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 Home security systems have been extensively used to protect our property and family, and 
these products are always equipped with some devices, including indoor and outdoor cameras, 
infrared motion sensors, human body temperature sensors, and smart locks. Security systems 
are designed to detect the presence of people or moving objects. However, they have certain 
limitations. Firstly, these systems are inactive when not turned on, rendering them ineffective 
during those times. Additionally, false alarms are common during system surveillance, posing a 
challenge to the system’s overall reliability. A smart surveillance camera has recently been 
added to the system, but it cannot distinguish between family members and intruders. A full-
time facial recognition system has been proposed in this paper to address the drawbacks of the 
current security system. The Day Night Surveillance Neural Network (DNSNN), which is a face 
recognition network based on the optimized EfficientDet, is proposed. The DNSNN provides 
full-time recognition in this study and divides the system into day and night modes. It uses 
visible light images in day mode under good light conditions to perceive objects. Under poor 
light conditions, the camera automatically takes grayscale images with near IR. However, in 
these images, objects are challenging to recognize, and thus the accuracy rate is reduced. A 
proposed auto-coloring system is applied to colorize the grayscale images. The colorized images 
can have a similar hue to the visible light images and are equipped with the same vision. This 
method can improve system recognition capabilities under dim light. The experimental results 
show that our proposed approaches recognize family members and intruders under all light 
conditions and have an identification accuracy of more than 90%. This system can achieve full-
time smart home surveillance.
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1. Introduction

 Home safety encompasses fall prevention, monitoring carbon monoxide levels, and crime 
prevention, all of which are crucial aspects of society. Crime prevention explicitly involves home 
surveillance. Unfortunately, many households lack a surveillance system, making it challenging 
to apprehend criminals. To mitigate the risks associated with life and property loss, people have 
become increasingly concerned with implementing home surveillance, as criminals often break 
into homes to steal, rob, or kidnap individuals. In earlier years, hiring security personnel such as 
building guards or community security was common to address these concerns. However, as 
users recognized the potential of home surveillance systems to enhance security while reducing 
the need for human resources, the installation of surveillance systems gained popularity. 
Integrating home environments and the Internet of Things (IoT) has given rise to the flourishing 
concept of smart homes in recent years.(1) Smart homes can detect various environmental factors 
such as temperature, humidity, and carbon monoxide levels. Users have the ability to remotely 
control appliances and receive real-time data to maintain an optimal home environment. Within 
smart homes, surveillance systems employ cameras to monitor home conditions and provide 
feedback to users, enabling them to manage their smart homes remotely. Artificial intelligence 
(AI) has introduced significant convenience by offering features such as face recognition,(2) 
speech recognition, and intelligent responses.(3) The traditional surveillance system relies on 
sensors, cameras, and message transmission. However, it requires constant human monitoring, 
resulting in significant inconveniences. To achieve complete automation and reduce the reliance 
on human resources, a smart home combines cameras with face recognition to create a new 
surveillance system. This system only requires a camera at the door, where face recognition 
technology can identify intruders and authorized members. If an intruder is detected, the system 
can alert the members. Integrating cameras and an Artificial Intelligence of Things (AIOT) 
architecture enhances home security. However, this approach still has limitations.(4) 
Conventional cameras struggle to recognize objects under low-light conditions, leading to 
decreased accuracy. During the nighttime, thermal infrared cameras are the only viable option, 
but they can only generate grayscale images and cannot perform recognition on the captured 
images. Criminals often use low-light environments to carry out illegal activities, making the 
nighttime critical for home security. If we fail to address the challenges posed by nighttime 
environments, the need for human security personnel to monitor the surroundings will persist. 
This presents a significant challenge for automated surveillance systems.
 Object detection has witnessed significant advancements in deep learning, improving 
accuracy and efficiency. This field can be divided into two modes.(5) First, early object detection 
algorithms commonly use a two-stage detector, such as a Region-based Convolutional Neural 
Network (R-CNN) and Fast R-CNN.(6,7) Second, the one-stage detector, employed in YOLO and 
EfficientDet, has become mainstream owing to its superior efficiency compared with the two-
stage detector.(8,9) In the two-stage detector, features are extracted to generate a feature map, 
which is then used for object localization. Subsequently, image classification is performed. On 
the other hand, algorithms in the one-stage detector are more efficient because they 
simultaneously calculate object localization and classification. Object detection algorithms find 
applications in various domains, including traffic safety, defect detection, and face recognition. 
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In recent years, object detection has been extensively utilized in face recognition. For instance, 
Jiang and Learned-Miller applied the Faster R-CNN model to face recognition, enhancing its 
accuracy and speed using the WIDER dataset.(10) Yang and Jiachun employed YOLO for face 
recognition and observed that YOLOv3 offered shorter detection periods and greater 
robustness.(11) Awais et al. integrated face recognition into a surveillance system, comparing 
faces captured by the camera with those in the database and alerting the user if a face is not 
recognized.(12) These methods have demonstrated sufficient speed and detection precision. It is 
worth noting that face recognition algorithms typically require well-lit conditions during the day 
to capture the entire face. Image restoration techniques are employed during nighttime to match 
daylight conditions and improve accuracy.
 Using light compensation theory, Bao and Dang improved preprocessing techniques, 
resulting in an enhanced MCTNN model.(13) Experimental results demonstrated that MCTNN 
achieved increased accuracy in low-luminosity environments. Liang et al. proposed the REGDet 
face detection architecture designed to detect faces under low-luminosity conditions.(14) These 
methods effectively address the challenges of low luminosity and unrecognizable faces but do 
not extend to completely luminosity-free environments. In such environments, only thermal 
infrared cameras can be used, which capture grayscale images, whereas visible light cameras 
capture RGB images. Grayscale images need to be colorized to apply face recognition in these 
scenarios. Wu et al. improved the Generative Adversarial Network (GAN) and introduced a 
colorization architecture for grayscale images, yielding superior results in their experiments.(15) 
Li et al. utilized broad-GAN to achieve remarkable colorization results for grayscale images 
while enhancing the training stability of GAN.(16) Ji et al. proposed MC-GAN for coloring 
Synthetic Aperture Radar (SAR) images and demonstrated its superiority over other methods in 
coloring SAR images.(17) 
 In our system, the Day Night Surveillance Neural Network (DNSNN) is proposed to enhance 
recognition efficiency and improve the recognition effect for full-time smart home surveillance. 
The key innovation lies in the division of day and night modes. The surveillance system must 
consider both the speed and accuracy of face recognition. EfficientDet, an algorithm with high 
accuracy and computational efficiency, is suitable for smart homes as it performs at par with 
other algorithms. Consequently, many researchers have adopted the lightweight EfficientDet as 
the network for recognition-based tasks. Additionally, we have incorporated the proposed auto-
coloring system to convert grayscale images to RGB images, addressing the issue of poor 
recognition during nighttime. The coloring process is accomplished using a combination of 
GAN and autoencoder. The resulting colored images are fed into the neural network for member 
or intruder recognition. In this study, the EfficientDet algorithm is integrated with the auto-
coloring system, enabling the smart home identification system to achieve improved accuracy 
during the day and night.

2. Proposed Method

 The overall system architecture is depicted in Fig. 1. The system utilizes a camera integrated 
with deep learning techniques to enable surveillance capabilities during nighttime. The camera 
captures images of family members, which are then stored in a database. The database undergoes 
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data augmentation, and deep learning algorithms are employed to train a model specifically for 
family member recognition. The surveillance system for family members determines whether it 
is operating in the day or night mode. During the day mode, a visible camera captures images of 
both members and potential intruders. Face recognition algorithms are applied to determine the 
identity of individuals as either members or intruders. The system alerts the user if an individual 
is identified as an intruder. An infrared camera is utilized in the night mode, resulting in 
grayscale images. To overcome this limitation, an auto-coloring system adds color to the images 
before the face recognition algorithms process them.

2.1 Automatic face labeling application program

 In this study, we utilized a Logitech camera to capture facial images of family members, 
which were then used as a database. In conventional object detection methods, much time is 
typically spent on face labeling. However, in this study, we have developed a face labeling 
application programming interface (API) that simplifies this process. In the API, a square is 
drawn on the screen, as illustrated in Fig. 2. When the camera captures an image, we align the 
square with the face in the image, allowing us to create face images and training sets 
automatically. The training sets are stored as XML files containing the coordinates of the 

Fig. 1. (Color online) System architecture.
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square, namely, xmin, ymin, xmax, and ymax. These images, generated using the four 
coordinates, are fed into the object detection system for further processing.
 Data augmentation plays a crucial role in increasing the accuracy of training sets. It involves 
applying various image processing techniques to enhance the dataset. This study uses salt and 
pepper noise, blur, and Gaussian noise as augmentation techniques. Salt and pepper noise refers 
to introducing white and black pixels resembling salt and pepper sprinkled on the image. The 
blur effect is achieved by applying a low-pass filter through convolution, resulting in blurred 
vision. The surveillance system is designed to recognize both blurry and high-resolution images 
effectively. Gaussian noise, a commonly used technique in data augmentation, is also 
incorporated. However, we do not apply zooming, scaling, or rotation transformations owing to 
the face labeling process, which requires precise coordination. Using such transformations can 
cause the face to move out of the specified coordinates, leading to the issue of vanishing 
gradients. The data augmentation process is illustrated in Fig. 3.

2.2 Face recognition

 EfficientDet, proposed by the Google team in 2020, is employed as a neural network for face 
recognition.(9) This algorithm demonstrates a faster identification than existing algorithms. The 
EfficientDet architecture consists of several backbone networks, namely, EfficientNet-B0 to B6. 
These backbone networks are combined with a bidirectional feature pyramid network (BiFPN) 

Fig. 2. (Color online) Face labeling application programming interface.

Fig. 3. (Color online) Data augmentation.
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to form the feature network. Finally, the network is connected to the class and box prediction 
networks. The architecture of EfficientDet is illustrated in Fig. 4.
 BiFPN is a highly accurate feature network component created by combining Cross-Scale 
Connections and Weighted Feature Fusion. Cross-Scale Connections involve reducing two nodes 
and connecting the input and output nodes in PANet. Weighted Feature Fusion compares three 
fusion methods: unbounded fusion, softmax-based fusion, and fast normalized fusion. 
Unbounded fusion has the disadvantage of unbounded scalar weights, which can result in 
unstable training. Softmax-based fusion applies the softmax function to the weights, restricting 
them to a range between 0 and 1. However, the use of multiple softmax operations can increase 
computation time. The fast normalized fusion formula Eq. (1) is employed to reduce latency. In 
Eq. (1), the weights (wi) are ensured to be greater than or equal to 0 through the application of 
ReLU. Additionally, a small value (ε = 0.0001) is added to avoid numerical instability. In this 
study, the softmax operation is not applied to reduce the computational load on the GPU, 
resulting in improved efficiency.

 . i
ii
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+∑ ∑  (1)

Here, O is output, w is weight, ε is a small value set to 0.0001, and I is input. 

2.3 Auto-coloring system

 We convert our infrared images’ luminance (L) channel into visible light images, L channel 
in the Lab color space. This conversion process is achieved by combining the training results of 
GAN, where the “ab” channel is used as input for coloring. Furthermore, the auto-coloring 
mechanism is implemented. The first stage of the system architecture is depicted in Fig. 5. It 
involves transferring the infrared image to the Lab color space and extracting the L channel. A 
batch normalization layer is added to every stack of layers to enhance image diversity and 

Fig. 4. (Color online) EfficientDet framework.
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adaptability. Additionally, residual layers are incorporated as connections to efficiently extract 
differences between two L channel feature maps, facilitating the network’s learning process.
 The second stage of the system architecture involves the use of visible light L images as 
input. The goal is to predict the ab color space for these visible light images. To achieve this, we 
improve the optimization and generator of GAN. We also modify the loss function to apply the 
eLU activation function, which ensures that the values do not become negative during the RGB 
to CIELAB color space conversion. Additionally, we add color elements to the infrared images 
to align them with the visible light images. This part of the architecture also involves model 
training, similar to the GAN model.
 The discriminator is trained through the GAN framework and affects the generator based on 
input and output. The objective is to generate ab channels using GAN. The architecture diagram 
is presented in Fig. 6, where the input is a (256, 256, 1) image. This work employs a series of 
convolution and deconvolution modules with varying kernels, resulting in six modules. The 
generator output is (256, 256, 2), which serves as the input for the discriminator (256, 256, 2). 
The discriminator shares the same structure as the generator, and its output generates two types 
of images. The first type is reconstructive, where the output of the generator is used as the input 
for the discriminator. The generated results pass through the network and produce reconstructed 
images. The second type is retrue, where the discriminator generates the input ab channels of the 
visible image. These two outputs are calculated using the mean absolute error (MAE). The 

Fig. 5. (Color online) First stage of auto-coloring system architecture.

Fig. 6. (Color online) Second stage of auto-coloring system architecture.
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discriminator is corrected by adjusting its parameters based on the MAE results. The MAE also 
serves as the loss function. Consequently, this loss function corrects the generator. After 20000 
epochs, the distribution of the ab channels is more aligned with the expected results.

2.4 DNSNN

 The architecture of DNSNN combines the automatic generation of training data, EfficientDet, 
and the auto-coloring system. The flowchart of the training process is depicted in Fig. 7. It starts 
with the camera capturing images of family members, which are then processed by an automatic 
face labeling system to generate the training data. This training data is used as input for 
EfficientDet. The EfficientDet model is trained using the generated training data, and the trained 
model is exported and saved for further use.
 The DNSNN architecture consists of two modes: day and night. The day mode of the 
surveillance system is depicted in Fig. 8. In this mode, a visible light camera captures facial 
images for recognition purposes. The system determines whether the person is a member or an 
intruder. If the person is recognized as a member, the system does not send any reminders to the 
user. However, if the person is identified as an intruder, the system sends a reminder to the user. 
The architecture of the night mode is illustrated in Fig. 9. In the night mode, the system utilizes 

Fig. 9. Architecture of night mode.

Fig. 8. Architecture of day mode.

Fig. 7. Flow chart of training.



Sensors and Materials, Vol. 35, No. 7 (2023) 2575

an infrared camera to capture grayscale images. Since the grayscale images lack color 
information, they must be colorized using a neural network. Once the grayscale image is 
colorized, it is sent to the face recognition module for identification.

3. Experimental Results and Discussion

 In this paper, we introduced DNSNN, a novel smart home surveillance system. The system 
incorporates an automatic face labeling interface that generates efficient training data, thereby 
facilitating the addition of new members. By leveraging the EfficientDet algorithm, our 
proposed network achieves shorter processing times in training and prediction, and enables real-
time alerts for users.  Additionally, the auto-coloring system addresses face recognition 
challenges in low-light environments, enabling accurate recognition comparable to daytime 
performance.
 In the experiments, we evaluated the performance of each deep learning model. The 
evaluation process involved four parameters: true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). The results were analyzed using a confusion matrix, as shown in 
Table 1. Accuracy [Eq. (2)], Precision [Eq. (3)], and Recall [Eq. (4)] were computed to assess the 
models. 

 TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (2)

 TPPrecision
TP FP

=
+

 (3)

 TPRecall
TP FN

=
+

 (4)

 The Intersection over Union (IOU) is a standard metric used in object detection to measure 
the overlap between the predicted bounding box and the ground truth. It quantifies the accuracy 
of the answer by calculating the area of overlap between two objects in the model. If the IOU is 
greater than a predefined threshold (typically 0.5), the target is considered a true positive (TP). 
The target is considered a false positive (FP) if the IOU is smaller than the threshold. Precision 
and Recall are calculated from these object detection results, and the corresponding diagram can 
be used to illustrate them. The evaluation process involves computing the average precision 
(AP), which is the sum of the area under the Precision–Recall curve. The mean average precision 
(mAP) is then calculated as the average AP across different types of object recognition. 

Table 1.
Confusion matrix.

Ground true positive Ground true negative
Predict positive TP FP
Predict negative FN FN
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 In this study, we collected a dataset consisting of 500 images and three classes, namely, 
“member”, “member1”, and “intruder”. The “member” and “member1” classes represent two 
family members, while the “intruder” class contains images of other people. Initially, the results 
could have been more satisfactory, but we collected more intruder data to improve performance. 
The augmentation technique proposed by the automatic face labeling application programming 
interface significantly increased the training dataset size to 3500 images, resulting in a mAP of 
0.9. This demonstrates that the accuracy improves rapidly with the use of the automatic face 
labeling application programming interface. A comparison of the results obtained using two 
different training approaches is presented in Table 2.
 In the nighttime experiment, the face recognition process initially relies on the day mode 
prediction. A NIR camera is used to capture photos with a grayscale level, but the prediction 
results have low accuracy. The grayscale images are shown in Fig. 10. To improve the recognition 
accuracy, an auto-coloring system is applied to the grayscale images. The colorized images are 
depicted in Fig. 11. After undergoing auto-coloring, the colorized images are fed into the face 
recognition process, resulting in predictions with the same level of accuracy as the day mode. It 
is observed that directly using grayscale images for prediction yields lower accuracy than using 
the images after applying the proposed auto-coloring system. A comparison of the accuracies is 
presented in Table 3. The detected results are illustrated in Fig. 12 for predictions from the 
colorized images.

Fig. 11. (Color online) Grayscale images are colorized by the proposed auto-coloring system.

Fig. 10. Grayscale images captured by NIR camera.

Table 2.
Comparison of results obtained by two types of training.

mAP AP50
Without AFLAPI 0.75 0.92
AFLAPI 0.94 0.97
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4. Conclusions

 In this paper, we introduced DNSNN, a smart home surveillance system designed for 
recognition purposes. The system incorporates an automatic face labeling application program 
that generates efficient training data, thereby facilitating the identification of family members. 
By adopting the EfficientDet algorithm, object recognition is performed more swiftly, reducing 
computational time and achieving faster recognition results. Additionally, the auto-coloring 
system addresses the challenges of face recognition in low-light environments. Remarkably, the 
proposed approaches demonstrate high accuracy in both daytime and nighttime face recognition 
scenarios, surpassing a 90% identification accuracy threshold. The experimental results validate 
the system’s ability to recognize family members and intruders under various lighting 
conditions, establishing its potential for comprehensive and continuous smart home surveillance.
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