e.g., Gaussian mixture model (GMM)] to improve the classifier 
accuracy.
 The basic CNN framework is applied and the correlation between the gathered types of AE 
will be described. Generally, the feature terms are usually assumed to exhibit the Gaussian 
distribution for ML system application. This indicates  that the Gaussian approximation results 
are still reasonably accurate even for small tag number values j < 20 when the tag number is 
equal to or greater than 10. Accordingly, the variance of each feature, conditioned on wi in the ith 
weight for the NN system, is given by(2)

 
1

( ) ( ) 2

2 0
( ) ( )

i i

W J
j j

FEw w
i j

var F E F
−

= =

 
=  

  
∑ ∑ , (9)

where ( )
i

j
wF , 0,  1, ,  1j J= − , denotes the value of the possibly extracted jth feature from all J 

features and 1 ( ) 2
0( )

i

J j
wjE F−

=
 
  ∑  represents the second moment of correlated features within a 

single distributed layer of the utilized NN mode. Since the separation between different features 
is deeply related to the adopted AE samples, the sample’s intensity fluctuation due to features 
cannot be considered independent. Let λnm be the feature correlation coefficient between the 
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where ,  0,  1, ,  1n m J= − , and the variable ( )
i

j
wF  is defined in Eq. (10). The normalized 

covariance matrix Cx has, as its element, the set of λnm, ,  0,  1, ,  1n m J= − . The correlation 
coefficient of ( ) ( ),  

i i

n m
w wF F  is λnm, which is defined as the equation above. Assume that the AE 

sampled frames are to be well controlled so that all features in a single-cell case have the same 
average second moment at the deployed scenario. 



4606 Sensors and Materials, Vol. 35, No. 10 (2023)

3.2 Raw data and dataset processing

 An ensemble framework for predicting rotating equipment failures uses fixed sampling with 
a predetermined constant value chosen prior to the model training phase, along with an 
adjustable replacement strategy. The raw data were obtained from a closed space, as shown in 
Fig. 4(a), using normal and broken devices. The latter devices are separated into the cases of 
broken in dry oil and broken in half-bearing, and are shown in Figs. 4(b) and 4(c), respectively. 
 Four types of AE are gathered in the datasets. Data cleaning, feature selection, and dataset 
reconstruction are performed during data processing. Fixed sampling data are adopted with 
replacement to generate multiple data subsets. We chose CNN to train base classifiers and 
retained five base classifiers that meet our requirements using iterative selection. The final 
prediction results are obtained through four different ensemble algorithms and output 
discrimination. An ensemble-based framework is shown in Fig. 4, where the complete workflow 
includes the AE-collecting box and two types of gear.
 The dataset employed consists of real cases investigated in the laboratory. The confirmed 
detection rotating device cases account only for a small part, so the problem of uneven numbers 
of positive and negative samples occurs in the collected data. Specifically, the collected datasets 
are available and can be found on the website.(34) If the unbalanced dataset (assuming the 
positive:negative ratio of the dataset is 9:1) is trained directly without any processing, the model 
can easily achieve an accuracy of more than 95% by predicting all the outputs as positive, but 
such a model has no practical application value. The coding tools are adopted separately in the 
training and EC platforms. Typically, Tensorflow® with Python® syntax is used in the former 
platform, and the latter platform is developed with the C++ tool.
 Technically, six training models, Train-1 to Train-6, are provided in the investigation, as 
shown in Table 1. The AE signals include forward, reverse, and unbalanced rotations for the 
three parts of rotating motors. In addition, the signals add another type of sound. The AE signals 
for M0 and M1 are for forward rotation, and those for Rm0 and Rm1 are for reversion rotation. 
The AE signals for Rmub01 and dry are for unbalanced rotation. Furthermore, the words Yes, 
No, off, aa, ba, silence, and unknown belong to the Audio Sounds dataset. Therefore, a total of 11 

Fig. 4. (Color online) (a) AE-collecting box, (b) Broken in dry oil gear, and (c) Broken in half-bearing gear.

(a) (b) (c)
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types of collected audio signal are shown in Table 1 with the exclusion of silence and unknown. 
Specifically, dry is the AE signal coming from an engine that was initially destroyed by the 
removal of all the grease covering it. Not only the number of records for each training audio 
signal but also the desired key detected word (Wanted %) is included in Table 1. 
 The reasons for deploying six cases trained in the experiment are listed below.
(A)  The editorial size limitation is the main reason; in fact, there are many more models that 

have been trained already.  
(B)  The established model accuracy rate exceeds 90%, which suitably proves the accuracy 

of the proposed algorithms.
(C)  Many of the situations are difficult to develop under constrained conditions, such as 

waste of time, cost expense, and the scale of the collected dataset, for example.  
 Moreover, in Fig. 5, the images generated from the MFCC transform must be recognized. 
Normally, the MFCC filter bank is a set of filter banks with a nonlinear distribution. The 
distribution is dense in the low-frequency domain and sparse in the high-frequency domain. This 
distribution is used to better meet the auditory characteristics of the human ear (or machine ear). 
The spectrogram results after FFT transformation are shown in Fig. 2. After taking the 
logarithm, the convolution signal is converted into an additive signal. This is the reason for the 
FFT and logarithm. Figure 5 shows the results of using the mel filter bank. In each subfigure, the 
x- and y-axes are indicated as time and MFCC (frequency), respectively. The middle frequency 
components are canceled in that MFCC subfigure.
 A sample experiment adopts the collected datasets shown in Table 1. The sample experiment 
has the training dataset with the values 6020, 6111, 7047, 7122, 7135, 4240, 10976, and 11754 for 

Table 1
Collected datasets for different labels and six training models. 

Labels
Dataset
(Wanted %)

Forward rotation Reverse rotation Unbalanced rotation Normal
M0 M1 Rm0 Rm1 Rm ub01 dry aa (F) ba (R)

Amount/giga byte 6020/0 6111/1.09 7047/1.18 7122/1.19 7135/1.19 4240/2.1 10976/1.83 11754/1.96
Frame(s) 1 1 1 1 1 1 1 1
Train-1 6020/0 6111/0 7047/0 7122/0 7135/0 4240/43 10976/0 11754/0
Train-2 6020/0 6111/0 7047/0 7122/0 7135/0 4240/45 10976/0 11754/0
Train-3 6020/0 6111/0 7047/0 7122/0 7135/0 4240/76 10976/58.5 11754/0
Train-4 6020/0 6111/0 7047/0 7122/0 7135/0 4240/66 10976/0 11754/59.5
Train-5 6020/0 6111/0 7047/0 7122/0 7135/0 4240/50 10976/0 11754/0
Train-6 6020/0 6111/0 7047/0 7122/0 7135/0 4240/64 10976/0 11754/0

Labels
Dataset
(Wanted %)

Audio sounds Accuracy LossYes No off silence unknown
Amount/giga byte 4044/0.121 3940/0.115 3745/0.112 # # NA NAFrame(s) 1 1 1
Train-1 4044/2.5 3940/2.3 3745/2.3 #/10 #/10 92.3 7.7
Train-2 4044/2.5 3940/2.5 3745/0 #/10 #/10 95.2 4.8
Train-3 4044/4 3940/0 3745/0 #/10 #/10 97.9 2.1
Train-4 4044/0 3940/0 3745/0 #/10 #/10 96.6 4.4
Train-5 4044/0 3940/0 3745/0 #/10 #/10 99.3 0.7
Train-6 4044/0 3940/0 3745/0 #/10 #/10 99.4 0.6
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types M0, M1, Rm0, Rm1, Rmub01, dry, aa (F), and ba (R), respectively.  The words Yes, No, and 
off are assigned the values 4044, 3940, and 3745, respectively. The types silence and unknown 
are ignored. Moreover, the ratio for each type, Wanted %, is determined to be 43, 2.5, and 2.5% 
for Yes, No, and off, respectively, and 25% for both silence and unknown. The confusion matrix is 
going to be generated and discussed later, in which the conditions of datasets for training models 
are the same as those shown in Table 1.

3.3 Scenario design and structure (edge computing)

 The main advantage of the EC operation is that it can build an adaptive model using a large 
amount of data through ML training on the slave device; through the serverless operation 
structure, the overall work can be performed during the communication flow between the 
master and the slave. The flow mentioned previously can avoid congestion, further reduce the 
memory capacity during operation, and allow the EC to respond instantly to various industrial 
schemes. In general, the memory capacity is a critical issue in processing the EC situation. It is 
commonly known to carry out data training while continuously adjusting the model weights and 
biases until it produces useful predictions. In the proposed method, a checkpoint is marked every 
100 execution steps during the calculation process. That is, if the training fails in the middle, it 
can be restarted from the most recent checkpoint without losing progress. In addition, the 
training activity also uses Tensorflow Lite by converting the Tensorflow server into a 
Tensorflow Lite image file. Finally, as long as toco provided on Tensorflow light is used for 
inference, the model can be converted into the Tensorflow light format, with only one sample 

Fig. 5. (Color online) MFCC spectrums for different types of AE for rotating devices and training words.
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being processed at a time. The complete model generated after conversion will be written to a 
file called tiny_conv.tflite. Generally, the memory size of each output model occupies only about 
48.208 kB.
 The proposed EC system is shown in Fig. 6. Two main parts, Rotating device and Loading 
screw support, constitute the full research environment. Mode switch, Buffering capacitor, 
Rotating device (Motor), Gear reducer, and Gear of motor are fully constructed in the first part. 
The second part consists of Microphone and BLE-33 module, which are responsible for dataset 
collection and AE detection, respectively. These two parts can each operate autonomously and 
are able to cooperate with each via the connector. In the BLE-33 module, there is a DSP system 
with an arm-4mf chip to complete the audio signal complex digital conversion calculation, 
which facilitates the judgment of the audio signal emitted from a specific motor. In fact, 
numerous different MCU modular series can be applied as EC device options. The choice of 
MCU module depends on the arithmetic speed and storage (RAM) size, for example, the Stm®, 
Raspberry®, and AMD® series. 

4. Results and Discussion 

 The relevant equipment of the experimental EC system described above was provided by 
Sesame Motor Company Ltd.@, and its specifications are listed in Table 2. The available rotating 
devices include a motor [5RK60A(GN)-CFT], a decelerator (5GN120KE with the gear reduction 
ratio 1:80), and SRJ-30C12 and SRJ-20C5,  as shown in Table 2. A combined robot arm with a 
single axis (KP02602KN-300-P+C01S01) was also included. The real experimental platform of 
the experimental EC system is shown in Fig. 7. 
 In this research, the six types of AE signal generated by a combination of motors are used to 
test the characteristics of different operations. They correspond to the descriptions in Table 1, 
which includes the operations of M0 (normal forward), M1 (normal reverse), Rm0 (normal 
forward with a deceleration decelerator), Rm1 (normal reverse with a decelerator), Rmub0 

Fig. 6. (Color online) Proposed EC system.
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(normal forward with a decelerator with vibration), and Dry (normal forward without oil). Using 
the measurements of the above-mentioned several characteristic forms of motor operations with 
the pre-training models to complete the experiment, the normal motor forward operation is 
considered unbalanced when the motor or shaft is without oil, which causes the forward and 
reverse rotations of the motor to be unclearly discriminated.  Therefore, to test the motor’s 
running characteristics with a high degree of discrimination, we adopted key feature extraction 
conditions to build these models. The training parameters and the presentation of different key 
features are also considered. It is difficult to improve the training performance when the raw 
data is not preprocessed. The proposed preprocessing algorithm first records the collected 
acoustics with a small audio slice, which is less than 1 s. The image spectrum is abstracted after 
the MFCC transform (as shown in Fig. 5) depending on the spectrum bandwidth. These methods 
were implemented using the feature extraction method discussed above.
 Different training models were used to test the various motor operating modes. The training 
results described in the previous sections will be presented before the measurement results. The 
AE label training procedures with dry will be held as an example. There are three types of AE 
used in the training model. The training matrix consists of 4 × 4 elements. This matrix is 
illustrated in Fig. 7, which shows the items consisting of the confusion matrix, the training time, 
the AE dry training label, and the final test accuracy (97.9%). In the latter case, four label types 

Table 2 
Available rotating experimental devices.
Device name Oriental Motor Decelerator Motor coupling Single coupling
Type number 5RK60A(GN)-CFT 5GN120KE SRJ-30C12 SRJ-20C5

Specifications
• Single-phase power
• Rating o/p 60W
• Two rotation directions

• Gear reduction ratio of 
1:80 • Flexible coupling • Flexible coupling

Fig. 7. Confusion matrix from training with dataset AE of dry.
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are included. The other training model shown in Fig. 8 contains the AE unbalanced training 
label plus five other labels and achieves an accuracy rate of 92.3%. It is easy to see that a higher 
accuracy can be obtained with fewer labels. That is, dry has four label types and is less accurate 
than unbalanced with six label types. Therefore, the more training labels assigned to the training 
model, the lower the accuracy rate will be.
 Moreover, in this study, the outcomes are validated using many merits for evaluating the 
performance of the established training models. The accuracy (Acc) is computed as

 
100%TP TNAcc

TP TN FP FN
+

= ×
+ + +

, (11)

where FN is False Negative, FP is False Positive, TN is True Negative, and TP is True Positive.  
In addition, the precision calculation (Pre) is depicted as 

 
TPPre

TP FP
=

+
. (12)

 Accordingly, the accuracy and precision results calculated for each outcome are listed in 
Table 3. The results calculated for different training models, Train-1, Train-2, and Train-3, using 
Eqs. (11) and (12) are also shown in Table 3. The numbers of TP, FP, FN, and TN results are 
obtained from the Train-1 model tests, as shown in Fig. 9. Out of 200 total test results for Train-1, 
only 17 are displayed. Finally, the calculated metric results listed in Table 3 confirm the validity 
of performance for the proposed schemes with different training cases. 

Fig. 8. (Color online) Confusion matrix from training with dataset AE of unbalanced.
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5. Limitations 

 This work focused on AE detection from different rotating motor types set up in a smart 
factory environment. The current working method records the sound from a single motor in a 
simple environment. It is known that rotating equipment is usually set up in a large 
manufacturing area. For experimental purposes, only one independent motor was built in our 
laboratory. For example, Fig. 5 shows the training dataset collection box, the complete 
environment platform, and the MFCC spectrums for the rotations of different types of motor. 
Specifically, Fig. 5 shows results for a microphone installed to collect the raw training datasets. 
A normal rotating motor is placed in a closed box to avoid ambient noise. This means that the 
raw audio signals are collected without being disturbed by any noise. In addition, an AE 
deployment (abnormal audio signal) detection environment is assumed to be free of interference. 
The motor is placed in a closed environment for audio collection. The audio collected in this 
study is almost pure (almost no ambient noise), but it also causes numerous test errors. Because 
the environment is very clean, the test becomes a major obstacle in this study. To prove that our 
proposed method can be used as a practical method, adding noise to simulate a real factory 
situation is necessary. A practical environment should be considered first when setting up a test 
environment. Under the current trend of intelligent automation, our method provides a solution 
to an important problem in the automation process, that is, machine equipment malfunction 
diagnosis. 

Table 3 
Accuracy and precision for different training models. 

TP FP FN TN Accuracy (%) Precision
Train-1 97 3 10 90 93.5 0.97
Train-2 90 10 15 85 87.5 0.90
Train-3 5 95 50 50 27.5 0.50

Fig. 9. Results obtained from Train-1 testing.
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 In this research, the quality control (QC) stage of the production line, where frequency 
response analysis methods are used to analyze the audio from mechanical equipment, is 
examined. Such analysis methods include audio collection, training, modeling, extraction, and 
equipment operating test identification. The production quality from the automated production 
line is then estimated. At the final stage, acoustic data are converted and analyzed in real time. 
The application of AIoT in AI technology can solve many problems arising in factory automation 
activities.

6. Conclusions and Further Challenges 

 We proposed a fault diagnosis method for mechanical devices using AE models. Some 
valuable results were acquired experimentally. The proposed algorithm achieved an accuracy 
rate of more than 90%. The metric discrimination accuracy and precision for a specific 
mechanical motor can reach about 93.5% and 0.97, respectively. The control and operation of 
traditional production lines will require engineers who have a good understanding of the 
manufacturing process to make preliminary judgments based on their subjective experience to 
determine whether the actual procedures and corresponding control settings are normal. 
However, manually controlled production lines, which rely on experience, have more cost 
considerations, resulting in the transition from a manually controlled production line to an 
automated production line with many uncertainties. Therefore, the digital transformation 
concept is effective in building an intelligent production inspection auxiliary system based on 
knowledge from various fields. The above facts motivate the adoption of the AI methodology to 
develop the best application program through the analysis of big data from the production line. 
There still exist many open challenges that should be further investigated.
1.  In many traditional factories, machinery operation still relies on the experience and judgment 

of plant engineers. Changing the behavior of conventional operations presents many 
challenges. 

2.  Dramatization and edge computing can be used to avoid possible errors and risks in advance. 
3.  Safe operation, personnel maintenance, more accurate prevention, machine maintenance, and 

factory operations can be realized through intelligent automation. 
4.  Many suitable analysis outcomes can promote excellent production rates. That is, the goal of 

improving control performance and reducing production cost can be easily achieved.
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