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 Accurate bathymetry estimation is made possible by combining depth data with free-air 
gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to 
the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that 
represent the short-wavelength effect are required to accurately estimate bathymetry by 
combining satellite altimetry-derived free-air gravity anomalies and shipborne data including 
depth and gravity anomalies. In this study, the optimized ensemble model of machine learning 
techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–
geologic method (GGM) from various geospatial information including shipborne depth, 
shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the 
Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the 
optimized ensemble model of machine learning was improved by 32.3 m over the GGM 
bathymetry estimated using the original depth and gravity anomalies. The method presented in 
this study is for estimating deep-water bathymetry using machine learning, and it has been 
proven to have superior performance compared with conventional methods.

1. Introduction

 Bathymetry mapping is important in understanding Earth’s gravity field. Recently, various 
research studies have been performed to predict accurate bathymetry using shipborne data, 
including depth and gravity anomalies, by utilizing high-resolution satellite altimetry-derived 
free-air gravity anomalies.
 Various machine learning technologies have also been developed and applied to each field of 
surveying. In bathymetry estimation in particular, research using machine learning technology 
has been actively conducted. In fact, many studies have revealed that machine learning is 
accurate and fast in comparison with conventional bathymetry measurement methods. Collin 
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and Hench(1) extracted spectra from very high resolution satellite images, formed neural bands 
through an artificial neural network, and estimated shallow-water bathymetry. In their study, the 
authors demonstrated that bathymetry estimation using machine learning is superior to 
conventional methods. Misra et al.(2) extracted shallow-water bathymetry using multispectral 
images of satellites, similarly to Collin and Hench.(1) However, their study used a support vector 
machine (SVM) rather than an artificial neural network. A significant number of studies on 
bathymetry estimation in shallow areas using satellite imagery and artificial intelligence have 
been conducted since 2015.(3–10) Most of these studies used multispectral images obtained from 
satellites but different machine learning methods. Owing to the characteristics of multispectral 
images, it is difficult to measure a large water depth, so these studies are limited to shallow 
target areas where the water depth is less than 40 m. Despite these various studies, it is difficult 
to find studies on the utility and performance of machine learning in deep-water bathymetry, 
unlike shallow-water bathymetry. In addition, because the characteristics of shallow water and 
deep water are different, it is not possible to judge that the utility and performance of machine 
learning in deep-water bathymetry are the same as those of shallow water. Therefore, it is 
necessary to apply machine learning in deep-water bathymetry and understand its performance. 
To meet this demand, we used machine learning in deep-water bathymetry and determined its 
utility and performance. Machine learning techniques for measuring bathymetry are as diverse 
as the studies. For example, regression,(6,9) artificial neural network,(1,4,11) and SVM(2,5–7,10,12,13) 
are common among various machine learning methods. All these methods yield better 
performance than the conventional simple interpolation but their performance varies depending 
on the study. Among them, the decision tree appears to yield the best performance. Sagawa et 
al.(5) and Susa(13) have demonstrated the capacity of random forest in bathymetry estimation. 
Alevizos(6) showed that random forest was superior to kappa nearest neighbor (KNN) and 
multiple linear regression analyses in bathymetry estimation. Furthermore, Tonion et al.(7) 
demonstrated that random forest performed better than SVM in bathymetry estimation. 
Similarly, Eugenio et al.(10) and Moran et al.(12) both showed that decision tree is more suitable 
for bathymetry estimation than KNN and SVM. Considering these trends, it is necessary to 
apply various machine learning techniques and determine their suitability in this study.
 The purpose of this study is to evaluate the accuracy of bathymetry grid data generated by 
the gravity–geologic method (GGM) using depth and gravity anomalies predicted using the 
optimized machine learning model, determined from various machine learning techniques, in 
the Ulleung Basin in the East Sea. To assess the accuracy, the bathymetry grid data generated 
using the optimized machine learning model were compared with the two global bathymetry 
grid data obtained using the global topography model (V19.1) of Scripps Institution of 
Oceanography (SIO, http://www.sio.ucsd.edu), University of California at San Diego(14) and the 
1 × 1 arc-minute Earth topographical database 1 (ETOPO1) model.(15)

http://www.sio.ucsd.edu
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2. Methods

2.1 Prediction of depth and gravity anomalies by machine learning

 As described in the introduction, machine learning methods for bathymetry include 
regression analysis, SVM, the decision tree, and artificial neural networks. The superiority of 
the decision tree in bathymetry has been proven in numerous studies.(5–7,10,12,13) However, since 
most of the above studies are aimed at shallow bathymetry, it cannot be assured that the decision 
tree can yield excellent performance even in deep-water bathymetry. Therefore, in this study, we 
tried to predict water depth and gravity anomalies using the method with the highest performance 
after analyzing performance using regression analysis, SVM, the decision tree, and artificial 
neural networks.
 The regression models used in this study are linear, interactive, robust linear, and stepwise 
linear models. Linear regression is a simple first-order linear model, whereas interactive 
regression is a regression analysis method that considers the correlation between longitude and 
latitude, which are input values. Robust linear regression can detect and remove outliers in 
advance to resolve the sensitivity of outliers for linear regression. Stepwise linear regression 
refers to a regression method that performs three steps: forward selection, backward elimination, 
and bidirectional elimination to prevent overfitting.
 SVM is one of the machine learning techniques suitable for classification using kernel 
functions. The kernel functions used in this study are a linear function, a quadratic function, a 
cubic function, and Gaussian functions. The Gaussian functions used have three parameters: σ, 
4σ, and 1/4σ. In addition, SVM, which can be optimized using a Bayesian function, was used.
 In this study, we also used three decision tree methods: the bagging tree, also called random 
forest, the boosting tree, and an optimized ensemble. Since the technology has already proven its 
excellence, we also examined if these methods demonstrate excellent performance. The decision 
tree, like SVM, was used in this study by additionally creating a model that can be optimized 
using a Bayesian function, in addition to the bagging tree and boosting tree. The artificial neural 
network model adopts the Bayesian function for optimization from a neural network with three 
hidden layers that take latitude and longitude as input values.
 To evaluate the performance of each technique and select a model suitable for bathymetry 
estimation, the root mean square error (RMSE), coefficient of determination (R2), mean square 
error (MSE), and mean absolute error (MAE) were used in the validation set and the test set, 
respectively. Validation was performed by five fold cross-validation, and the test set separated 
10% of the total data that was excluded from the training data.

2.2 Bathymetry prediction by GGM

 The GGM for bathymetry prediction using satellite altimetry-derived free-air gravity 
anomalies has been performed in several studies.(16–19) The satellite altimetry-derived free-air 
gravity anomalies can be used to fill gaps by computing the topographic effects in the off-tracks 
between the shipborne depth measurements in GGM.(16)
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 The observed gravity (gobs) is made up of residual gravity (gshort) and regional gravity (glong). 
As shown in Fig. 1, the residual gravity ( )ML

shortg j  and the regional gravity ( )ML
longg j  from both 

depth estimation [dML( j)] and gravity anomalies estimation [gML( j)] using the optimized 
machine learning model at the shipborne measured point j were generated. The regional gravity 

( )ML
longg j  at the points of measured depth j was calculated by subtracting the residual gravity 

( )ML
shortg j  that represented the effect of the seafloor bedrock from the observed gravity ( )ML

obsg j .
 The regional gravity ( )ML

longg i  at the points of unmeasured depth i can be estimated by 
gridding the regional gravity ( )ML

longg j  at the points of measured depth j. The residual gravity 
( )ML

shortg i  for predicting the depth between the sea surface and the seafloor bedrock at the points 
of unmeasured depth i was estimated by eliminating the regional gravity ( )ML

longg i  from gobs(i)
that is SAFAGAs (gsat) in the following equation. SAFAGAs represent the satellite altimetry-
derived free-air gravity anomalies.

 ( ) ( ) ( )( )2ML ML
shortg i G d i Dρ= π ∆ −  (1)

Fig. 1. Bathymetry estimation using GGM and machine learning.
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 The rearranged residual gravity ( )ML
shortg i  at the points of unmeasured depth i was applied to 

predict bathymetry d(i) in this study. In Fig. 1, G is the gravitational constant, 6.672 × 10−8 
cm3 · g−1 · s−2; ∆ρ is the density contrast (1.67 g/cm3) between seawater (1.03 g/cm3) and the 
seafloor bedrock (2.70 g/cm3); DML is the deepest depth at a reference datum (m) using the 
optimized machine learning model at measured point j.

3. Results and Discussion

3.1 Determination of optimized machine learning model for predicting depth and gravity 
anomalies

 In this study, we implemented bathymetry estimation using the optimized machine learning 
model in the Ulleung Basin in the East Sea, which was selected as the study area (36–39°N, 
130–133°E) denoted by the red box in Fig. 2(a). Figure 2(b) shows 247856 shipborne measurement 
(including depth and gravity anomalies) locations, provided by the National Centers for 
Environmental Information (NCEI, https://www.ncei.noaa.gov), the National Oceanic and 
Atmospheric Administration (NOAA, http://www.noaa.gov), and the Korea Hydrographic and 
Oceanographic Agency (KHOA, http://www.khoa.go.kr), used for both shipborne depth 
estimation and shipborne gravity anomalies estimation using the optimized machine learning 
model. The 1 arc-minute satellite altimetry-derived free-air gravity anomalies (V29.1) obtained 
from Scripps Institution of Oceanography(14) are superimposed as a background in Fig. 2(b).
 To determine the machine learning model optimized for this study, RMSE, R2, MSE, and 
MAE in the validation set and test set were compared as discribed in the research methodology. 
The lower the RMSE, MSE, and MAE are, the better the performance becomes, with higher R2 
also yielding better performance.

Fig. 2. (Color online) (a) Location map of study area (red box) and (b) 247856 shipborne measurement locations 
and satellite altimetry-derived free-air gravity anomalies(20) as a background. The attributes listed for this map 
include the amplitude range (AR = minimum and maximum values), amplitude mean (AM), amplitude standard 
deviation (ASD), and amplitude unit (AU).

about:blank
http://www.noaa.gov
about:blank
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 In both shipborne depth estimation and shipborne gravity anomalies estimation, all models 
showed similar performances as presented in Tables 1 and 2. The performances yielded appear 
to be credible because indicators representing performance of each technique were similar in 
validation and testing. In the case of regression analysis, R2 is less than 0.30 in both cases where 
depth and gravity anomalies are used. Therefore, it can be judged that regression analysis is not 
a suitable method for estimating depth and gravity anomalies. In the case of SVM, the 
performance varies depending on the kernel function, but when linear, quadratic, and cubic 
kernel functions are used, all coefficients of determination are less than 0.50. This means that 

Table 1
Shipborne depth estimation performance for each machine learning model.
Machine learning model Validation Test

RMSE R2 MSE MAE RMSE R2 MSE MAE
Linear regression 581.36 0.16 337980 478.72 580.06 0.16 336470 477.42
Interactive regression 541.61 0.27 293350 457.61 542.02 0.27 293780 458.01
Robust linear regression 582.46 0.15 339260 471.03 581.01 0.16 337570 469.55
Stepwise linear regression 541.61 0.27 293350 457.61 542.02 0.27 293780 458.01
Linear SVM 595.43 0.12 354540 459.58 594.47 0.12 35340 457.81
Quadratic SVM 513.02 0.34 263180 347.92 512.86 0.34 263020 348.80
Cubic SVM 454.67 0.48 206720 315.11 458.80 0.47 210500 325.16
Fine Gaussian SVM 124.37 0.96 15469 73.51 118.28 0.97 13990 71.25
Medium Gaussian SVM 291.76 0.79 85125 167.73 285.59 0.80 81560 164.25
Coarse Gaussian SVM 432.27 0.53 186860 291.38 429.00 0.54 184040 289.74
Optimization SVM 169.35 0.93 28679 82.53 160.18 0.94 25659 78.56
Boosting tree 297.75 0.80 78261 215.19 281.88 0.80 79455 217.77
Bagging tree 35.05 1.00 1228 16.66 29.52 1.00 872 15.67
Optimization ensemble 29.88 1.00 893 13.91 24.81 1.00 616 13.56
Optimization neural network 129.94 0.96 16885 78.41 101.27 0.97 10256 60.90

Table 2
Shipborne gravity anomalies estimation performance for each machine learning model.
Machine learning model Validation Test

RMSE R2 MSE MAE RMSE R2 MSE MAE
Linear regression 23.34 0.24 544.89 15.71 23.25 0.25 540.45 15.73
Interactive regression 22.57 0.29 509.42 15.53 22.50 0.29 506.08 15.56
Robust linear regression 23.71 0.22 561.95 15.27 23.56 0.23 555.14 15.25
Stepwise linear regression 22.57 0.29 509.42 15.53 22.50 0.29 506.08 15.56
Linear SVM 23.58 0.23 555.95 15.23 23.43 0.23 548.88 15.21
Quadratic SVM 22.64 0.29 512.59 14.83 22.51 0.29 506.67 14.81
Cubic SVM 22.19 0.31 492.59 13.66 22.17 0.31 491.70 13.66
Fine Gaussian SVM 6.58 0.94 43.28 3.85 6.35 0.94 40.36 3.76
Medium Gaussian SVM 17.38 0.58 301.97 10.01 17.05 0.59 291.11 9.81
Coarse Gaussian SVM 21.88 0.33 478.77 13.38 21.74 0.34 472.47 13.27
Optimization SVM 26.80 0.00 718.22 20.36 26.78 0.00 716.98 20.41
Boosting tree 13.45 0.75 180.95 9.19 13.47 0.75 181.51 9.28
Bagging tree 1.77 1.00 3.13 0.95 1.71 1.00 2.93 0.90
Optimization ensemble 1.40 1.00 1.95 0.72 1.45 1.00 2.10 0.71
Optimization neural network 5.72 0.95 32.70 3.84 4.88 0.97 23.77 3.24
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SVM using the polynomial kernel function is not appropriate for this study. On the other hand, 
when using the Gaussian function as a kernel function, R2 increases to 0.9 or more.
 As in the preceding cases,(5–7,10,12,13) the decision tree models show overwhelmingly superior 
performance compared with other techniques. With the bagging tree, R2 is close to 1.00, and 
RMSE, MSE, and MAE are sharply reduced compared with those of other techniques. 
Furthermore, when the decision tree is optimized using the Bayesian function, improved results 
can be seen compared with those of the general bagging tree. The artificial neural network 
optimized using the Bayesian function also appears to have R2 of 0.95 or higher.
 From the above results, the optimized ensemble model using hyper parameters is deemed 
suitable for achieving the purpose of this study. It shows significant performance compared with 
other methods in terms of both depth and gravity anomalies estimation. Considering the error 
indicators and R2 close to 1.00, the data estimated using the optimized ensemble model can be 
considered as highly reliable.

3.2 Evaluation of bathymetry grid data prediction using the optimized machine learning 
model

 In this study, the two bathymetry grid data, GGM (ML) and GGM, applied to GGM using a 
density contrast of 1.67 g/cm3 were generated using the depth and gravity anomalies predicted 
with the optimized ensemble model of machine learning and the original shipborne depth and 
gravity anomalies, respectively. Bathymetry grid data of 1 arc-minute obtained by GGM (ML) 
using the optimized ensemble, GGM, SIO (V19.1), and ETOPO1 are shown in Fig. 3. The results 
of statistical comparisons are summarized in Table 3. The GGM (ML) grid data indicate high 
correlation coefficients of 0.9867, 0.9853, and 0.9805 with GGM, SIO (V19.1), and ETOPO1, 
respectively. The GGM grid data also show correlation coefficients of 0.9749 and 0.9711 with 
SIO (V19.1) and ETOPO1, respectively.
 Maps of point-by-point differences between the bathymetry grid data are shown in Fig. 4, and 
Table 4 summarizes the relevant statistics. GGM (ML) grid data estimated using the optimized 

Fig. 3. (Color online) Four sets of bathymetry grid data obtained by (a) GGM (ML), (b) GGM, (c) SIO (V19.1), and 
(d) ETOPO1.
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Table 3
Results of statistical comparisons between bathymetry grid data: GGM (ML), GGM, SIO (V19.1), and ETOPO1 in 
the study area (unit: meter).

Min Max Mean Std dev
GGM (ML) –3087.0 0.0 –1879.7 679.8
GGM –4347.6 0.0 –1889.5 712.1
SIO (V19.1) –3231.2 0.0 –1865.1 712.0
ETOPO1 –3427.0 0.0 –1849.4 707.0

Fig. 3. (Continued) (Color online) Four sets of bathymetry grid data obtained by (a) GGM (ML), (b) GGM, (c) SIO 
(V19.1), and (d) ETOPO1.

Fig. 4. (Color online) Differences between four sets of bathymetry grid data obtained by (a) GGM (ML)–GGM, (b) 
GGM (ML)–SIO (V19.1) (c) GGM (ML)–ETOPO1, (d) GGM–SIO (V19.1), (e) GGM–ETOPO1, and (f) SIO (V19.1)–
ETOPO1.
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ensemble model of machine learning were in better agreement than GGM grid data estimated 
using the original depth and gravity anomalies in comparison with SIO (V19.1) and ETOPO1. In 
Figs. 4(d) and 4(e), the depth differences are more than ±1500 m in the upper right corner. These 
large differences in the upper right corner are caused by the overestimated GGM bathymetry in 
the upper right corner areas of Fig. 3(b), where there are no shipborne data as shown in Fig. 2(b). 
The estimated depth and gravity anomalies in the upper right corner using the optimized 
ensemble model of machine learning were effectively utilized to generate GGM (ML) grid data 
in comparison with GGM grid data. These results may indicate that the GGM (ML) grid data 
estimated using the optimized ensemble model of machine learning has better bathymetry 
compared with the GGM grid data.
 According to the summarized statistics in Table 4, the standard deviations of differences of 
bathymetry grid data between GGM (ML) and SIO (V19.1), and between GGM and SIO (V19.1) 
are 123.6 m and 159.4 m, respectively. In addition, the standard deviations of differences of 
bathymetry grid data between GGM (ML) and ETOPO1, and between GGM and ETOPO1 are 
139.5 m and 170.6 m, respectively. Thus, the GGM grid data estimated using the optimized 
ensemble model of machine learning can effectively predict bathymetry by utilizing the 
topographic effects in the off-tracks extracted from the satellite altimetry-derived free-air 
gravity anomalies in the Ulleung Basin in the East Sea.
 To evaluate the accuracy of the GGM (ML) grid data predicted using the optimized ensemble 
model of machine learning and GGM, the bathymetry grid was interpolated into the 247856 
shipborne locations, which are represented by the white dots in Fig. 2(b). Figure 5 shows the 
depth differences (a) between GGM (ML) and SHIP and (b) between GGM and SHIP at 247856 
shipborne depth locations. Although the mean of the depth differences between GGM (ML) and 
SHIP is larger than that of the depth differences between GGM and SHIP in Table 5, the standard 
deviation of the depth differences between GGM (ML) and SHIP is smaller than that of the 
depth differences between GGM and SHIP. These results may indicate that the GGM (ML) grid 
data predicted using the optimized ensemble model of machine learning can generate accurately 
bathymetry in the Ulleung Basin in the East Sea.

Table 4
Statistics of the differences between four bathymetry grid data: GGM (ML), GGM, SIO (V19.1), and ETOPO1 (unit: 
meter).

Min Max Mean Std dev
GGM (ML)–GGM –2516.0 1629.1 9.8 118.0
GGM (ML)–SIO (V19.1) –1260.8 926.3 –14.7 123.6
GGM (ML)–ETOPO1 –1298.2 946.1 –30.4 139.5
GGM–SIO (V19.1) –2193.2 2466.0 –24.5 159.4
GGM–ETOPO1 –2083.7 2485.2 –40.2 170.6
SIO (V19.1)–ETOPO1 –822.3 943.5 –15.8 99.1
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4. Conclusions

 In this study, we estimated the bathymetry in the Ulleung Basin in the East Sea by applying 
GGM to depth and gravity anomalies predicted using the optimized ensemble model of machine 
learning. The GGM bathymetry predicted using the optimized ensemble model of machine 
learning presents an improvement of 32.3 m in standard deviation (679.8 m in Table 3) in 
comparison with the standard deviation (712.1 m) of the GGM bathymetry estimated using the 
original depth and gravity anomalies. When the density contrast (1.67 g/cm3) was utilized, the 
accuracy of the GGM bathymetry estimation using the optimized machine learning model was 
70.6 m in comparison with shipborne depth values in the Ulleung Basin in the East Sea.
 The method presented in this study is for estimating deep-water bathymetry using machine 
learning, and it has been proven to have superior performance compared with conventional 
methods. Therefore, with regards to contribution to the sensing field, the methodology of this 
study not only improved the accuracy of bathymetry but also increased the utilization of the 
sensors in that it improved the accuracy of data obtained from each sensor.
 In a future study, we will determine whether a tuning density contrast larger than 1.67 g/cm3, 
or the theoretical density contrast between seawater and the seafloor bedrock, can improve the 
accuracy of bathymetry grid data when enough shipborne depth data become available.

Fig. 5. (Color online) Differences in bathymetry at 247856 shipborne locations between (a) GGM (ML) and SHIP 
and (b) GGM and SHIP.

Table 5
Statistics of depth differences at 247856 shipborne locations between GGM (ML) and SHIP and between GGM and 
SHIP (Unit: meter).

Min Max Mean Std dev
GGM (ML) –1333.9 2198.2 –52.4 70.6
GGM –1315.2 2092.1 –49.7 72.0
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