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 In this study, we developed a method for estimating the water depth of shallow rivers by 
analyzing images captured with a drone, using optical remote sensing techniques. In an attempt 
to compensate for the shortcomings of existing surveying methods, optical-remote-sensing-
based methods are being actively developed, but environmental conditions and data processing 
methods for application to rivers have not yet been sufficiently optimized. Here, we present an 
equation for estimating the water depth of shallow rivers from drone images and field survey 
results acquired under various conditions, and we aimed to verify accuracy using checkpoints. 
We found that estimating the water depth by calculating the parameters using multiple linear 
regression analysis based on the pixel values   of each band of the image and the field-surveyed 
water depth is more efficient than the conventional field survey method. In addition, the use of 
high-resolution images taken at noon without shadows and the removal of reflected light using a 
polarizing filter proved to be effective approaches in that nearly 88% of the images were within 
the acceptable range for bathymetry and about 94% were within the acceptable range when 
converted to low resolution. Finally, estimation of the water depth using the optical remote 
sensing technique indicated that the accuracy was low for deep water and that pixel values could 
be distorted by water plants or shadows.

1. Introduction

 In this study, we aimed to develop a method for estimating the water depth of shallow rivers 
using optical remote sensing techniques to capture drone images for subsequent analysis. 
Conventional techniques for surveying rivers rely on direct survey methods that use the Global 
Navigation Satellite System (GNSS) and the total station. Existing indirect survey methods 
include the use of acoustic sounders or aerial light detection and ranging (LiDAR). Acoustic 
sounders can measure large areas of deep water in a short time, and aerial LiDAR can 
simultaneously measure the land and seabed terrain.(1)
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 However, direct measurement methods such as those based on GNSS are prone to accidents 
because it is necessary to enter the water directly and measurements with uniform accuracy are 
not possible. The disadvantage of using an acoustic sounder is that the sensor must be immersed 
in water and mounted on a ship, which makes it difficult to conduct measurements in shallow 
water with depths of 0.5 m or less. Although LiDAR can be used to measure shallow water 
areas, it has the disadvantage of excessive cost. Current research aims to overcome the 
shortcomings of existing bathymetry methods for measuring the depth of shallow water. A 
shallow stream is usually defined as a stream with a depth of 5 feet (approximately 1.5 m) or less. 
Ehses and Rooney suggested that the multispectral image of the WorldView-2 satellite is within 
the allowable depth of up to 20 m,(2) and Lee et al. applied aerial depth LiDAR data with the 
Adaptive Triangular Irregular Network ground filtering technique to achieve an accuracy of 
about 88.8% at a maximum depth of 2.2 m.(3) Oh et al. presented a method for capturing and 
analyzing drone images with a spatial resolution of 2.5 cm of shallow waters near the coastline 
with depths of up to 5 m using optical imaging techniques,(4) whereas Holman et al. examined 
the accuracy of topographic surveys using drones, and in particular, analyzed sea level images 
taken by drones to assess the accuracy of this method for measuring depth.(5) Yi et al. studied 
bathymetry in shallow waters using aerial photographs and presented results with error within 
0.1 m for areas in which the water was no more than 10 m deep.(6) Yeo et al. suggested that it was 
possible to use a drone to survey a river with depth within 0.5 m for rivers with varying regional 
characteristics such as the flow rate, swell, and turbidity.(7) Choi and Na estimated the depth of a 
shallow river using a spatial resolution within 1.5 m and an image processing method to analyze 
images that were taken using a polarization filter.(1) However, they did not report the limits or 
conditions under which the depth can be estimated using photographs alone. This prompted our 
study, in which we determined the limits of the water depth and environmental conditions under 
which the depth of shallow river areas can be accurately measured using high-resolution drone 
images with a spatial resolution of 1 cm, which were captured using optical remote sensing 
techniques. In this study, as shown in Fig. 1, aerial photographs taken under various conditions, 
such as different spatial resolutions, with and without the removal of reflected light, and different 
shooting times, were analyzed. The GNSS coordinates of directly surveyed reference points 
were used to derive a formula for estimating the depth of a shallow river, and to verify the 
accuracy with the aid of checkpoints.

Fig. 1. (Color online) Conceptual diagram of method for estimating the water depth of shallow rivers.
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2. Methods 

2.1 Water depth estimation method using optical remote sensing technique

 Optical remote sensing techniques for bathymetry include bathymetry models derived from 
the Beer–Lambert Law [Eq. (1)], which is based on the principle that the light that penetrates 
water is absorbed by the water, whereby the light intensity is weakened.(4)

 0
z

wI I e Iβ−= +  (1)

Here, I is the intensity of light detected by the measuring device, Iw is the intensity of light 
reflected from the surface of the water, I0 is the intensity of light transmitted through the surface 
and reflected from the bottom of the water, and β is the absorption coefficient (in clear water, the 
value depends on the frequency of the light).
 Equation (1) can be rearranged such that it expresses the depth (z) as

 ( ) ( ){ }0ln ln / .wz I I I β= − −  (2)

 An image captured by a drone consists of bands of visible light (red, green, and blue), and the  
digital number (DN) of the image has a value proportional to the light intensity. Because the 
values of the absorption coefficient in Eq. (2) differ depending on the color and turbidity of the 
water, atmospheric conditions, altitude of the sun, and so forth, Eq. (2) cannot be applied to the 
drone image as it is, and the intensity of the light reflected and transmitted from the surface of 
the water also changes.(4) In addition, Philpot proposed a method for quantifying the physical 
properties of water and estimating the situational depth in accordance with the characteristic 
changes in relation to Eq. (2).(8) However, his method was developed for multispectral satellite 
images captured at wavelengths other than those of visible light, such as near infrared and 
infrared, and it is difficult to apply when using only visible light bands as in our study. 
Accordingly, Lyzenga et al. presented a depth estimation formula using two spectral bands, as 
shown in Eq. (3), assuming that the physical properties of the bathymetry site are constant.(9)

 ( )0 1
n

j jjZ h h banln d
=

= −∑  (3)

 Equation (3) can be used to calculate the depth of some points in one image and determine 
each parameter through multiple linear regression analysis. However, considering that Eq. (3) is 
not fully compatible with ordinary cameras that use only visible light bands, the estimation 
would be more accurate with Eq. (4), which does not determine the natural logarithm.(2)
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n
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 Yeo et al. proposed a method for depth estimation by combining each of the different bands 
using an artificial neural network and obtained the most accurate results for the combination of 
four bands: red, green, blue, and gray.(7)  However, the disadvantage of analysis with the aid of 
artificial neural networks is that the physical properties cannot be determined.(4)  Therefore, in 
this study, a depth estimation formula was derived by finding the parameters using the 
combination of the four bands of red, green, blue, and gray and the multiple linear regression 
analysis of Eq. (4). The gray band is usually calculated as (Rband + Gband + Bband)/3, but in this 
calculation, the gray band can be calculated with Eq. (5) because it is the same as the result of 
using only the R, G, and B bands by linearity.(1)

 ( ) ( )2 22( )band band band bandGray G B R= + +   (5)

Here, Grayband is the DN of the gray band, Rband is the DN of the red band, Gband is the DN of 
the green band, and Bband  is the DN of the blue band.
 By calculating the pixel value of the gray band using Eq. (5) and deriving the parameters for 
each pixel value through multiple regression analysis, the depth estimation formula can be 
derived as below.(1)

 1 2 3 4band band band bandy R x G x B x Gray x C= + +⋅ ⋅ ⋅ ⋅+ +  (6)

Here, y is the water depth, x is the parameter for the DN of each band, and C is a constant.

2.2	 Method	for	removing	reflected	light	from	the	surface	using	a	polarizing	filter

 A polarizing filter is mainly used to remove reflected light from glossy objects such as the 
surfaces of glass or water. The surface of the water spreads the light reflected from the light 
source irregularly, and by using a polarizing filter, only the light traveling in a certain direction 
is transmitted and the remaining light is blocked to enhance the transparency of the image. In 
this study, the accuracy of the water depth estimation was assessed by comparing images 
without and with the removal of light reflected from the surface of the water using a circular 
polarizing filter (CPL: circular polarizing linear) for the DJI Mavic 2 Pro drone supplied by DJI 
Corporation.

3. Experiments and Analysis

3.1 Selection of target area for the study

 In this study, as shown in Fig. 2, the study area was the upper reaches of the Nam River 
located in Hamyang County, Gyeongsangnam, where the average depth is 0.8 m and maximum 
depth is about 2.0 m, which can be directly measured by GNSS.



Sensors and Materials, Vol. 35, No. 9 (2023) 3367

 In addition, this part of the river has a gentle slope, the flow rate of the water is neither fast 
nor slow, and the water has acceptable turbidity such that the bottom of the river can be visually 
identified. Thus, this section of the river was selected as the target area for testing.
 To optimize the conditions for depth estimation, photographs were captured at different times 
of the day (10:00, 12:00, and 15:00) to analyze the effect of shadows in accordance with the 
shooting time to determine whether a polarization filter should be applied to analyze the effect 
of the reflection of surface light. Spatial resolutions of 1 and 2.5 cm were used to analyze the 
effect of the spatial resolution. Fourteen sets of conditions (cases) were set (Table 1). The spatial 
resolutions of 5 and 10 cm were added by converting the ortho-image with the most accurate 
conditions to low resolution by comparing the spatial resolution and filter application at the 
shooting time.
 A DJI Mavic2 Pro model drone was used to record the videos, and automatic navigation was 
performed using Pix4Dcapture with a shooting area of 0.67 km2 (70 × 95 m2), flight speed of 
10 m/s longitudinal, lateral overlap of 80%, and shooting angle of 90°.

3.2 Reference point surveying and orthographic mapping

 In preparation for the aerial survey of the test target area, six ground reference points and two 
inspection points were installed, as shown in Fig. 3, in accordance with the “Public Survey Work 
Guidelines for Using Unmanned Aerial Vehicles.” In addition, 16 reference points traversing the 
center of the target river were surveyed using GNSS to calculate the parameters of the pixel 
value of each band through multiple linear regression analysis. The measurement results of 367 
test points were obtained to verify the accuracy of the bathymetric estimation formula.

Fig. 2. (Color online) Aerial view of the area selected for this study.
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3.3 Symmetry estimation using multiple linear regression analysis

 The water depth was estimated by processing the images with multiple linear regression 
analysis. First, the QGIS software was used to extract the pixel values of the RGB bands of the 
16 reference points from the images taken with the drone, and the pixel values of the gray bands 
were calculated using Eq. (5). Using the extracted pixel value and the actual depth of the 
reference point, we derived the parameters and constant value for each band for each respective 
case with the aid of multiple linear regression analysis. The results are listed in Table 2.
 Using the values of the four indices and the constant for each band in Table 2, the values for 
Case 6 can be derived using the depth estimation formula Eq. (7).

Table 1 
Specified study conditions.
Type Time GSD (cm) CPL filter Altitude (m) Number of images
Case1 10:00 1.0 Not used 50 66
Case2 10:00 1.0 Used 50 66
Case3 10:00 2.5 Not used 100 24
Case4 10:00 2.5 Used 100 24
Case5 12:00 1.0 Not used 50 66
Case6 12:00 1.0 Used 50 66
Case7 12:00 2.5 Not used 100 24
Case8 12:00 2.5 Used 100 24
Case9 15:00 1.0 Not used 50 66
Case10 15:00 1.0 Used 50 66
Case11 15:00 2.5 Not used 100 24
Case12 15:00 2.5 Used 100 24
Case13 12:00 5.0 Used — —
Case14 12:00 10.0 Used — —

Fig. 3. (Color online) Location of GCP (ground control point) (red), check points (yellow), and reference points 
(black).
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 0.0630 0.0110 0.0261 0.0582 0.7112band band band bandy R G B Gray= − +− ⋅ +⋅ − ⋅ ⋅  (7)

Here, y is the water depth and x is the parameter for the DN of each band.
 Table 3 presents the measured depth for each of the 16 reference points and the estimated 
depth value for each of these points for each case specified in Table 1 and calculated using 
Eq. (7).

3.4 Accuracy analysis depending on drone shooting conditions

 The dependence of the accuracy on the conditions under which the drone captured the images 
was analyzed by comparing the depth of each reference point and the pixel value extracted from 
the drone image with the actual and estimated depths values at 367 test points employing the 
parameters calculated using multiple linear regression analysis. The permissible margin of error 
for bathymetry is stipulated in the “General Survey Work Regulations” for the bathymetry of 
river clearance works [Article 50 (4)], and the margin of error is ±0.2 m or less if the water depth 
is no greater than 5 m. Because the water depth in the target area of this study is at most 2 m, we 
analyzed whether the specified error range was satisfied.
 The results of the accuracy analysis by comparing the values of the actual and estimated 
depths at each of the inspection points for each case are presented in Table 4. Cases 13 and 14 
were excluded from the overall accuracy comparison as they were cases in which the drone 
image of Case 6 was converted to low resolution and compared with regard to spatial resolution. 
The standard deviation for the photograph captured at 12:00 with low shadows at a spatial 
resolution of 1 cm and after removing reflected light (Case 6) is ±0.129.
 The dependence of the accuracy on the presence or absence of light reflected from the 
surface of the water was determined by comparing the mean ±0.162 of the standard deviations 

Table 2
Calculated values of the indices and constant of each case.

Type Parameters and constant of each case
x1 x2 x3 x4 C

Case1 0.0073 0.0956 0.0568 −0.0876 −0.5596
Case2 0.1236 0.2020 0.1872 −0.2947 0.2458
Case3 0.0308 0.1122 0.0794 −0.1275 0.2015
Case4 −0.0200 0.0444 0.0349 −0.0310 −0.2130
Case5 0.2369 0.3394 0.2919 −0.4997 0.1801
Case6 −0.0630 −0.0110 −0.0261 0.0582 0.7112
Case7 −0.0840 −0.0452 −0.0354 0.0967 0.6677
Case8 −0.0942 −0.0400 −0.0443 0.1056 0.4625
Case9 0.0353 0.1068 0.0798 -0.1237 −0.1874
Case10 0.1086 0.1842 0.1624 −0.2650 1.1800
Case11 −0.1392 −0.0764 −0.1131 0.1919 −0.0377
Case12 0.1170 0.2492 0.1374 −0.2860 −0.9110
Case13 −0.0544 0.0005 −0.0137 0.0408 0.5018
Case14 −0.1107 −0.0550 −0.0687 0.1362 0.5119
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calculated for images captured without the polarizing filter (Cases 1, 3, 5, 7, 9, and 11), with the 
mean ±0.165 of those acquired with the polarizing filter (Cases 2, 4, 6, 8, 10, and 12), the 
difference is 0.003 m. To analyze the effect of shadows on the accuracy, the average of the 
standard deviations at each shooting time was calculated for comparison. The mean of the 
standard deviations for images captured at 10:00 (Cases 1, 2, 3, and 4) is ±0.157, that for images 
captured at 12:00 (Cases 5, 6, 7, and 8) is ±0.163, and that for images captured at 15:00 (Cases 5, 

Table 3
Comparison of field-surveyed water depth and estimated water depth for Cases 1–14.

No. Depth Estimated depth (m)
Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 Case11 Case12 Case13 Case14

Ref.01 0.230 0.318 0.291 0.212 0.267 0.323 0.205 0.251 0.239 0.247 0.215 0.226 0.215 0.183 0.200
Ref.02 0.286 0.409 0.291 0.330 0.279 0.407 0.326 0.390 0.299 0.237 0.321 0.339 0.429 0.354 0.343
Ref.03 0.624 0.536 0.854 0.674 0.894 0.756 0.649 0.716 0.589 0.643 0.530 0.630 0.834 0.660 0.678
Ref.04 0.654 0.540 0.745 0.733 0.735 0.667 0.738 0.508 0.649 0.668 0.755 0.634 0.749 0.682 0.648
Ref.05 0.589 0.507 0.583 0.692 0.635 0.461 0.582 0.730 0.671 0.576 0.554 0.528 0.545 0.596 0.587
Ref.06 0.616 0.603 0.527 0.534 0.532 0.532 0.680 0.523 0.518 0.591 0.573 0.681 0.387 0.639 0.654
Ref.07 0.774 0.777 0.712 0.626 0.765 0.647 0.681 0.651 0.749 0.871 0.824 0.752 0.839 0.726 0.691
Ref.08 0.795 0.895 0.725 0.797 0.788 0.749 0.750 0.805 0.922 0.845 0.901 0.727 0.979 0.724 0.769
Ref.09 1.033 1.181 1.208 1.059 1.153 1.259 1.019 1.145 1.247 1.112 1.097 1.121 1.079 1.081 1.112
Ref.10 1.300 1.191 0.995 1.232 0.887 1.254 1.290 1.240 1.292 1.241 1.245 1.337 1.159 1.282 1.218
Ref.11 1.472 1.457 1.399 1.511 1.432 1.532 1.392 1.477 1.344 1.359 1.412 1.415 1.130 1.401 1.365
Ref.12 1.515 1.478 1.488 1.443 1.555 1.401 1.389 1.460 1.493 1.614 1.470 1.454 1.381 1.380 1.439
Ref.13 1.509 1.372 1.500 1.489 1.473 1.323 1.523 1.444 1.448 1.482 1.313 1.547 1.453 1.563 1.553
Ref.14 1.483 1.602 1.500 1.509 1.488 1.511 1.597 1.526 1.465 1.508 1.557 1.417 1.521 1.485 1.479
Ref.15 1.561 1.444 1.498 1.564 1.509 1.529 1.475 1.591 1.633 1.558 1.600 1.492 1.498 1.520 1.533
Ref.16 1.304 1.432 1.430 1.340 1.352 1.394 1.447 1.288 1.187 1.192 1.377 1.445 1.547 1.467 1.478
Avg. 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984
Max. 1.561 1.602 1.500 1.564 1.555 1.532 1.597 1.591 1.633 1.614 1.600 1.547 1.547 1.563 1.553
Min 0.230 0.318 0.291 0.212 0.267 0.323 0.205 0.251 0.239 0.237 0.215 0.226 0.215 0.183 0.200

Table 4
Results of accuracy analysis for each case.

Type Average Minimum Maximum Standard 
deviation

Number of error points 
exceeding the tolerance

Error rate
(%)

Case1 −0.055 −0.457 1.053 0.162 76 20.7
Case2 0.088 −0.786 0.555 0.176 108 29.4
Case3 −0.016 −0.505 0.408 0.143 60 16.3
Case4 −0.034 −0.478 0.493 0.146 60 16.3
Case5 0.084 −0.370 1.015 0.204 108 29.4
Case6 −0.021 −0.473 0.286 0.129 44 12.0
Case7 −0.011 −0.624 0.438 0.166 72 19.6
Case8 −0.043 −0.737 0.479 0.155 66 18.0
Case9 −0.092 −0.440 0.379 0.148 97 26.4
Case10 −0.036 −0.631 0.579 0.180 92 25.1
Case11 −0.050 −0.522 0.411 0.148 71 19.3
Case12 −0.134 −0.612 0.629 0.203 158 43.1
Case13 0.006 −0.492 0.391 0.134 47 12.8
Case14 −0.017 −0.370 0.249 0.104 21 5.7
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6, 7, and 8) is ±0.170. However, an examination of individual cases revealed that the images 
taken at 12:00 are the most accurate. Analysis of the results of the case with the highest accuracy 
(Case 6) and the results obtained for the cases that were converted to low resolution using Case 6 
(Cases 13 and 14), revealed that the accuracy with respect to the spatial resolution decreases 
slightly with conversion to the lower resolution. Nonetheless, because the average pixel value is 
applied, the higher accuracy is attributed to the conversion of the pixel value to lower resolution.
 With respect to the error rate, the estimated depth in Case 6 was analyzed using inspection 
points, and it was found that there were 44 inspection points outside the error tolerance of  ±0.2 
m, accounting for about 12.0% of the total. The results indicate that nearly 88.0% of the total 
values were within the specified error tolerance, and in Case 14, about 94.3% of the total values 
were within the error tolerance with 21 inspection points.
 The results of the analysis of the measured depth vs the estimated depth are presented in the 
form of scatter plots in Fig. 4. These results were obtained for images taken at 12:00 and a spatial 
resolution of 1 cm (Case 6) with the use of a polarizing filter. The value of R2 is 0.980, and when 
the spatial resolution of images taken at 12:00 is converted to 10 cm (Case 14), the value of R2 is 
0.987, indicating that the estimated value is closer to the actual value.

3.5 Results of cause-of-error analysis and discussion

 The cause of the error in the estimation was investigated on the basis of the case in which the 
images were photographed at 12:00 with a spatial resolution of 1 cm (Case 6) and a polarizing 
filter was used. As a result, in the case of region A in Fig. 5, an error occurred because the pixel 
values differed from those in the original topography due to the shadow in the river bed. In the 
case of region B, referring to a reported method used to analyze drone images acquired via 
optical remote sensing,(1) the results showed that the tolerance range was within 1.6 m after 
applying the polarization filter (the estimated depth was 1.4 m), indicating that the actual depth 
in the b-2 area is 1.663 m. In the case of the b-1 area, the actual depth is 1.142 m, but the pixel 
values were found to be distorted owing to shadows between the rocks on the river bed, thereby 
giving rise to a large error. In the case of the b-3 area, the actual depth is 1.435 m, but the water 
surface was found to be disturbed by wind. This distorted the pixel value, resulting in a large 
error. To summarize, the results of this study showed that it is difficult to apply the proposed 
method to shallow rivers with a maximum depth of approximately 1.6 m, particularly when the 
flow rate is high, windy conditions exist, the water is deep with high turbidity, and algae and 
aquatic vegetation are present in abundance.
 A comparison of the results obtained using the numerical topographic model based on optical 
remote sensing with those obtained using the conventional method employing survey data 
indicates that the calculated topography is higher than that of the actual terrain when only the 
image taken by the drone is used [Figs. 6(d) and 6(e)]. The elevation determined by the direct 
survey method corresponds to the actual lower elevation, but, because the obtained value is 
small, it is not possible to show a detailed river topography, as shown in Figs. 6(b) and  6(e). 
However, the optical remote sensing technique can determine the exact downstream elevation 
value, and a detailed downstream topography is obtained, as shown in Figs. 6(c) and 6(f). 
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(g) (h) (i)

(j) (k) (l)

(a) (b) (c)

(d) (e) (f)

Fig. 4. (Color online) Depth determined in the field survey and estimated depth: (a) Case 1, (b) Case 2, (c) Case 3, 
(d) Case 4, (e) Case 5, (f) Case 6, (g) Case 7, (h) Case 8, (i) Case 9, (j) Case 10, (k) Case 11, (l) Case 12, (m), Case 13, 
and (n) Case 14.
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Fig. 5. (Color online) Locations of points for which the accuracy was the lowest.

Fig. 6. (Color online) Digital elevation model (DEM) of study area. Relief shaded terrain (Hillshade) views of the 
(a) image captured by the drone, (c) surveyed data, and (e) estimated data. 3D renderings of the (b) image taken by 
the drone, (d) surveyed data, and (f) estimated data.

Fig. 4. (Continued) (Color online) Depth determined in the field survey and estimated depth: (a) Case 1, (b) Case 2, 
(c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6, (g) Case 7, (h) Case 8, (i) Case 9, (j) Case 10, (k) Case 11, (l) Case 12, 
(m), Case 13, and (n) Case 14.

(m) (n)

(a) (b) (c)

(d) (e) (f)
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4. Conclusions

 In this paper, the results obtained by our method of estimating the depth of shallow rivers 
using an optical remote sensing technique to capture high-resolution images with a drone are 
presented. 
 First, calculation of the pixel value for each band of the image and calculation and estimation 
of the directly measured depth value by multiple linear regression analysis enabled the depth of a 
shallow river to be estimated more efficiently than by the existing direct survey method.
 Second, when the images that were captured by the drone with polarizing filters to remove 
the light reflected from the surface and when high-resolution images were taken at noon without 
shadows, the accuracy of the depth at about 88% of the positions in a shallow river (of which the 
depth does not exceed 1.6 m), was within the allowable range of bathymetry, and when converted 
to low resolution, about 94% of the results were within the allowable range. 
 Third, the accuracy of depth estimation using optical remote sensing techniques was found to 
be low for greater depths, and errors may occur owing to the distortion of pixel values by water 
plants or shadows.
 In the future, research on depth estimation under more diverse environmental conditions, 
such as an assessment of the effect of water turbidity, and additional depth estimation methods, 
such as the use of artificial intelligence to eliminate errors introduced by shadows, will be 
required.

Acknowledgments

 This work was supported by an Incheon National University Research grant (2017).

References

 1 B. G. Choi and Y. W. Na: J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 40 (2022) 635 (in Korean). https://
doi.org/10.7848/ksgpc.2022.40.6.635

 2 J. S. Ehses and J. J. Rooney: NOAA Technical Memorandum NMFS-PIFSC 46 (2015) 24. https://doi.
org/10.7289/V5668B40

 3 J. B. Lee, H. J. Kim., J. H. Kim, and G. J. Wie: J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 39 (2021) 235 
(in Korean). https://doi.org/10.7848/ksgpc.2021.39.4.235

 4 C. Y. Oh, K. M. Ahn, J. S. Park, and S. W. Park: J. Korean Soc. Coastal. Ocean. Eng. 29 (2017) 162 (in Korean).  
https://doi.org/10.9765/KSCOE.2017.29.3.162

 5 R. A. Holman, K. L. Brodie, and N. J. Spore: IEEE Trans. Geosci. Remote Sens. 55 (2017) 2017. https://doi.
org/10.1109/TGRS.2016.2635120

 6 J. H. Yi, K. H. Ryu, C. J. Shin, W. D. Baek, and W. M. Jung: J. Korean Soc. Hazard. Mitigation 16 (2016) 351 
(in Korean).  https://doi.org/10.9798/KOSHAM.2016.16.5.351

 7 H. J. Yeo, S. P. Choi, and Y. Yeu: J. Korean Soc. Geospatial Inf. Sci. 24 (2016) 3 (in Korean). https://doi.
org/10.7319/kogsis.2016.24.1.003

 8 W. D. Philpot: J. Opt. Soc. Am. A 28 (1989) 1569. https://doi.org/10.1364/AO.28.001569
 9 D. R. Lyzenga, N. P. Malinas, and F. J. Tanis: IEEE Trans. Geosci. Remote Sens. 44 (2006) 2251. https://doi.

org/10.1109/TGRS.2006.872909

https://doi.org/10.7848/ksgpc.2022.40.6.635
https://doi.org/10.7848/ksgpc.2022.40.6.635
https://doi.org/10.7289/V5668B40
https://doi.org/10.7289/V5668B40
https://doi.org/10.7848/ksgpc.2021.39.4.235
https://doi.org/10.9765/KSCOE.2017.29.3.162
https://doi.org/10.1109/TGRS.2016.2635120
https://doi.org/10.1109/TGRS.2016.2635120
http://dx.doi.org/10.9798/KOSHAM.2016.16.5.351
http://dx.doi.org/10.7319/kogsis.2016.24.1.003
http://dx.doi.org/10.7319/kogsis.2016.24.1.003
https://doi.org/10.1364/AO.28.001569
https://doi.org/10.1109/TGRS.2006.872909
https://doi.org/10.1109/TGRS.2006.872909


Sensors and Materials, Vol. 35, No. 9 (2023) 3375

About the Authors

 Byoung Gil Choi received his B.S., M.S., and Ph.D. degrees from Hanyang 
University, Korea, in 1984, 1986, and 1992, respectively. Since 1992, he has 
been a professor at Incheon National University.  His research interests are in 
drones, GIS, and remote sensing. (bgchoi@inu.ac.kr)

 Yong Hee Kwon received his B.S. degree from Hankyong University, Korea, 
in 1998 and his M.S. and Ph.D. degrees from Incheon National University, 
Korea, in 2010 and 2023, respectively. Since 1986, he has been an engineer at 
several civil engineering companies. His research interests are in drones, GIS, 
and remote sensing. (kwonyhee@nate.com)

 Jun Hee Lee received his B.S. degree from Seoul National University of 
Science & Technology, Korea, in 2010, Since 1995, he has been an engineer at 
several civil engineering companies. His research interests are in drones, GIS, 
and remote sensing. (hiboss@nate.com)

 Young Woo Na received his B.S., M.S., and Ph.D. degrees from Incheon 
National University, Korea, in 2001, 2003, and 2009, respectively.  From 2009 
to 2021, he was a researcher and assistant professor at Incheon National 
University, Korea.  Since 2021, he has been an assistant professor at Semyung 
University.  His research interests are in drones, GIS, and remote sensing. 
(survey21@semyung.ac.kr)

mailto:bgchoi@inu.ac.kr
mailto:kwonyhee@nate.com
mailto:hiboss@nate.com
mailto:survey21@semyung.ac.kr



