
2603Sensors and Materials, Vol. 35, No. 7 (2023) 2603–2618
MYU Tokyo

S & M 3343

*Corresponding author: e-mail: inten789@gmail.com
https://doi.org/10.18494/SAM4299

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

A Novel Framework for Integrating Heterogeneous Data Sources
through Data Exchange

Yin-Ting Cheng* and Ming-Chih Chen

Department of Electronic Engineering, National Kaohsiung University of Science and Technology (First Campus),
No. 1, University Rd., Yanchao Dist., Kaohsiung City 82445, Taiwan

(Received December 31, 2022; accepted July 11, 2023)

Keywords:	 data integration, modularized agent, interface, artificial intelligence

	 We present a design framework for an electronic system that facilitates the integration of
heterogeneous data sources. To meet the specific requirements of data manipulation, different
database systems need to exchange their data content to fulfill the needs of their respective
systems. To address this challenge, a data exchange mechanism is proposed to enable the
integration of external data from multiple sources and facilitate data exchange among multiple
systems. Within this framework, a data exchange agent (DE-Agent) is designed to handle the
integration and distribution of multiple external data sources into the internal system. The DE-
Agent acts as an intermediary, effectively transmitting external data to the system’s database.
Experimental results demonstrate that the designed DE-Agent is capable of supporting stimulus
operations from over forty inspectors while maintaining the correct and efficient functioning of
the system. This research contributes to the development of an electronic system that effectively
integrates heterogeneous data sources. The proposed design framework and DE-Agent provide a
reliable mechanism for data exchange, enabling seamless integration between different database
systems and ensuring the proper functioning of the overall system.

1.	 Introduction

	 When an enterprise decides to improve its internal operational processes through information
technology, it becomes necessary to digitize and electronicize existing operations while
integrating them with the enterprise’s existing software systems for collaborative work. This
includes software for financial accounting, enterprise resource planning, human resources
management, and other programs. As the enterprise grows, the number and variety of enterprise
collaboration software also increase. However, each software is typically independently
developed by different manufacturers, which makes communication compatibility and
scalability challenging, leading to integration difficulties between information systems. To
address these challenges, an intermediary software or program is needed to receive and integrate
data from different sources, converting it into the required data format for transmission to the
electronic system. This intermediary software plays a crucial role in ensuring compatibility and

mailto:chien@nuk.edu.tw
https://doi.org/10.18494/SAM4299
https://myukk.org/

2604	 Sensors and Materials, Vol. 35, No. 7 (2023)

scalability between the different information systems. The conversion of the data to the
electronic system’s required format enables efficient operation and utilization of the integrated
data.
	 We propose a framework design for integrating heterogeneous data sources, utilizing a data
exchange mechanism to facilitate the integration and application of data from different database
systems. The primary objective is to integrate diverse data sources, including databases of
various types or from various manufacturers, and convert them into the required data format for
seamless integration with the electronic system. The framework design incorporates data agent
technology to implement the data exchange and integration mechanism within the electronic
system.
	 Furthermore, we suggest combining the equipment inspection workflow with the proposed
data exchange mechanism framework as part of the electronic system design. By digitizing
equipment inspection processes, enterprises can effectively reduce costs and streamline the
integration of different data sources, resulting in a more functional and efficient system
application. Overall, this research aims to provide a comprehensive framework and mechanism
for integrating heterogeneous data sources within an electronic system, enabling seamless
collaboration and efficient utilization of integrated data.

2.	 Literature Review

	 ASP.NET is a development platform provided by Microsoft as part of the .NET Framework.(1)
It is the successor to ASP technology and is specifically designed for creating web applications
with a rich set of libraries. It is important to note that ASP.NET itself is not a programming
language, but rather a development platform that can be used with any .NET language, such as
C#, VB.NET, and C++.NET, to develop web pages or web services. ASP.NET provides three
frameworks for building web applications: Web Forms, ASP.NET MVC, and ASP.NET Web
Pages. These frameworks offer different approaches and features for developing web applications
based on specific needs and preferences.
	 The author utilizes ASP.NET to develop a B/S system that supports network information
sharing for a dairy cow breeding system.(2) The system architecture comprises three layers, with
the client being the first layer responsible for receiving user messages and data feedback. At this
layer, the client needs to install a service engine capable of browsing the website. The second
layer is the Web Server, responsible for the logical processing of the program and submitting the
client’s request to the next layer for processing. The final layer is the Database Server, which
receives structured query language (SQL) statements provided by the second layer, queries the
database, and responds with the results to the user.
	 In the era of mobile device dominance, the application programming interface (API) has
become increasingly important. A software service can be accessed by people on multiple
devices, including mobile phones, browsers, and wearable devices.(3) These devices need to
interact with the same back-end database to display consistent content. The client, which can be
a browser, a mobile phone, a wearable device, or other device, is the party using the API. The
client and the server communicate through the hypertext transfer protocol (HTTP)
communication protocol, making requests and receiving responses.

Sensors and Materials, Vol. 35, No. 7 (2023)	 2605

	 The representational state transfer (REST) was proposed by Dr. Roy Fielding in his doctoral
dissertation in 2000.(4) REST is an architectural style for decentralized hypermedia systems, and
a Web API that adheres to the REST architecture is referred to as a RESTful Web API. At
runtime, a RESTful Web API can be decomposed into multiple RESTful Web services. In other
words, each web page can be considered as a resource that users can access using a uniform
resource locator (URL) address and retrieve for use in a browser. Most RESTful Web APIs
follow a set of design principles, including the use of standard HTTP methods. In this article, the
API for the raw material item allows users to directly access the data of the raw material item
through HTTP. The API structure follows REST principles, requiring the use of a unified URL
format.(5) Additionally, specifying the type in advance helps reduce the number of round trips
needed to use the interface.
	 The advanced encryption standard (AES) is a modern encryption method that has been
adopted by the US government as a replacement for the data encryption standard (DES).(6) It is
widely used in various encryption standards today. DES was replaced primarily because it was
found to be an insecure encryption method. It had limitations such as being able to encrypt only
64 bits at a time, which was time-consuming, and having a key length of only 56 bits, which was
deemed insecure. In this article, the cloud system is divided into three layers. The first layer
consists of the client, where customer data can be stored in the cloud in any form after
undergoing identity verification using AES encryption technology.(7) The second layer
comprises application servers that include a cloud storage business logic layer and a database.
The cloud storage business logic layer stores data directly in the database through encryption.
The third layer is handled by a third-party storage server, which typically contains data
accessible to third-party agents of the cloud system.
	 The design of the JSON Web Token (JWT) is well-suited to the stateless principle of RESTful
APIs.(8) In a RESTful API, each client request sent to the server is independent, and user
authentication occurs only once. After authentication, the server stores the authentication status
without needing to reverify it. As a result, each time the client sends a request to the server, it
includes a JWT string to indicate its identity. In 2016, Laksono et al. developed an application
called SIKASIR, which enhances the management performance of Indonesian small or medium
size enterprises (SMEs).(9) To apply this management platform, it needs to be connected to the
RESTful web of the terminal. This connection requires a stateless identity verification method,
making JWT a suitable option.
	 In 1990, Sheth et al. defined a heterogeneous database system (HDBS) as an integrated
system comprising computational models and software implementations.(10) HDBS exhibits the
following characteristics.
(1)	�Heterogeneity: Databases in HDBS employ different data models, query languages, and

method structures.
(2)	�Independent control: Each database has the authority to control permissions on its own data

within HDBS.
(3)	�Vertical integration: HDBS integrates previous data or information to achieve the advantages

of interoperability, where vertical integration necessitates a unified connection standard
within HDBS.

2606	 Sensors and Materials, Vol. 35, No. 7 (2023)

	 In 1995, Karp proposed a query-based interoperability framework that includes the concept
of relationship linking among different biological databases.(11) This framework established a
unified management system for integrating diverse biological data and enabled data exchange at
various levels. In 2001, Sujansky utilized the model of heterogeneous database systems to
provide query functions, resolving the integration of different types of medical data in
centralized and distributed databases.(12) In 2012, Kumar et al. introduced a standardized
framework for integrating heterogeneous sources and applied it to patient record queries across
multiple hospitals, receiving significant positive feedback compared with the original systems.(13)
In 2017, Koçer and Biroğul developed an asset management system for maintenance and repairs,
designed using a web-based architecture.(14) This system facilitates the retrieval of device-
related information, data storage, and analysis, thereby reducing the time and cost associated
with maintenance and downtime, as judged from the analysis results.

3.	 Systematic Procedures

3.1	 System overview

	 To address the shortcomings of the traditional filling of the equipment checklist and record
retrieval process, we propose the digitization of the process. The shortcomings of the original
process are improved through the utilization of the data exchange agent framework and API
technology, as designed in this study. This approach aims to facilitate equipment checklists,
ensure data storage security, and provide real-time record retrieval. The process is illustrated in
Fig. 1.

Fig. 1.	 (Color online) The process of filling in equipment inspection and checking records is electronic.

Sensors and Materials, Vol. 35, No. 7 (2023)	 2607

3.2	 Framework design for data exchange mechanism

	 To address the challenges posed by different formats and inconsistent types of multiple data
sources, we face the challenge of the development of a data integration system that necessitates
the creation of communication programs for each data source protocol. In light of this, we
propose a framework called the data exchange agent (DE-Agent), which integrates an agent
database with a data exchange mechanism. The overall scenario is depicted in Fig. 2, which
illustrates the concept of the proposed framework.
	 The DE-Agent architecture consists of two main components: the data exchange mechanism
and the agent database. The data exchange mechanism is composed of two modules: the data-out
module (DOM) and the data-in module (DIM). On the other component is an agent database that
includes two types of table: one for storing synchronization lists and the other for storing
synchronizing data. The synchronizing data is referred to as datasets, as there may be multiple
data tables to be synchronized. Figure 3 illustrates this architecture.

Fig. 2.	 (Color online) Scenario of DE-Agent.

Fig. 3.	 (Color online) Architecture of DE-Agent.

2608	 Sensors and Materials, Vol. 35, No. 7 (2023)

	 In the data exchange mechanism, both modules have transmission (TX) and reception (RX)
functions, as well as synchronization lists. The DOM is responsible for transferring data from
external data sources to the application system, while the DIM handles the flow of data from the
application system to external data sources. The definitions of data fields for the synchronized
data tables are presented in Table 1.

3.3	 Data processing API

	 Data requests and responses are facilitated through the data processing API, enabling on-site
inspectors or engineers to download scheduled equipment checklist items or transmit completed
results to the application system database using their mobile devices, such as smartphones or
tablets. The synchronization of data flow is depicted in Fig. 4.
	 Users can access the system interface and interact with the relevant functional buttons. For
instance, if they want to download a checklist form, the system will generate the corresponding
functionality and provide a URL for requesting the necessary resources. When the API receives
the URL, it establishes a connection with the application system database to retrieve the
checklist items. Subsequently, the checklist items are returned to the mobile database for storage.
The mobile application subsystem interface extracts the data from the mobile database and
consolidates it into the required format for display.
	 After on-site inspectors or engineers complete the equipment checklists, supervisors and
relevant personnel can access the API through an internet connection to query or approve the
checklist results. The API can be designed with specific URL names and required request
parameters for each functionality. By integrating the data into the application system database
through the DE-Agent data integration, the time required for searching traditional paper
documents and obtaining cross-departmental data is significantly reduced.

4.	 System Architecture

	 In this study, the DE-Agent and API technologies are implemented to enhance the original
process and integrate multiple external data sources, resulting in the establishment of an
equipment maintenance mobility platform system (EMMPS).

Table 1
Definitions of data fields for the synchronized data table.
Field name Field format Field description
TABLENAME varchar Corresponding synchronized table name
APISEQ bigint Corresponding synchronized data content number
TIMESTAMP datetime Data import time
FLAG varchar Data exchange flag

Sensors and Materials, Vol. 35, No. 7 (2023)	 2609

4.1	 Architecture of data communication

	 The designed EMMPS enhances the traditional paper-based process of equipment checklist
filling and record retrieval. It primarily relies on the application system database and the data
exchange mechanism framework to establish an electronic system. The API is employed to
enable multiplatform usability. The data communication architecture of EMMPS is depicted in
Fig. 5.
	 One of the external data sources, the work order system, establishes a direct connection with
the application system database of EMMPS and DE-Agent using transmission control protocol/
Internet protocol (TCP/IP). Another external data source is the personnel system, which

Fig. 4.	 (Color online) Data flow for downloading equipment inspection items and uploading completed results.

2610	 Sensors and Materials, Vol. 35, No. 7 (2023)

primarily manages the verification and identification of user account credentials. Since users
can log in through both an administrative dashboard subsystem and the mobile application
subsystem, the API is utilized for requesting and responding to ensure the protection of sensitive
device data. The application system database on EMMPS also employs the API for data requests
and responses, as it needs to be accessed by users through the user interface (UI).

4.2	 Architecture of system functionalities

	 The functional architecture of EMMPS, depicted in Fig. 6, encompasses various external
data sources, such as the work order system and the active directory (AD) server. The work order
system is responsible for scheduling regular inspection items and facilitates data synchronization
with the EMMPS application system database through the DE-Agent. The synchronized content
can consist of checklist items or inspection deadlines. On the other hand, the AD server
primarily manages user accounts and password comparisons.
	 Within the EMMPS application system, there exist two subsystems: the administrative
dashboard subsystem and the mobile application subsystem. The mobile application subsystem
is utilized by equipment owners or engineers on their mobile devices. They use this subsystem to
download checklist forms for equipment inspection and input the inspection results. Once the

Fig. 5.	 (Color online) Architecture of EMMPS data communication.

Sensors and Materials, Vol. 35, No. 7 (2023)	 2611

form is completed, the mobile application subsystem sends the equipment inspection results
back to the EMMPS application system’s database for storage via the network. These results
await supervisor approval.
	 The administrative dashboard subsystem provides an online approval function. Team leaders
or relevant supervisors can promptly access the completed equipment inspection results and
verify if any abnormalities exist. If no abnormalities are found, they can proceed with the
approval process and finalize the regular equipment inspection. Additionally, when a supervisor
needs to retrieve the history of a specific equipment inspection, they can utilize this subsystem
for online querying. This eliminates the need for manual retrieval and enables direct access to
the inspection records using a computer in an internet-connected environment.

4.3	 Architecture of system network

	 The main equipment of EMMPS is deployed within the internal network, which consists of
application system (System AP) servers, System API programs, and a system database (System
DB). The network architecture of EMMPS is depicted in Fig. 7.
	 Consequently, authorized personnel within the internal network (Internet Zone) can log in
and access EMMPS by providing their username and password. However, owing to strict

Fig. 6.	 (Color online) EMMPS usage scenarios.

2612	 Sensors and Materials, Vol. 35, No. 7 (2023)

security measures imposed by the company on external networks (Non Intranet Zone), personnel
outside the internal network must establish a secure connection using technologies such as a
virtual private network (VPN). This ensures the authentication of connecting personnel and the
security of the connection before they can access the resources of the digital system.

5.	 Experiments and Results

5.1	 System construction environment

	 DE-Agent and API technology are utilized to develop the EMMPS, which consists of two
main subsystems: the administrative dashboard subsystem and the mobile application subsystem.
The administrative dashboard subsystem enables remote operations by accessing the system
through a browser using a specified input URL. On the other hand, the mobile application
subsystem operates through a dedicated mobile app interface. When users require access to data,
it is transmitted through the API. The construction environment parameters for the EMMPS
system are detailed in Table 2.

5.2	 System load verify

5.2.1	 Simultaneous online testing

	 In terms of the number of concurrent users, 200 and 500 people simultaneously use EMMPS
for testing. The usage frequency and the time to reach the maximum number of concurrent users
are fixed at 10 times and 240 s, respectively.

Fig. 7.	 (Color online) Cross-system network architecture.

Sensors and Materials, Vol. 35, No. 7 (2023)	 2613

(1)	�Figure 8 shows the response time when 200 people go online simultaneously. The average
response time is 1374.68 ms with a minimum value of 238 ms and a maximum value of 13052
ms. The high value observed at 18 00:00 may be attributed to network delays.

(2)	�Figure 9 displays the response time when 500 people go online simultaneously. The average
response time is 1400.22 ms with a minimum of 127 ms and a maximum of 5256 ms. During
the time period from 18 07:49 to 18 07:51, there are three data points that appear to be
unusually low or high, which could be attributed to network delays.

	 When 200 people and 500 people go online simultaneously, it is possible for the minimum
response time of the 500 people case to be smaller than that of the 200 people case. This could be
due to the relationship between execution time and the number of users. Since the total execution
time for 200 people is higher than that for 500 people, there is a possibility that the 500 people
group may experience shorter response times. It is important to note that in the test, the time
parameters are fixed at 240 s to reach the maximum number of concurrent users, which may
impact the response times observed.

5.2.2	 Read count test

	 In this study, the same number of online users is used to compare different times of reading
data. Specifically, the data are read 10 times and 50 times simultaneously, respectively.
(1)	�Figure 10 illustrates the response time for each person to read the data 10 times. The average

response time is 1438.68 ms with a minimum of 247 ms and a maximum of 3648 ms.
However, there is a data point at 18 16:38 that exceeds the average value. This could be
attributed to the fact that the test network is a public network, and its true unpredictability is
relatively high, leading to occasional variations in response times.

(2)	�Figure 11 depicts the response time for each person to read the data 50 times. The average
response time is 13764.30 ms with a minimum of 191 ms and a maximum of 55545 ms. It is
observed that the response time exhibited a tendency to increase before 18 22:31 but then
experienced a sharp drop afterward. This change in response time can be attributed to the
difference in bandwidth, indicating that the network conditions improved, resulting in faster
response times.

Table 2
Construction environment parameters of EMMPS.

Administrative
dashboard subsystem

Mobile application
subsystem DE-Agent API server

Host type VM Physical tablet VM VM

OS Windows Server 2019
Standard Edition Android 13.0 Windows Server 2019

Standard Edition
Windows Server 2019

Standard Edition
Memory 16 GB 16 GB 16 GB 16 GB
CPU 2 core ARM 2 core 2 core
Storage HHD 150 GB HHD 150 GB HHD 150 GB HHD 150 GB
Application server IIS 10.0.19014 None None IIS 10.0.19014

Database SQL Server 2019
Standard Room DB 2.4.2 DB2 11.1.4.5 None

Network type Wired, fixed IP Wireless, DHCP Wired, fixed IP Wired, fixed IP

2614	 Sensors and Materials, Vol. 35, No. 7 (2023)

Fig. 8.	 (Color online) Response time for 200 people online at the same time.

Fig. 9.	 (Color online) Response time for 500 people online at the same time.

Fig. 10.	 (Color online) Response time for each person to read data 10 times.

Fig. 11.	 (Color online) Response time for each person to read data 50 times.

Sensors and Materials, Vol. 35, No. 7 (2023)	 2615

	 When comparing different numbers of readings per person, it is observed that the average
response time is longer for reading 50 times than for reading 10 times. However, it is interesting
to note that the minimum response time remains the same as that observed during the
simultaneous online test. The occurrence of relatively small minimum values at the same time
indicates that there might be certain factors or optimizations in the system that lead to consistent
and improved performance, even when handling higher reading loads per person.

5.2.3	 Time test

	 When the number of people and the number of readings are the same, with the number of
people being fixed at 100 people and the number of readings at 10 times, the time to reach the
maximum number of people within a certain period of time varies. Specifically, the time periods
considered are 60, 120, 240, and 480 s.
(1)	�Figure 12 presents the response time to reach the maximum number of people within a 60 s

timeframe. The average response time is 400.56 ms with a minimum of 121 ms and a
maximum of 1375 ms.

(2)	�Figure 13 displays the response time to reach the maximum number of people within a 120 s
timeframe. The average response time is 441.02 ms with a minimum of 127 ms and a
maximum of 1060 ms.

(3)	�Figure 14 shows the response time to reach the maximum number of people within a 240 s
timeframe. The average response time is 458.52 ms with a minimum of 124 ms and a
maximum of 856 ms.

Fig. 12.	 (Color online) Response time to reach the maximum number of people in 60 s.

Fig. 13.	 (Color online) Response time to reach the maximum number of people in 120 s.

2616	 Sensors and Materials, Vol. 35, No. 7 (2023)

(4)	�Figure 15 presents the response time to reach the maximum number of people within a 480 s
timeframe. The average response time is 463.06 ms with a minimum of 113 ms and a
maximum of 812 ms.

	 Among the response times to reach the maximum number of people at different times, it is
observed that there is not a significant difference between the minimum values. However, the
average response time tends to increase with time, while the maximum value becomes smaller
with time. This can be attributed to the fact that although the number of people is set to be the
same, when a longer time duration is set, it allows for a more effective utilization of the entire
network bandwidth. As a result, the average response time becomes shorter as the system
processes more requests over time. However, the maximum value decreases as the system
becomes more efficient in handling the workload within the given time frame.

5.3	 Related system comparison

	 Since integrating heterogeneous data often involves converting different formats, it is
typically integrated into a single standard, making it challenging to integrate data from multiple
sources with different formats. Therefore, we utilize the DE-Agent to classify and cleanse data
in various formats to meet the format requirements of the application system. To assess the
EMMPS system, in this study, we chose two comparable applications for evaluation. The first
comparison involves the interoperable electronic health record (EHR) implementation using the
GIE System (referred to as HER-GIE). The second comparison involves the mobile and web-
based system for maintenance, repair, and asset management (referred to as MRAM). The
findings of these comparisons are summarized in Table 3.
	 From the comparison of the similar system features of EMMPS, HER-GIE, and MRAM,
we can summarize the following points.
(1)	�Data management: All three systems involve data management, but with different focuses.

EMMPS is centered around equipment checklist filling and record retrieval. HER-GIE deals
with electronic health records and interoperability within healthcare systems. The MRAM
system focuses on maintenance, repair, and asset management data.

Fig. 14.	 (Color online) Response time to reach the maximum number of people in 240 s.

Sensors and Materials, Vol. 35, No. 7 (2023)	 2617

Fig. 15.	 (Color online) Response time to reach the maximum number of people in 480 s.

Table 3
Features of EMMPS, HER-GIE, and MRAM.

EMMPS HER-GIE MRAM
Compatibility High Low Middle
Convenience High Low High
Data analysis Simple Difficulty Simple
Data security High Low Low

(2)	�Mobile and web access: EMMPS and MRAM systems are designed to be accessible through
mobile and web platforms, enabling users to conveniently interact with the systems using
various devices. HER-GIE may have mobile and web-access capabilities depending on its
specific implementation.

(3)	�Integration and compatibility: EMMPS is developed on a platform, enhancing its
compatibility with other systems and devices. HER-GIE may have interoperability features
to facilitate integration with other healthcare systems. The MRAM system may offer
integration capabilities for asset management and maintenance processes.

(4)	�Data security: EMMPS prioritizes data security by utilizing API-based data reading and
storage methods. It is expected that HER-GIE and MRAM systems also have measures in
place to ensure data security, considering the sensitivity of healthcare and asset management
data.

(5)	�Specific functionality: Each system has unique functionalities tailored to its specific domain.
EMMPS focuses on equipment checklist filling and record retrieval, HER-GIE on electronic
health records and interoperability, and the MRAM system on maintenance, repair, and asset
management tasks.

	 It is important to note that the actual features and capabilities of EMMPS, HER-GIE, and
MRAM systems may vary in accordance with their specific implementations and requirements.
Further detailed information is necessary for a comprehensive comparison.

6.	 Conclusions

	 We proposed a framework for integrating heterogeneous data sources through a data
exchange mechanism. The system implementation involves transmitting different types of
heterogeneous data sources to designated application systems using the DE-Agent proposed in

2618	 Sensors and Materials, Vol. 35, No. 7 (2023)

this research. The effectiveness of the designed data exchange mechanism for integrating these
data sources was verified through the implementation of the EMMPS system, specifically
focusing on the equipment inspection filling and record query process. The integration was
facilitated using both the DE-Agent and API technologies.
	 To ensure the security of data transmission and protect the system from external attacks, both
the administrative dashboard subsystem and the mobile application subsystem employ HTTPS
and API for secure data transmission. The administrative dashboard subsystem adopts web
technology to develop its UI for convenient usage on the management side. Meanwhile, the
mobile application subsystem utilizes app technology to develop its user interface, making it
more convenient for mobile users.
	 The EMMPS system demonstrates normal operation under various conditions such as
different online user numbers, different reading times, and different maximum number of users
reached. Although there may be some abnormal data owing to network bandwidth constraints, it
does not affect the system’s normal operation. Overall, the proposed framework, DE-Agent, and
API technology effectively enable the integration of heterogeneous data sources in the EMMPS
system. The system demonstrates secure data transmission, reliable functionality, and successful
data exchange between the application subsystems.

References

	 1	 Releasing the Source Code for the NET Framework Libraries. https://web.archive.org/web/20100907233621/
http://weblogs.asp.net/scottgu/archive/2007/10/03/releasing-the-source-code-for-the-net-framework-libraries.
aspx (accessed October 2021).

	 2	 F. A. Radwan and T. W. Martin: Int. Conf. Industrial Technology (IEEE, 2003) 387.
	 3	 W. Zhang and C. Chen: Int. Conf. Safety Produce Informatization (IEEE, 2019) 500.
	 4	 S. Kaplan, R. Callaway, L. Ngan, and K. Passow: Conf. Photovoltaic Specialists (IEEE, 2018) 1204.
	 5	 R. T. Fielding: Architectural Styles and the Design of Network-based Software Architectures (University of

California, Irvine, 2000) Chap. 5.
	 6	 S. P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, and K. A. Persson: Comput. Mater. Sci. 97

(2014) 209. https://doi.org/10.1016/j.commatsci.2014.10.037
	 7	 J. Daemen and V. Rijmen: AES Proposal: Rijndael (1999).
	 8	 G. Raj, R. C. Kesireddi, and S. Gupta: Int. Conf. Next Generation Computing Technologies (IEEE, 2015) 374.
	 9	 M. Haekal and Eliyani: Int. Conf. Informatics and Computing (IEEE, 2016) 175.
	10	 A. Sheth and J. Larson: ACM Comput. Surv. 22 (1990) 183. https://doi.org/10.1145/96602.96604
	11	 P. Karp: J. Comput. Biol. 2 (1995) 573. https://doi.org/10.1089/cmb.1995.2.573
	12	 W. Sujansky: J. Biomed. Inf. 34 (2001) 285. https://doi.org/10.1006/jbin.2001.1024
	13	 C. Kumar, C. Rao, and A. Govardhan: Am. J. Database Theory Appli. 1 (2012) 1. https://doi.org/10.5923/j.

database.20120101.01
	14	 K. Koçer and S. Biroğul: Am. J. Software Eng. 5 (2017) 1. https://doi.org/10.12691/ajse-5-1-1

https://web.archive.org/web/20100907233621/https
https://web.archive.org/web/20100907233621/https
http://weblogs.asp.net/scottgu/archive/2007/10/03/releasing-the-source-code-for-the-net-framework-libraries.aspx
http://weblogs.asp.net/scottgu/archive/2007/10/03/releasing-the-source-code-for-the-net-framework-libraries.aspx
https://doi.org/10.1016/j.commatsci.2014.10.037
https://doi.org/10.1145/96602.96604
https://doi.org/10.1089/cmb.1995.2.573
https://doi.org/10.1006/jbin.2001.1024
https://doi.org/10.5923/j.database.20120101.01
https://doi.org/10.5923/j.database.20120101.01
https://doi.org/10.12691/ajse-5-1-1

