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 In the industrial field, deep-learning-based image anomaly detections are attracting attention 
because of some of their advantages. The deep-learning-based models can overcome the 
shortcomings of traditional methods, such as human eye detection and rule-based machine 
detection. When using deep learning, which has many advantages, one of the limitations is that 
anomalous products are difficult to obtain. Since most industrial products do not have defects, 
unsupervised learning detection models are strongly required. We propose a new model based 
on the variational autoencoder (VAE), which is a generative model applicable to detection by 
unsupervised learning. VAE is a model for optimizing parameters or latency based on a loss 
function that is the sum of several terms, and in our proposed method, original weights are given 
to these terms. In addition, our model dynamically and adaptively explores a ratio of weights. 
We have developed a dynamic weighted VAE adapted to area under the receiver operating 
characteristic curve (AUROC, AUC) using validation data. We have already reported the 
efficiency of the AUC-adapted VAE; however, this method is not unsupervised learning, and a 
method that does not use validation data was desired. In this paper, we discuss the previous 
method in more detail and describe the new method, which is fully unsupervised learning, by 
conducting additional experiments. The results of several experiments show that the proposed 
method is potentially effective for some actual industrial product image datasets while 
maintaining unsupervised learning.

1. Introduction

 In modern society, parts and products are mass-produced in various fields including the 
industrial field. In the production process, some products have defects, so it is necessary to 
identify and remove anomalous products. At present, for example, inspectors are often hired to 
detect defects visually. However, this visual inspection has several problems. The first is the 
training of inspectors. Inspectors make judgments mainly on the basis of their experience, and it 
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takes time for them to gain that experience. In addition, since the judgment criteria depend on 
each person, when there are multiple inspectors, there may be variations in judgment.
 Therefore, automated inspection using product images is in considerable demand in the 
industrial field. Until now, rule-based image inspection, which is set by engineers who are 
familiar with the product, has been widely used. However, it cannot cope with unknown defects 
or anomalies for which rules are difficult to establish. There are high expectations for image 
anomaly detection based on deep learning, which has the potential to solve these problems.
 Anomaly detection models based on deep learning include, for example, those based on 
convolutional neural networks (CNNs). A discriminator can be constructed by training a large 
number of images with normal and anomaly labels associated with them. However, since the 
number of anomalies is generally much smaller in industrial products than in normal products, it 
is difficult to collect a large amount of anomaly data. This means that supervised classification 
learning is not suitable as an anomaly detection model for industrial products. To solve this 
problem, methods using image generation by autoencoder (AE),(1) variational autoencoder 
(VAE),(2) or generative adversarial network (GAN)(3) have been proposed. AE and VAE are deep 
learning models that can be trained using only normal data.
 In our previous work, we mainly constructed anomaly detectors for the Resin Products 
dataset described in Sect. 4. Our GAN-based model requires about 3 s per image of a dataset for 
detection, so it was necessary to develop a model that enables faster detection for actual 
implementation in the production process. On the other hand, our VAE-based model requires 
about 0.1 s or shorter per image and delivers high performance with AUC = 90% or more. 
However, for practical use, we believe that the AUC should be as close to 100% as possible. In 
addition, we aim to create a model that is capable of detecting any industrial product with a high 
degree of accuracy.
 In this paper, we focus on the anomaly detection method for industrial products using VAE 
and propose a new detection model based on VAE. The purpose of this study is to compare the 
results between the new model and the conventional VAE through several experiments using 
actual industrial product images. The main contribution of this paper is that our new model may 
provide greater performance for any image dataset than the conventional VAE by learning 
adaptively. In particular, it is significant that VAE adapted to loss improves accuracy with fully 
unsupervised learning.
 We have already reported on similar research;(4) however, in this paper, we include newly 
obtained and more detailed results and a more elaborate discussion by conducting additional 
experiments with a new actual industrial product dataset. These elements enhanced the potential 
to demonstrate the superiority of our proposed method. Therefore, in this paper, we show that 
our method is approaching a competent anomaly detection system using artificial intelligence, 
which is highly desired in the industrial field.

2. Literature Review

 Because of the advantages of unsupervised learning, various types of generative models have 
been built by many researchers. Figure 1 shows the generative models classified by a tree 
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structure. The models are generally optimized by maximizing the likelihood. On the left branch 
of this tree, models construct an explicit density and thus an explicit likelihood that can be 
maximized. Among these explicit density models, the density may be computationally tractable. 
The models belonging to tractable density are neural autoregressive distribution estimation 
(NADE),(6) masked autoencoder for distribution estimation (MADE),(7) and so forth. Or it may 
be intractable, meaning that to maximize the likelihood, it is necessary to make either variational 
approximations or Monte Carlo approximations or both. On the right branch, the model provides 
some way of interacting less directly with the probability distribution. Typically, the indirect 
means of interacting with the probability distribution is the ability to draw samples from it. The 
one that uses a Markov chain is called generative stochastic networks (GSNs).(8)

 Among them, VAE and GAN are often used for anomaly detection. Since VAE and GAN 
have their advantages and disadvantages, it is necessary to consider the data and conditions. 
 VAE is a combination of two neural networks. The first is called the encoder, which learns 
hidden latent representation from input data and converts input into an encoding vector 
following a normal distribution. The second is called the decoder, which generates data as output 
from the latent vector. As does VAE, GAN consists of two types of neural network. One is called 
the generator, which takes random noise as input and generates data. The other is called the 
discriminator, which distinguishes whether the generated data is the pre-supplied supervised 
data or the data output from the generator. The generator is trained to generate data that the 
discriminator misjudges as the supervised data. On the other hand, the discriminator is trained 
not to misjudge data output from the generator.(3,9) GAN can generate images more clearly than 
VAE; however, GAN has several problems. One of the most important problems is the instability 
of training. It may focus on only a few patterns or specific objects and generate them repeatedly. 
This phenomenon is called mode collapse, which occurs when the generator learns to associate 
similar outputs with several different inputs and fails to learn a rich feature representation.(10) In 

Fig. 1. Classification of generative models.(5)
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addition, owing to the complexity of the network structure, GAN requires greater computational 
resources than VAE. Therefore, we decided to use VAE because of the stability of its training 
process and fast detection.
 Researchers have proposed VAEs with various innovations depending on the purpose. For 
instance, in ꞵ-VAE,(11) the independence of each component of the latent variable is increased by 
adjusting the constraint using the Kullback–Leibler distance (KLD) with the variable ꞵ (>>1). 
This allows components such as the angle of each part in images to correspond to specific 
components of the latent variable by obtaining greater interpretability that comes with 
disentangled representation. When using ꞵ-VAE for anomaly detection, it is expected to be able 
to richly represent even small normal areas. However, we believe that this is not so simple in 
practice because focusing on the KLD may neglect the reconstruction error, and the 
reconstructed images become blurred more easily than with a normal VAE. There is a trade-off 
relationship between the KLD distance and the reconstruction error; therefore, ꞵ needs to be 
fine-tuned.

3. Methods

3.1 VAE

 VAE aims to find the parameters θ and ϕ that best represent inputs x is sing the maximum 
likelihood method for the generative model pθ(x) represented by the parameters ϕ in the encoder 
and θ in the decoder. Figure 2 shows the network structure of VAE. The latent variable z is 
sampled following a normal distribution N(0,1) with the mean vector μz and the standard 
deviation vector σz. Therefore, the encoder outputs μz and σz in the model qϕ(z|x) of the latent 
variable z after receiving the input x. The decoder outputs the mean vector μx′ and the standard 
deviation vector σx′ in the model pθ(x′|z) of the output x′. Because of the difficulty of maximizing 

Fig. 2. (Color online) Network structure of VAE.
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pθ(x) or the integral of its log-likelihood log(pθ(x)), VAE optimizes the parameters θ and ϕ by 
minimizing the evidence lower bound (ELBO) LVAE(x) instead.

 ( ) ( ) ( )VAE VAE VAER D= +x x xL  (1)

The term RVAE(x) shows how well the VAE can reconstruct the input sequence from the latent 
space, while DVAE(x) measures how similar the two data distributions are to each other. Here, 
when VAE trains data, LVAE(x) is used as the loss function. The regularized term DVAE(x) is the 
Kullback–Leibler divergence between qϕ(z|x) and p(z) when z follows the normal distribution 
and can be transformed into Eq. (2).
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Here, j is the index of z. The term RVAE(x) is called a reconstruction error.

 RVAE ( x ) = −log pθ ( x|μz ) (3)

The approach to transforming Eq. (3) differs depending on what distribution is assumed for the 
reconstruction model pθ(x′|z) of the latent variable z using a decoder. If pθ(x′|z) is assumed to 
follow the Bernoulli distribution, RVAE(x) is expressed as Eq. (4), or if the normal distribution, it 
is expressed as Eq. (5).
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3.2 Anomaly detection using VAE

 VAE can be used for anomaly detection because of its ability to reconstruct images. The 
anomaly detection is carried out in five steps as follows.
 First, data preprocessing is conducted to make them suitable for learning. In general, image 
data are normalized or resized to fit the model structure. Then, VAE trains the network using 
only images without defects. It is desirable to prepare as much data as possible for training. After 
the training, regardless of whether the input data is normal or abnormal, the VAE outputs an 
image. If the input data is normal, the VAE tries to output an image, which is the same as the 
input, and reconstructs the unique parts of each product that does not have defects. If not, it 
outputs an image like a normal product image or an unfamiliar image (Fig. 3). In the 4th step, the 
anomaly scores of each input image are calculated. In this calculation, for instance, the loss 
functions of VAE [LVAE(x)] mean squared error (MSE), etc. between input and output are used as 
anomaly scores. This allows us to generate a score histogram that indicates the relationships 
between the anomaly scores and the number of images for which the scores are calculated. 
Finally, a threshold to classify either normal or anomaly is determined. The threshold is often 
established using the maximum of the Youden index J as in Eq. (8).

 TrueNegativeTruePositive

TruePositive FalseNegative TrueNegative FalsePositive

1

1

= + −

= + −
+ +

J Sensitivity Specificity
NN

N N N N
 (8)

Here, NClass is the number of data points belonging to that class. Sensitivity is the percentage of 
the data that are predicted to be abnormal by the discriminant out of the data that are abnormal, 
and specificity is the percentage of the data that are predicted to be normal by the discriminant 
out of the data that are normal. If the objective is to detect anomalies at all costs, the threshold 
should be set at a sensitivity of 100%. However, we used the Youden index as the threshold 
setting index because we would like normal images to be discriminated to some extent. To 

Fig. 3. (Color online) Reconstruction of normal or anomaly images.
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measure the performance of the detector, the AUROC, which is the area of the ROC curve, is 
used. The ROC curve plots the changes in the true positive rate (TPR) and false positive rate 
(FPR) for different classification thresholds for determining the predicted probability of a class 
as positive.

3.3 Proposed algorithm

 As stated in Sect. 3.1, VAE trains by optimizing the following loss functions:

 2
( )( ) ( , ) VAE

termsVAE BC DE= + xx x x'L , (9)

or

 3
( ) ( ) ( ) ( )

termsVAE VAE VAE VAEM A D= + +x x x xL . (10)

 To obtain greater interpretability that comes with disentangled representation, Higgins et al. 
proposed ꞵ-VAE.(11) By referring to ꞵ-VAE, the weights (α, ꞵ) or (wM, wA, wD) of each term in 
LVAE as Eqs. (11) and (12) are added.

 2
( )( ) ( , ) VAE

termsVAE BC DEα β= + xx x x'L  (11)

 3
( ) ( ) ( ) ( )

termsVAE M VAE A VAE D VAEw M w A w D= + +x x x xL  (12)

Here, (wM, wA, wD, α, ꞵ) ∈ (0, ∞). These weights can be regarded as hyperparameters; therefore, it 
may be possible to make the VAEs learn to be more expressive than convention by tuning them 
in some way.
 Moreover, we considered changing the values of these parameters at specific learning steps. 
We named the loss function with these parameters the adaptive weighted loss (AWL). For 
example, the weights can be set as a function for epochs, loss, etc.:

 ( )w f Epochs= , (13)

 ( )VAEw f= L , (14)

where w ∈ (wM, wA, wD, α, ꞵ).
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3.3.1 Example 1: Adaptive to AUC

 Here, an algorithm using adaptive weights related to AUC is built as shown in Fig. 4, and 
patterns of weights (α, ꞵ) and (wM, wA, wD) are set as shown in Tables 1 and 2, respectively. The 
key point of this algorithm is that it sets up a function for the AUCs calculated at each epoch 
during training. It watches the AUC values and decides whether to change the pattern of the 
weights depending on whether it is improving or not. At the set update frequency FUpdate, it 
compares the previous AUC mean with the AUC mean before that and changes the weight 
pattern (α, ꞵ) or (wM, wA, wD) if the AUC has not improved as shown in Figs. 5 and 6. This 
pattern of changes goes from I to II, then II to III, and finally back to pattern I, and so on. Here, 
in Tables 1 and 2, the weight of the term to be disabled is set to 0; however, it should be given a 
very small value to prevent loss divergence in practice.
FUpdate : Epoch frequency of updating weight pattern,
AUCbefore : Average AUC on (Epochcurrent − 2FUpdate + 1) to (Epochcurrent − FUpdate) epochs,
AUCafter :Average AUC on (Epochcurrent − FUpdate + 1) to Epochcurrent epochs.

Fig. 4. Flowchart of an example of the AWL algorithm.

Table 1
An example of the pattern (α, β).
Pattern α β
I 1 1
II 1 0
III 0 1

Table 2
An example of the pattern (wM, wA ,wD).
Pattern wM wA wD
I 1 1 1
II 1 0 0
III 0 1 0
IV 0 0 1
V 1 1 0
VI 1 0 1
VII 0 1 1
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Fig. 5. (Color online) Patterns when AUC improves.

Fig. 6. (Color online) Patterns when AUC does NOT improve.

3.3.2 Example II: Adaptive to loss

 To improve accuracy in fully unsupervised learning, we built an algorithm of the AWL 
related to LVAE as shown in Fig. 7 and set patterns of weights as shown in Table 3. The terms 
(α, ꞵ) are the weights to be set before learning, and α1, ꞵ1 are the weights to be set after learning 
between certain epochs. The term w* ∈ (α*, ꞵ*) is a specific value ranging from 0 to 1. Since it is 
considered undesirable to change the pattern of weights abruptly at a given epoch, the weights 
are changed as gradually and as continuously as possible between arbitrary epochs using an 
appropriate function [Eq.(14)]. The function should be monotonically increasing or decreasing. 
This means, for example, that in Pattern II, α is fixed at 1 and ꞵ is gradually lowered to 0 
between certain epochs.
 In the method shown in Fig. 7, training is initially performed with the conventional weight 
pattern until the E1 epoch, and then, from the E1 to E2 epochs, training is performed with a 
pattern of decreasing α or ꞵ (Patterns I–III) using the saved model. Then, several loss values 
including the loss obtained by the conventional method at the E2 epoch are compared, and the 
pattern with the smallest loss is regarded as the pattern with the most advanced learning. 
However, when implemented, they should not be set as in the values of α2 and ꞵ2 in Table 3. This 
is because we understood the weakness of this setting method from the results of our pre-
experiment: when the weight approaches 0, the term becomes indifferent and consequently 
approaches divergence as shown in Fig. 8. To prevent this phenomenon, the algorithm stops 
decreasing the weight when the slope of the value of the term pertaining to the weight becomes 
positive. The weight at the point at which the positive or negative slope switches is saved as w*. 
From the E2 + 1 to E3 epochs, exploration is performed again using the model with the lowest 
loss obtained at the E2 epoch. In order not to change the weights abruptly, training is continued 
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Fig. 8. (Color online) Relationships between transitions of a term of loss and a weight w using the proposed 
method.

Fig. 7. (Color online) Difference between conventional and proposed methods.

Table 3
An example of the vector (α, β) patterns.
Pattern (α1, β1) (α2, β2)
I (1, 1) (1, 1)
II (1, 1) (1, 0)
III (1, 1) (0, 1)
I’ (α*, β*) (α*, β*)
II’ (α*, β*) (α*, 0)
III’ (α*, β*) (0, β*)
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using the w* values of the optimal model at the E1 + 1 to E2 epochs as the initial values of the 
weights. Then, the pattern with the lowest loss is selected at the E3 epoch. As shown in Fig. 9, the 
resulting model is expected to have lower losses than the conventional model, which may result 
in improved detection performance. 
 The description for the case where three terms (wM, wA, wD) are used is omitted; however, it is 
similar to what it has been presented so far.

4. Experiment I: VAE Adapted to AUC

 To evaluate the effectiveness of the method, we compared the performances of the 
conventional and AUC-adapted VAE following the procedure described in Sects. 3.2 and 3.3.1.

4.1 Setup

4.1.1 Datasets

 In this study, we use actual industrial product datasets from two companies as shown in 
Table 4 and Figs. 10–12. All of these datasets consist of 8-bit, grayscale images. Images of 
Bellows are characterized by a regular jagged structure in the horizontal direction, and there are 
noises that are not defects, depending on the light exposure in the shooting environment. 
Although images of the Resin Product datasets cannot be published due to confidentiality, they 
can be presented in the illustrations shown in Figs. 11 and 12. The outermost white square is the 
main body of the square-shaped product, whereas the inner circle is the device used to take the 
photograph. Therefore, only defects that are burrs or short shots that appear on the outside 
square part are considered for the square-shaped Resin Product. Images of the comb-shaped 
Resin Product dataset were copied eight times and set to 10816 copies for accuracy. Note that 
Figs. 11 and 12 are not actual data for confidentiality reasons.

Fig. 9. (Color online) Ideal loss reduction using the proposed method.
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Fig. 10. (Color online) Examples of the Bellows dataset: (a) normal and (b) anomaly.

Table 4
Dataset detail.

Dataset Number of training data sets
(Only normal)

Number of evaluation data sets
(Normal + Anomaly) Size (pix)

Bellows 28000 90 + 104 256 × 256
Square-shaped Resin Product 10000 1000 + 1000 512 × 512
Comb-shaped Resin Product 1352 (×8) 72 + 100 320 × 320

(b)(a)

Fig. 12. (Color online) Examples of the comb-shaped Resin Product dataset: (a) normal and (b) anomaly.

Fig. 11. (Color online) Examples of the square-shaped Resin Product dataset: (a) normal and (b) anomaly.

(b)(a)

(b)(a)
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4.1.2 Conditions

 We built the structure of AWL VAE adapted to AUC as Fig. 13. Since the parameter FUpdate 
can be variable, the AWL VAE can be assumed as conventional VAE when FUpdate = NEpoch. 
This allows us to compare their performances easily under the same condition of parameters 
except for FUpdate. Table 5 shows the parameter setup. The adaptive weights for the terms to be 
disabled were given as 10−10. We set FUpdate = 100 for the conventional VAE and FUpdate = 3 for 
the AWL VAE. In this process, it is conceivable that overfitting may occur. In this experiment, 
the number of epochs is set as a constant for comparison with conventional methods; however, in 
actual implementation, it should be optimized appropriately to prevent overfitting. For example, 
the model at the epoch with the highest AUC should be used as the optimized model, or training 
should be stopped when the decrease in loss becomes relatively slow.
 When calculating anomaly scores, MSE scores [Eq. (15)] are used for the Bellows and comb-
shaped Resin Product datasets. For the Resin Products dataset, the Max1p score [Eq. (16)] is 
used, which is the maximum value of each pixel difference between input and output, because 
we had a better result with Max1p than MSE for this dataset using the conventional VAE.

Fig. 13. (Color online) Structure of AWL VAE adapted to AUC.

Table 5
Parameter setup.
Parameters Value
Number of epochs (NEpoch) 100
Rank of latent variable z 1000

Batch size 32 (for Bellows)
64 (for square- or comb-shaped Resin Products)

Optimizer Adam
Learning rate 10−4
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 Considering subtle differences in performance caused by random seeds of Python, 
Tensorflow, and Numpy, training is attempted five times on fixed seeds = {1, 10, 20, 50, 100}. 
After finishing the training, the max values of AUC for each epoch, sensitivity, and specificity 
are recorded as assessment values. The rank of the latent variable z was chosen from {100, 500, 
1000, 2000, 5000} to be 1000, which showed the highest value of AUC in the conventional VAE. 
The learning rate was 10−4, which is the default value in Tensorflow. This experiment is 
conducted on a workstation with Intel Xeon W-2133 CPU, 128 GB of RAM, and GeForce 
TITAN RTX GPU, with Ubuntu 18.04, Python 3.7.5, and Tensorflow 2.4.1 installed. The 
reconstruction model pθ(x′|z) is assumed to follow the Bernoulli distribution for the Bellows 
dataset and the normal distribution for the square-shaped Resin Product and comb-shaped Resin 
Product datasets. In other words, Eq. (11) is used as the loss function, and the parameters α and ꞵ 
are varied for the Bellows dataset, whereas Eq. (12) is used as the loss function and the 
parameters wM, wA, and wD) are varied for the square-shaped Resin Product and comb-shaped 
Resin Product datasets. We chose distributional assumptions for which better results had been 
obtained by conventional methods.

4.2 Results

4.2.1 AUC and weight transition

 In this experiment, the reconstruction model pθ(x′|z) is assumed to follow the Bernoulli 
distribution. In other words, Eq. (11) is used as the loss function and the parameters α and ꞵ are 
varied in the pattern shown in Table 1 for this training. Figure 14 shows the AUC transition for 
each epoch using the conventional VAE on a fixed seed of 1. In this and the next section, we 
targeted the Bellows dataset. Although the AUC was about 0.8 at the beginning of this training, 

Fig. 14. (Color online) AUC (blue bar) for each epoch of conventional VAE.
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no significant improvement was observed as the training progressed. The maximum AUC in this 
process was 83.09%, which was observed at the 9th epoch. In contrast, Fig. 15 shows that using 
AWL VAE. Compared with the training shown in Fig. 14, the parameters other than FUpdate, the 
seed values, and the target dataset have not been changed. Here, the AUC transition is depicted 
as a blue bar, the parameter α as a yellow line, and the parameter ꞵ as a blue line. It can be seen 
that the value of α or ꞵ is switched to 0 or 1 when the condition of no improvement in AUC in the 
last three epochs is satisfied. The value of AUC may or may not be better after being switched. 
However, improvement of the AUC compared with the conventional VAE was observed at the 
specific epoch. The maximum AUC in this process was 88.24%, which was observed at the 63rd 
epoch.

4.2.2 Reconstructed images

 As in the previous section, we are focusing on the Bellows dataset to provide detailed results 
in this section again. To visually confirm that anomalies are detected, reconstructed and squared 
error images for each input image are compared. The squared error image is obtained by 
squaring the difference in pixel values between the original and reconstructed images. Pixels or 
areas with a small degree of squared error can be regarded as normal areas. Since it is not 
possible to describe all images, we are focusing on one normal image and one anomaly image. 
Therefore, the explanation here is not for all images.
 Figures 16 and 17 show the original, reconstructed, and squared error images using the 
conventional or proposed methods, respectively, for the normal case. Both reconstructed and 
squared error images were obtained at the epoch where the maximum AUC was recorded as 
described in Sect. 4.2.1. The images shown here are obtained from the same input images for the 
conventional and proposed methods. Comparing only the reconstructed images by the 
conventional and proposed methods, we do not perceive any difference visually. However, upon 
checking the squared error images, it appears that AWL VAE is trying to reproduce non-
anomaly noise due to light exposure. To confirm the difference quantitatively, the MSEs were 
calculated to be 0.029917 and 0.029297 for the conventional and proposed methods, respectively. 
The fact that the anomaly score in the normal image is smaller by the proposed method than by 
the conventional method indicates that the proposed method is effective, at least for this image.

Fig. 15. (Color online) AUC (blue bar), α (yellow line), and ꞵ (blue line) for each epoch of AWL VAE.
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 Similarly, Figs. 18 and 19 show the results of reconstruction when the same anomaly image is 
input to the conventional and proposed VAE. Upon checking the squared error images, it appears 
that the non-anomaly noise in the proposed method is not reconstructed as well as that in the 
conventional method, and this appears to be the reason for the higher degree of anomaly. 
Nevertheless, the MSE scores increased significantly from 0.030345 to 0.061639.

4.2.3	 AUC,	sensitivity,	and	specificity

 The maximum AUCs obtained by the method explained in Sect. 4.2.1 were recorded as the 
performance using that VAE while the fixed seed value was changed five times. Table 6 shows 
the maximum AUC means at five fixed seed values for each dataset. The anomaly detectors 
using AWL VAE give better results in AUC than the conventional one for the Bellows and comb-
shaped Resin Product datasets; the results are almost the same for the square-shaped Resin 
Product dataset. In particular, the improvement of the average AUC is 4.77% for the Bellows 
dataset. Tables 7 and 8 show the mean values at five fixed seed values of sensitivity and 
specificity, respectively, in the epochs where the maximum AUC was observed. Depending on 
the dataset, some results are better by using AWL, and some are worse. The remarkable result is 
the sensitivity for the Bellows dataset: it was improved by 10.39% compared with that using the 
conventional VAE. Although there was a 4.89% decrease in specificity, the benefit of the large 

Fig. 16. An example of inputting a NORMAL image using CONVENTIONAL VAE at the epoch the maximum 
AUC is recorded (9th epoch): (a) original image, (b) reconstructed image, and (c) squared error image. MSE = 
0.029917.

Fig. 17. An example of inputting a NORMAL image using AWL VAE at the epoch the maximum AUC is recorded 
(63rd epoch): (a) original image, (b) reconstructed image, and (c) squared error image. MSE = 0.029297.

(b)(a) (c)

(b)(a) (c)
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Fig. 18. An example of inputting an ANOMALY image using CONVENTIONAL VAE at the epoch the maximum 
AUC is recorded (9th epoch): (a) original image, (b) reconstructed image, and (c) squared error image. MSE = 
0.030345.

Fig. 19. An example of inputting an ANOMALY image using AWL VAE at the epoch the maximum AUC is 
recorded (63rd epoch): (a) original image, (b) reconstructed image, and (c) squared error image. MSE = 0.061639.

(b)(a) (c)

(b)(a) (c)

Table 6
Maximum AUC means (%).
Dataset Conventional VAE AUC-adapted VAE
Bellows 83.64 ± 0.34 88.41 ± 1.13
Square-shaped Resin Product 99.73 ± 0.002 99.72 ± 0.01
Comb-shaped Resin Product 94.18 ± 2.10 97.41 ± 0.90

Table 7
Sensitivity means at the epoch the maximum AUC (%) was recorded.
Dataset Conventional VAE AUC-adapted VAE
Bellows 67.88 ± 1.87 78.27 ± 8.00
Square-shaped Resin Product 97.14 ± 0.48 97.14 ± 0.29
Comb-shaped Resin Product 87.00 ± 9.62 92.00 ± 4.95

Table 8
Specificity means at the epoch the maximum AUC (%) was recorded.
Dataset Conventional VAE AUC-adapted VAE
Bellows 89.56 ± 1.49 84.67 ± 7.30
Square-shaped Resin Product 99.48 ± 0.19 99.66 ± 0.11
Comb-shaped Resin Product 86.67 ± 4.87 91.94 ± 2.48
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increase in AUC and sensitivity was significant. Another notable result was obtained using the 
comb-shaped Resin Product dataset. Although there was a large variance in the sensitivity, the 
means of the AUC, sensitivity, and specificity were improved by 3.23, 5.00, and 5.27%, 
respectively. This was the only dataset in which all three indicators improved; however, it made 
a significant contribution to the objective of achieving the highest AUC possible for several 
industrial product image datasets.

5. Experiment II: VAE Adapted to Loss

 To evaluate the effectiveness of the method, we compared the performances of the 
conventional and loss-adapted VAE following the procedure described in Sects. 3.2 and 3.3.2.

5.1 Setup

 The dataset used is the same as that described in Sect. 4.1.1. The parameter setting is basically 
also the same as that shown in Sect. 4.1.1, except that the trials are three times on fixed seeds = 
{1, 10, 20}. The numbers of epochs in Fig. 7 were set as (E1, E2, E3) = (100, 150, 200). The 
sigmoid was used as the function to vary the weights w ∈ (wM, wA, wD, α, ꞵ). We chose 
distributional assumptions for which better results had been obtained by conventional methods. 
In the proposed method, the determination of whether the loss value is increasing or not is 
simply based on the magnitude of the value between the previous epoch and the current epoch.

5.2 Results

5.2.1 Loss and weight transitions

First, the recorded loss transitions are compared between the conventional and proposed 
methods. In this section, for illustrative purposes, the examples are limited to the square-shaped 
Resin Product dataset with a seed value of 1. Figure 20 shows the transition from the start of 
learning to 100 epochs, which is the same for the conventional and proposed methods. It can be 
confirmed that the loss is reduced to some extent up to the 100th epoch. Similarly, Fig. 21 shows 
the transition from the 100th to the 150th epochs. An exploration for the pattern with the lowest 
loss is performed here. In Fig. 21, the blue lines depict conventional losses, and other reducing 
patterns are depicted in different colors. Of all the patterns, including conventional losses, the 
transition of the pattern with the most loss reduction at the 100th epoch is shown in red. It was 
found that there were several patterns with lower losses than the conventional losses, and pattern 
III was selected as the optimal pattern among them. The selected patterns were saved and 
explored again up to the 200th epoch, and the results are shown in Fig. 22. As in Fig. 21, the 
conventional loss is shown in blue and the loss at the 200th epoch is shown in red. Again, as in 
Fig. 21, there is a slight improvement in loss compared with the conventional method, although 
there are temporary increases.
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Fig. 20. (Color online) An example of loss transition from 0th to 100th epochs.

Fig. 21. (Color online) An example of loss transition from 100th to 150th epochs.

Fig. 22. (Color online) An example of loss transition from 150th to 200th epochs.
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 Next, the recorded weight transitions for the proposed method is examined. Figure 23 shows 
the weight transitions for the optimized pattern at the 200th epoch (patterns III to V’). Here, a 
pattern is applied where only wD decreases from the 100th epoch, and wM and wD decrease from 
the 150th epoch. The value wD stopped changing at the fourth epoch after it began to decrease, 
owing to an increase in the number of detected losses. After that, training proceeded with the 
stopped weights, and wD began to decrease again at the 150th epoch and stopped at four epochs. 
The value wM decreased for five epochs and then stopped as well. Since the example in Fig. 23 
shows only a slight reduction in weights, Fig. 24 presents another example that shows a 
remarkable reduction in weights, with a loss reduction up to the 150th epoch compared with the 
conventional method. In this pattern, wM and wA began to change simultaneously, with wM 
decreasing for 14 epochs and wA decreasing for 26 epochs. In the example shown in Fig. 24, it 
can be seen that the weights can be gradually decreased using the sigmoid function.

Fig. 24. (Color online) Weight transitions in the other patterns in Fig. 23, which result in lower losses than by the 
conventional method.

Fig. 23. (Color online) Weight transitions in the pattern with the lowest loss.
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5.2.2	 AUC,	sensitivity,	and	specificity

 Performance was compared to determine if the model optimized by the proposed method is 
superior. The AUCs at the end of the training were recorded as the performance using the VAEs 
while the fixed seed value was changed three times. Table 9 shows the mean values of AUC at 
three fixed seed values for each dataset. The anomaly detectors using the proposed VAE give 
better results in AUC than the conventional one for the square-shaped Resin Product and comb-
shaped Resin Product datasets; the results worsened slightly for the Bellows dataset. The 
remarkable result is the AUC for the comb-shaped Resin Product dataset: it was improved by 
2.57% compared with that using the conventional VAE. Tables 10 and 11 show the mean values 
at three fixed seed values of sensitivity and specificity at the end of training, respectively. 
Depending on the dataset, some of these indices are better using AWL, and some are worse. 
However, they show large variances in the results. This is noticeable, especially for the comb-
shaped Resin Product dataset, where the variances in sensitivity and specificity are very large.

6. Discussion

6.1 AUC-adapted VAE

 The results described in Sect. 4 show that the AUC-adapted VAE causes a significant 
performance improvement for the Bellows and comb-shaped Resin Products, while it was shown 
that it may not be a panacea for all image data. One possible reason for this is that the 
performance of the anomaly detector using the conventional VAE is already excellent. The AWL 

Table 9
Average AUC at 200th epoch (%).
Dataset Conventional VAE Loss-adapted VAE
Bellows 76.08 ± 0.47 75.95 ± 0.85
Square-shaped Resin Product 99.01 ± 0.11 99.16 ± 0.17
Comb-shaped Resin Product 87.45 ± 2.71 90.02 ± 1.56

Table 10
Average sensitivity at 200th epoch (%).
Dataset Conventional VAE Loss-adapted VAE
Bellows 62.18 ± 0.56 61.86 ± 1.11
Square-shaped Resin Product 97.67 ± 0.50 98.03 ± 0.55
Comb-shaped Resin Product 89.67 ± 2.52 88.67 ± 5.77

Table 11
Average specificity at 200th epoch (%).
Dataset Conventional VAE Loss-adapted VAE
Bellows 85.56 ± 1.11 85.19 ± 1.70
Square-shaped Resin Product 99.47 ± 0.06 99.47 ± 0.12
Comb-shaped Resin Product 72.69 ± 8.37 79.63 ± 3.50
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VAE adapted to AUC may be effective when the conventional performance is not so good. 
Hence, we need to test it on other datasets.
 Factors that enable the AWL VAE to provide better AUC than usual should also be discussed. 
In Sect. 4.2.2, it is indicated that the AWL VAE can make anomaly scores smaller on normal 
images and larger on anomaly images than the conventional VAE. Regarding the reconstruction 
of anomaly images, we stated the fact that non-anomaly noise is not reconstructed as well as in 
the conventional VAE, which may have caused the anomaly score to increase. However, it is not 
guaranteed how VAE trained using only normal images will output for anomaly input images. 
Therefore, although AWL VAE currently provides clearer reconstruction for normal input 
images, a more comprehensive and detailed investigation of the factors that led to the improved 
AUC is required.

6.2 Loss-adapted VAE

 As a matter of improvement, the rules for determining whether a partial term of loss is 
headed for divergence should be carefully considered. In this experiment, as described in Sect. 
3.1, we simply determined whether the instantaneous slope at one epoch was positive or not as its 
discriminant rule. However, this function is too sensitive to deal with the occasional temporary 
rise in losses. For non-dominant loss terms, it is never advisable to use this function, especially 
since the ups and downs occur so frequently. Therefore, it is necessary to consider various 
innovations such as discrimination using moving averages.
 Furthermore, the type of weight pattern needs to be further considered. In this study, the 
weights were gradually changed in the patterns shown in Table 3; however, only the decreasing 
pattern is examined here. To find the optimal ratio of weights, it is better to consider the 
possibility of increasing them. However, increasing the number of search patterns requires more 
time to find the optimal model, especially in the case of VAEs whose loss functions have three 
terms. It will be necessary to find a search method that does not significantly increase the 
training time.
 For further improvement, we need to consider the KL term [DVAE(x)] vanishing problem. It 
leads to a representation that is not very variable. One of the ways to mitigate it is to apply an 
annealing schedule to the KL term. The traditional method is monotonic annealing.(12) Starting 
with a small beta forces the model to focus on reconstructing the input sequence rather than 
minimizing the KL loss. As the beta increases, the model gradually emphasizes the shape of the 
data distribution, eventually reaching a beta of 1 or a pre-specified value. Fu et al. proposed a 
periodic annealing schedule that repeats the traditional annealing multiple times.(13) This 
schedule may help to build a more well-organized potential space at a small additional cost to the 
computation. By applying this annealing to our AWL VAE, we may be able to obtain a richer 
representation capability, which may lead to further performance improvement of anomaly 
detectors.
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7. Conclusions

 There is a need for the automated visual inspection of industrial products with improved 
efficiency and accuracy. In particular, anomaly detectors based on deep learning have attracted 
considerable attention. Industrial products are generally not suitable for supervised learning 
such as simply using CNNs because the number of anomaly products is generally small. VAE 
and GAN are examples of generative models that are capable of unsupervised learning. GAN 
can produce sharper images than VAE; however, it requires more training parameters and more 
time for anomaly detection than VAE, making it unsuitable for implementation in industrial 
settings. Therefore, in this study, we aimed to improve the accuracy of abnormality detection 
models for industrial products by modifying the probability distribution generation model VAE, 
which is capable of unsupervised learning. 
 The new model focuses on the loss function and assigns dynamic weights to each term of the 
function. The new algorithm also adaptively varies these weights by functionalizing them with 
respect to AUC, epoch, and so forth. The proposed VAE provides improvements in performance 
as an anomaly detector for several image datasets of industrial products. In particular, VAE 
adapted to loss achieves more optimized models and slightly better performance than 
conventional methods while maintaining unsupervised learning. Although it is not easy to 
improve performance in unsupervised learning, adjusting the learning method as in this study 
may help to reduce the burden in industrial settings. 
 However, it was found that several issues were faced. For example, there is a lack of 
confidence in the variability of the results, and the performance has not been improved for all 
images. It has also been found that the AUC does not improve as the loss decreases. Further 
performance improvement is discussed, however, and to achieve this, a more detailed 
investigation of the generated images, search patterns, their validity evaluation, and so forth will 
be necessary. It is also necessary to continue to contribute a great deal to the development of the 
industrial field through multiple experiments.
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