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	 Human activity recognition (HAR) has attracted widespread attention in areas such as 
human–computer interaction, work performance management, and healthcare. Owing to 
advantages such as continuous monitoring, reduced cost of deployment, and ease of privacy 
protection, wearable-sensor-based HAR is preferred over the traditional approach of using 
external sensors. In this study, the influence of different combinations of seven body-worn 
accelerometer positions on the classification of 23 complex daily activities was examined. A 
conventional machine learning model, namely, RandomForest (RF), and two deep-learning (DL) 
models, convolutional neural network (CNN)-long short-time memory (LSTM) and CNN-
transformer, were used to understand the impact of using different models on the classification 
performance. The results showed a strong correlation between the classification models 
regarding the combinations of sensor positions and classification performance (F1-score). 
Additionally, the combination of the four sensors from the left and right wrists, right upper arm, 
and right thigh was determined to be the best. This study also showed that, owing to feature 
calculation, the RF model took a longer processing time than the DL-based models and that the 
CNN-LSTM model would be preferable to RF if plenty of data were available for training it. The 
results can provide a reference for application designers in choosing appropriate combinations of 
sensor positions based on requirements for wearability and classification performance.

1.	 Introduction

	 In recent years, several studies have been conducted in the field of human activity recognition 
(HAR), which has been widely used in human–computer interaction,(1) work performance 
management,(2) and healthcare.(3) Data acquisition methods in HAR can be divided into two 
types: external-sensor-based HAR and wearable-sensor-based HAR (WHAR).(4) In external-
sensor-based HAR, system designers arrange cameras in the locations where users perform 
activities(5) or sensors in the environment,(6) for example, on furniture and floors. However, the 
approach inherently has three drawbacks: 1) external sensors are usually large and power-
consuming, which may incur high costs for installation and maintenance; 2) external sensors are 
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not suitable for long-term, continuous recording of human activities, because the activities 
cannot be recognized once the users leave the place where the sensors are installed; and 3) 
devices such as cameras and microphones can infringe on the user’s privacy. In WHAR, sensors 
are attached to the user or carried by the user, which allows for the continuous recording of 
human activity. In addition, with the popularity of smartphones and smartwatches equipped 
with inertial measurement units in daily life, WHAR system designers can use user-owned 
devices in their systems, which reduces the cost of system deployment. The WHAR system also 
has little impact on the feeling of privacy violation because the user can take control of the 
sensors and applications that use their data. The user can remove the sensor or turn off the 
application if they do not want their activities recorded. Owing to these advantages, WHAR 
systems have been favored by many researchers in recent years.
	 In recent studies, in the field of WHAR, accelerometers have been shown to be effective in 
determining behavioral characteristics.(7) Therefore, accelerometers have been used in many 
WHAR systems. However, the positioning of an accelerometer on the user’s body remains 
unresolved. As mentioned in Ref. 8, significant differences exist in the amplitudes of the 
acceleration signals at different positions of the body, even in the same activity. Wearable-
sensor-based application designers often follow experience or subjective judgments to decide 
sensor placement locations for a particular set of activities. However, this approach may fail if 
ineffective positions are selected, in which case, ineffective motion or posture signatures might 
be recorded, resulting in poor system performance. The difficulty in sensor position selection is 
that the best placement of the sensor is not necessarily where the movement is most apparent, as 
discussed in Ref. 9. In a study on gait detection in limb injuries, the results showed that the head 
provided the best classification feature for gait rather than the legs,(10,11) which demonstrates the 
difficulty for a system designer to find the best location for the sensor based on subjective 
judgment. For activity recognition, the selection of number of sensors and their positions 
remains unresolved and requires further research.
	 In addition, almost all studies have considered only conventional machine learning (ML)-
based sensor position placement strategies. The classification accuracy of each position is highly 
dependent on the features employed by the researchers, and the manually determined features do 
not generalize the classification performance of each position, which may affect one’s judgment 
of the importance of the sensor position. Deep learning (DL) can extract the deep features of a 
sensor, which can reduce classification inaccuracies caused by insufficient information from 
manually designed features and better reflect the differences in information between the 
positions themselves. However, a performance comparison between DL and conventional ML 
using the same position may be worth exploring. 
	 In this study, we evaluated the classification performance of different combinations of sensor 
positions by conducting experiments using daily life activity data. We applied and compared 
three types of classification model: a conventional ML-based model with classification feature 
engineering and two DL-based models with feature learning. The processing performance and 
processing time were compared. The results are expected to contribute to the determination of 
appropriate positions and combinations of sensors and to the selection of a classification model 
for the complex activities of daily life. 
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2.	 Materials and Methods

2.1	 Overview of experiment

	 We performed an offline experiment that aims to provide wearable-sensor-based application 
designers with useful information to choose an appropriate classification method and specify 
both desirable and undesirable sensor positions for complex daily activity recognition. In Sect. 
2.2, a dataset consisting of 23 complex activities of daily life (CADL) collected from 14 young 
adults who wore seven accelerometers is described. Three classification models were used: a 
conventional ML-based model (Sect. 2.3.1) and two DL-based models (Sect. 2.3.2). These three 
models were compared in terms of their tendency toward effective sensor-position combinations, 
classification performance, and processing time per window.
	 The classification performances for all the sensor combinations were obtained, in which 127 
( 7

71 ii
C

=
= ∑ ) combinations of sensor positioning were tested. For the performance measure, we 

used the F1-score, which is the harmonic mean between recall and precision.
	 To implement the conventional ML-based method, we utilized the Weka 3.10 machine 
learning toolkit. In contrast, scikit-learn 0.24.2 and PyTorch 1.10.1 were used to implement the 
DL-based methods. The evaluation was run on an 11th generation Intel Core i9-11900K CPU 
with an NVIDIA GeForce RTX3080Ti GPU.

2.2	 Dataset

	 A dataset collected from the laboratory of the authors was used. The dataset consists of three-
axis acceleration data for 23 daily life activities from seven positions on the bodies of 14 
volunteers (five females and nine males between the ages of 22 and 25 years, all right-handed). 
Figure 1 shows (a) the sensor placement and (b)–(x) snapshots of the activities. Six of the seven 
sensor nodes (ATR Promotions Inc., TSND151) were attached to the upper arms, wrists, and 
thighs for symmetry, whereas one node (TSND121) was placed on the chest. All the sensor 
nodes were securely attached to the body with a band. The sensor nodes on the upper arms and 
wrists were worn such that they could be on the outside of the body. Each sensor node has a real-
time clock (RTC) synchronized using the clock on a data-collection personal computer. The 
major difference between TSND121 and TSND151 is the six-axis motion (accelerometer and 
gyro) sensing unit, that is, the Invensense MPU-6050 and MPU-9250 for TSND121 and 
TSND151, respectively. In this study, we only used accelerometers by setting the measurement 
range to ±19.62 m/s2 and believe that the effect of this difference is minimized by the placement 
of the same sensor, TSND151, in symmetrical positions on the body. Note that the main reason 
for using the TSND series is that the data collection experiments, including synchronization of 
time between sensor nodes, can be managed on a single personal computer using dedicated data 
recording software. This allowed rapid data collection and subsequent analysis.
	 The activities included not only simple activities such as walking and running but also 
complex upper-limb activities such as making coffee and vacuum cleaning, which are frequently 
performed in daily life. The subjects performed various activities for approximately 12 min each 
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in the way they usually do. Note that this does not indicate a continuous 12-min session but the 
total time of several separate sessions. The acceleration signal sampling rate was 50 Hz. Data 
were collected for approximately 64 h (12 min × 23 activities × 14 persons). Notably, the dataset 
was balanced for both activity classes and individuals, with 10268.3 s [standard deviation (SD): 
333.9 s] per activity and 16871.1 s (SD: 332.9 s) per individual. Therefore, the training of a 
classifier is less likely to be affected by specific activities or individuals regarding the bias in the 
number of data sets.

2.3	 Experimental methods

2.3.1	 Conventional ML-based method

	 Conventional ML comprises two parts: feature extraction and a classification model. The 
features that could characterize the motions of various activities were calculated from the raw 
acceleration signals. In addition to the three axes of an accelerometer, i.e., x, y, and z, we 
introduced the magnitude of the acceleration signal (m) as the fourth dimension [Eq. (1)], where 

i ∈{1, ..., N}, and N indicates the number of samples in a calculation window.

	 2 2 2
i i i im x y z= + + 	 (1)

Fig. 1.	 (Color online) Sensor placement and activities in the dataset: (a) placement of three-axis accelerometer on 
the body, (b) brushing teeth (BT), (c) washing dishes (WD), (d) washing face (WF), (e) washing hands (WH), (f) 
going down stairs (DS), (g) going up stairs (US), (h) having a drink while sitting (DK_SIT), (i) having a drink while 
standing (DK_STD), (j) eating food while sitting (ET_SIT), (k) eating food while standing (ET_STD), (l) making 
coffee (MC), (m) setting table (ST), (n) walking (WK), (o) running (RN), (p) riding a bike (BK), (q) reading a book 
(RB), (r) typing on a keyboard while sitting (TY), (s) using a smartphone while sitting (SP_SIT), (t) using a 
smartphone while standing (SP_STD), (u) wearing and taking off a jacket (WJ), (v) vacuum cleaning (VC), (w) 
erasing figures on a whiteboard (EW), and (x) writing figures on a whiteboard (WW).
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	 A total of 39 features were defined by the four axes of the acceleration signal in the time and 
frequency domains of each sensor, as summarized in Table 1. These features are frequently used 
for on-body HAR and device localization.(9,12–15) A window size of 256 (N = 256) was selected. 
The importance of the features at each position was then evaluated using RelieF(16) that evaluates 
the worth of an attribute by repeatedly sampling an instance and considering the value of the 
given attribute for the nearest instance of the same or different classes. We confirmed that, for 
each position, adding more features did not significantly improve classification performance 
when the number of features exceeded 19. Thus, 19 features were used for each position to 
examine the combination of positions, as listed in Table 2. The table also shows the effective 
features for each position. Among them, F3, F10, F15, F19, F30, and F38 were selected at any 
position and are thus effective features regardless of the position.
	 For each sensor combination, an activity was characterized by 19 × K features when K 
sensors were used. We used RandomForest (RF) as the classification algorithm for the 
conventional method because RF has been shown to exhibit good classification performance in 
WHAR tasks.(17,18)

2.3.2	 Deep-learning-based methods: CNN-LSTM

	 Several WHAR studies based on DL models have emerged in recent years. The most 
frequently used network layers are convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), and long short-term memory (LSTM). Recently, hybrid models have also 
been used. CNN and LSTM have been used in combination to outperform CNN alone.(19–22) In a 

Table 1
Candidates of classification features.
Feature Description and definition

F1, F2, F3, F4 Mean value in time domain data, i.e., 
1
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F5, F6, F7, F8 Variance in time domain data, i.e., ( )2

1

1
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N
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i
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F9, F10, F11, F12 Standard deviation in time domain data, i.e., av
F13, F14, F15, F16 1st quartile (1/4 smallest value) in time domain data
F17, F18, F19, F20 3rd quartile (3/4 smallest value) in time domain data
F21, F22, F23, F24 1st quartile (1/4 smallest value) in frequency spectrum data
F25, F26, F27, F28 3rd quartile (3/4 smallest value) in frequency spectrum data

F29, F30, F31, F32 Frequency entropy, i.e., 
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F33, F34, F35, F36 Sum of energy spectrum, i.e., 
/ 2

2
,

1

N
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f
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F37, F38, F39
Pearson’s correlation coefficient of signal from two axes s and t, i.e.,covst/vsvt, where 
F37, F38, and F39 correspond to the values between axes x and y, x and z, and y and z, 
respectively.

Note: a ∈  {x, y, z, m}. fa,i indicates the value of the ith smallest frequency component for axis a. The four features in each 
feature category, e.g., F1, F2, F3, and F4, correspond to x, y, z, and m in this order. The term covst indicates the covariance 
between signals from axes s and t.
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study using multiple sensors,(22) multiple convolutional subnetworks were used to collect 
features from each sensor, which were then integrated into the depth concatenation layer. Finally, 
classification was performed in the output layer after collecting the temporal features through 
the LSTM layer. A similar CNN subnetwork design was also applied in Ref. 23 and was shown 
to be effective in separately extracting the information provided by multiple sensors. Because 
the DEBONAIR model proposed in Ref. 22 achieved a higher accuracy of 83% on the CADL 
dataset, the CNN-LSTM model in this study was built with reference to the architecture of 
DEBONAIR, as shown in Fig. 2. For each sensor, a convolutional subnet containing three 
convolutional and three pooling layers was used to extract information, which was integrated 
into the depth concatenation layer and subjected to a convolution operation. Then, the time 
features were extracted from the data using a two-layer LSTM, and finally, classification was 
performed using a softmax function on a fully connected layer.
	 A preliminary experiment showed that the optimizer and learning rate affected the 
classification performance among the other hyperparameters. These hyperparameters were 
tuned for each sensor combination. The hyperparameters considered are listed in Table 3.

2.3.3	 Deep-learning-based methods: CNN-transformer-based method

	 The transformer model based on multihead attention has been proven to be highly 
advantageous in recent years for handling sequence analysis tasks. Shavit and Klein used the 
transformer encoder for WHAR tasks(24) for the first time, and the results showed that the 

Table 2
Selected 19 features in each position; the number indicates the order (relevance) of adding to feature subset.

LT LW LU C RU RW RT LT LW LU C RU RW RT
F1 11 6 11 9 F21 19
F2 5 1 1 7 F22 16 14
F3 8 5 7 4 3 3 1 F23 16
F4 F24 13
F5 F25 14 10 10 19
F6 F26 7 19 18 6 9 5
F7 F27 18 16 18 8
F8 F28 6 17 5 8 10
F9 9 13 14 F29 12 18 19 2 17 17
F10 9 17 16 12 15 15 9 F30 15 13 11 3 17 18 18
F11 16 14 17 19 14 F31 3 15 14 13 19 15
F12 10 12 9 16 7 F32 17 12 8 1 16
F13 15 10 7 10 F33
F14 1 4 19 5 4 F34
F15 2 9 5 11 4 11 2 F35
F16 F36
F17 14 4 12 13 F37 3 2 7 6 4 13
F18 4 6 2 6 F38 11 7 3 18 2 8 11
F19 10 8 13 15 5 12 3 F39 2 1 8 1 6 12
F20
C: chest, LT: left thigh, LU: left upper arm, LW: left wrist, RT: right thigh, RU: right upper arm, RW: right wrist
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transformer encoder improved classification performance. In this work, the CNN-transformer 
model was adopted to examine the sensor position combination with reference to the model 
proposed by Shavit and Klein.

Table 3
Hyperparameters considered and used in the implementation of CNN-LSTM classifier. The hyperparameter 
names with ‘_’ are the ones used in PyTorch. The underlined values represent the chosen values in a preliminary 
experiment.
Layer Hyperparameter name Range or candidates value(s)

Convolutional 
Subnetworks

First CNN out_channels 5, 6, 7
First CNN kernel_size 7, 9, 11
First CNN activation function
First CNN Max pooling kernel_size

ReLU
2

Second CNN out_channels
Second CNN kernel_size

14
5, 7, 9

Second CNN activation function
Second CNN Max pooling kernel_size

ReLU
2

Third CNN out_channels
Third CNN kernel_size

28
3, 5, 7

Third CNN activation function
Third CNN Max pooling kernel_size

ReLU
2

CNN dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
Concatenation Concatenation CNN out_channels 40, 50, 60

LSTM
Activation function
hidden_size

PReLU
30, 40, 50, 60, 70, 80, 90

General
Optimizer SGD, Adam, RMSprop
Learning rate Log domain in ranging from 0.00001 to 0.1
Batch size 64, 128, 192, 256

Fig. 2.	 (Color online) Architecture of CNN-LSTM-based classification. 
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	 Figure 3 illustrates the architecture. First, each sensor data point was integrated using the 
time dimension, and then token embedding and position embedding operations were performed 
on the data. Subsequently, the self-attention value was calculated for each vector using the 
transformer encoder, and the class token embedded in the token embedding was used to classify 
the data using a softmax function on the fully connected layer. The hyperparameters are listed in 
Table 4 and are based on the specific values or calculation methods used in the model of Shavit 
and Klein.(24)

2.4	 Evaluation method

	 Classification performance was evaluated by cross-validation (CV) of the training and test 
data. We chose leave-one-person-out (LOPO) CV as the primary CV method, which was 
performed by testing a dataset from a particular person with a classifier that was trained without 

Fig. 3.	 (Color online) Architecture of CNN-transformer-based classification.
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the data from that person. Training and testing were repeated with different combinations of 
participants. Because the trained classifier did not contain data from the test participants, 
LOPO-CV was regarded as a fairer and more practical test method. 
	 In addition, n-fold CV was applied in two ways: against a dataset containing data of all 
participants (n-fold CV_all), and averaging the results from n-fold CV against datasets consisting 
of each participant’s data (n-fold CV_each). The n-fold CV utilizes (n−1)/n of the dataset for 
training a classifier and 1/n for testing the classifier. The n-fold CV_all represents the average 
classification performance because the classifier knows the participants from (n−1)/n of their 
data. In contrast, n-fold CV_each has an optimistic performance because each classifier knows 
nothing except the test participant. We set n to 10. Section 3.3 utilizes three evaluation methods. 
Otherwise, LOPO-CV is used to understand the lower bound of the performance.
	 The classification performance is evaluated using a macro-average F1-score. An F1-score is a 
harmonic mean between recall and precision. Equations (2), (3), and (4) define these metrics for 
class i, respectively, where 

icorrectN , 
itestedN , and 

ijudgedN  represent the number of cases correctly 
classified into class i, the number of test cases in class i, and the number of cases classified into 
class i, respectively. A macro-average F1-score is an average of F1-score over 23 classes. 
Hereinafter, we simply refer to a macro-average F1-score as an F1-score.

	
2

1 1=
+

i

i i

F1- score

recall precision

	 (2)

	 /
i ii correct testedrecall N N= 	 (3)

	 /
i ii correct judgedprecision N N= 	 (4)

Table 4
Hyperparameters used in the implementation of CNN-transformer classifier. The hyperparameter names with ‘_’ 
are the ones used in PyTorch. The values are the same as those used in Ref. 24.
Layer Hyperparameter name Value

Convolution All CNNs in_channels 64 (= latent dimension “d” in Ref. 24)
All CNNs out_channels 64 (= d)

Information Embedding Position embedding 256 (= window size “k” in Ref. 24) + 1

Encoder
num_layer 6
n_head 8

Output

First fully connected (FC) in_features 64
First FC out_features 16 (= d/4)
Dropout ratio 0.1
Second FC in_features 16 (= d/4)
Second FC out_features 23
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3.	 Results

3.1	 Classification performance comparison in the three methods

	 The differences among the three classification algorithms were analyzed. Figure 4 shows the 
maximum classification performance (F1-score) for different numbers of sensors in the three 
classification models; the sensor combination is also presented. The CNN-LSTM model 
obtained the highest score for single-sensor usage. When the number of sensors was greater than 
one, the RF outperformed the two DL models. Comparing the three algorithms for the 127 
sensor combinations, we found that the RF model achieved the highest F1-score for 119 sensor 
combinations. The CNN-LSTM model achieved the highest F1-score for the remaining eight 
combinations, and in seven of these eight sensor combinations, one sensor was used. Although 
the CNN-LSTM model outperformed the RF model when only one sensor was used, the 
degradation in the classification performance of the CNN-LSTM model was most pronounced 
when the number of sensors exceeded four. The number of trainable hyperparameters of the 
model increased by 1400 per sensor because the CNN subnetwork structure was used to extract 
the features of data from each sensor. In contrast, we did not use a subnetwork structure in the 
CNN-transformer model but instead integrated different sensors into one dimension; this 
increased the number of hyperparameters by only 192 per sensor. Such a difference in the 
number of tunable hyperparameters made the CNN-LSTM model susceptible to overfitting 

Fig. 4.	 (Color online) Highest F1-scores for three classification models on one to seven sensors in LOPO-CV (LT: 
left thigh, LW: left wrist, LU: left upper arm, C: chest, RU: right upper arm, RW: right wrist, RT: right thigh).
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when noisy data were passed in, which led to a decrease in the F1-score. We believe this is 
especially applicable to LOPO-CV, where the providers of training and test data are different. In 
contrast, in the RF model, we performed feature selection for each position, i.e., dimensionality 
reduction, such that only valid features would be used in the training for each position. This did 
not significantly degrade classification performance, even when useless sensors were added.
	 The CNN-transformer model did not achieve high F1-scores. In this model, we used the 
hyperparameters provided in Ref. 24, which might have led to such results. Another reason 
could have been the lack of data. The multihead self-attention mechanism in the transformer 
encoder can focus on the information at any one position in the data; however, this also requires 
an extensive dataset for support. As mentioned in Ref. 25, where the transformer structure was 
applied for image processing, transformers lack some of the inductive biases inherent to CNNs, 
such as translation equivariance and locality, and therefore do not generalize well when trained 
on insufficient amounts of data. In WHAR, collecting large amounts of data with labels is 
challenging. Although the sample size of our dataset exceeded that of most large publicly 
available datasets,(26–28) the results showed that conventional ML still had an advantage. The 
collection of large amounts of high-quality ADL data is a major future challenge. 
	 To determine whether classification performance for a combination of sensors varied with the 
classification model, we examined the strength of the relationship using the F1-scores of all 127 
combinations under the three classification models. Table 5 shows the Pearson’s correlation 
coefficients between different pairs of the three models, where values closer to 1.0 indicate a 
stronger relationship between the pairs of classification models. The table shows strong 
correlations among the three pairs, indicating that trends in the effectiveness of the sensor 
combinations were stable against changes in the classification models. Therefore, the averages of 
the F1-scores of the three classification models per sensor-position combination are presented in 
the following sections, unless otherwise noted.

3.2	 Effect of sensors’ positions on classification

	 Figure 5 shows a heatmap representing the overall trend of the F1-scores per combination of 
sensors, grouped by the number of sensors and sorted in ascending order. In the figure, the check 
marks in the sensor position columns indicate the use of the sensor position. In the activity 
columns, the darker cells indicate higher F1-scores. In the rightmost columns, the macro 
averages are presented as bar charts and numbers. The figure suggests that the sensors’ positions 
and combinations affect not only the average classification performance but also the 
classification per activity. Note that Table A1 in Appendix shows concrete values.

Table 5
Processing speed by the number of sensors (ms/window).

RF CNN-LSTM CNN-Transformer
RF 1.0 0.924 0.937
CNN-LSTM — 1.0 0.978
CNN-Transformer — — 1.0
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	 A larger number of sensors was not necessarily better, as F1-scores lower than the largest 
value in the group with a smaller number of sensors were obtained with a larger number of 
sensors. For example, the highest value was obtained from one sensor (No. 7) worn on the right 
wrist, whereas only five of the 21 combinations yielded higher values when two sensors were 
used: Nos. 24, 25, 26, 27, and 28. This is not surprising because activities that show differences 
in the upper body, such as brushing teeth (b) or washing dishes (c), cannot be distinguished using 
sensors attached to the left and right thighs. Furthermore, in several cases, the use of fewer 
sensors was better than the use of all seven sensors. These were Nos. 62, 63, 95, 96, 97, 98, 116, 
117, 118, and 119, among which the sensor combination of the left wrist, right upper arm, right 
wrist, and right thigh (No. 98) was the best. In all cases, except for case 117, no sensor was worn 
on the chest. The differences in the posture and movement of the chest showed little difference 
between activities with different hand use, which could be seen from the fact that the value 
obtained from the chest was the lowest in the case of one-sensor use. This suggests that the 
information obtained from the chest-mounted sensor was noisy when discriminating between 
activities that differed in hand or arm movements. In fact, comparing the intensity of the 
heatmap for each activity in combination Nos. 98 and 127, we found that the cells for standing 
tasks such as washing dishes (c), washing hands (e), and eating food while sitting (j) appeared 

Fig. 5.	 (Color online) Heatmap representing the trend of F1-scores in LOPO-CV, grouped by the number of 
sensors and sorted in an ascending order per activity. The abbreviations for the columns of sensor position 
correspond to left upper arm, left wrist, left thigh, chest, right upper arm, right wrist, and right thigh, respectively. 
The symbols for the columns of activity correspond to the ones in Fig. 1. The concrete values are shown in Table A1 
in Appendix.
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darker in No. 98 than in No. 127. Table A1 in the Appendix concretely shows this fact by 
indicating a higher F1-score of No. 98.
	 The right wrist made the highest contribution among the seven positions. For each sensor 
group, the combination that included the right wrist was the top-ranking. This may be because 
all of the subjects were right-handed, although the participants in the data collection were not 
instructed to hold objects such as toothbrushes with their dominant hand. As watches are often 
worn on the opposite side of the dominant hand, the usefulness of the left wrist must be verified 
when considering a smartwatch as a practical implementation of the sensor. In the case of single-
sensor use, the left wrist ranked second in usefulness, behind the right wrist (No. 6). When two 
sensors were used, the left wrist appeared first with the right upper arm (No. 23), followed by the 
right thigh (No. 21) and left thigh (No. 20), with the exception of the right wrist (No. 26). During 
yoga, a smartphone can be “worn” in a holder attached to the upper arm. Although the degrees 
of freedom of movement are greater than those under the current data collection conditions, a 
sensor can be attached to the thigh by keeping a smartphone in the front pocket of the pants. 
Therefore, we believe that these three pairs represent the classification performance for activity 
recognition under practical conditions; however, they were 0.066, 0.071, and 0.072 lower than the 
best pair (No. 28).

3.3	 Individual user differences

	 The relationship between the number of sensors and classification performance under 
different user data distributions is discussed next. Here, we focus on the RF model because it 
proved to be the most effective, as discussed in Sect. 3.1. The three evaluation methods presented 
in Sect. 2.4 were used. Figure 6 shows the relationship between classification performance and 
number of sensors under the three evaluation methods. Each bar indicates the average F1-score 

Fig. 6.	 (Color online) Average F1-scores per number of sensors on the three evaluation methods.



2188	 Sensors and Materials, Vol. 35, No. 7 (2023)

of the results of 7Cm combinations in the case of m sensors, and the error bar represents the range 
between the highest and lowest values.
	 With respect to the maximum value, the three evaluation methods appeared to be saturated 
with four sensors. The trend in the mean values was LOPO-CV < 10-fold CV_all < 10-fold CV_
each with LOPO. As expected, LOPO-CV and 10-fold CV_each indicate the lower and upper 
bounds of the classification performance, respectively. The F1-score of LOPO-CV was much 
lower than that of 10-fold CV_all and 10-fold CV_each because the methods used to perform 
CADL can vary considerably among individuals. Thus, misclassifications can occur. The results 
of 10-fold CV_all showed that an average F1-score of more than 0.82 could be achieved using 
more than three sensors if even a small amount of the user’s own activity data was included in 
the training data. Furthermore, an average F1-score of more than 0.95 was achieved for 23 
CADL using only two sensors if the training data were obtained exclusively from a particular 
user (10-fold CV_each). To improve the classification performance in the LOPO-CV, that is, 
when testing on data from an unknown user, data should be collected from more participants to 
increase the heterogeneity of the training data, which would increase the possibility of including 
people whose data are comparable to those of the unknown user. In other words, it creates a 
situation that is similar to including the user’s own data. 

3.4	 Processing speed comparison in the three models

	 Table 6 summarizes the processing speeds in milliseconds per window, in which the DL-
based models were evaluated with and without the GPU (using only the CPU). This table 
presents the following three facts: First, the RF model required a much longer time than the two 
DL-based models. This is because the processing time in the RF model includes feature 
calculations requiring approximately 2.70 ms/window. Second, the processing times of the RF 
and CNN-LSTM models increased linearly, whereas that of the CNN-transformer model was 
nearly constant. In the RF model, because the feature calculation time with K sensors was almost 
K times longer, even though the optimal feature subset varied by position, the time required for 
feature calculation had a greater impact on the overall processing time than the classification 
time (0.015 ms/window per sensor). In the CNN-LSTM model, as shown in Fig. 2, the number of 
sensors, K, affects even the concatenation layers, which we considered increased the processing 
time linearly, although not significantly. By contrast, because K appeared only at the input of the 
convolutional layers, as shown in Fig. 3, the computational cost for subsequent processing is 

Table 6
Processing speed by the number of sensors (ms/window).

Classification model Number of sensors
1 2 3 4 5 6 7

RF (CPU) 2.711 5.213 7.713 10.178 12.721 15.127 17.627
CNN-LSTM (CPU) 0.222 0.266 0.288 0.314 0.309 0.361 0.348
CNN-Transformer (CPU) 9.200 9.195 9.204 9.078 9.139 9.245 9.191
CNN-LSTM (GPU) 0.019 0.024 0.024 0.024 0.029 0.034 0.036
CNN-Transformer (GPU) 0.170 0.169 0.169 0.174 0.169 0.174 0.174
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independent of the number of sensors. Therefore, the processing time in the CNN-transformer 
model was almost constant. Third, GPUs were more than 10 times faster than CPUs when the 
CNN-LSTM model was processed and 50 times faster for the CNN-transformer model, as 
expected. In Sect. 3.1, the RF model exhibited the best classification performance; however, its 
processing speed was the lowest among the three models. Thus, overall, the CNN-LSTM model 
is the best classification model for both classification performance and processing speed if a 
large amount of labeled data can be obtained.

4.	 Conclusion

	 In this study, we examined the effect of different combinations of seven body-worn 
accelerometer positions on the classification of 23 CADL. One conventional ML model (RF) and 
two DL models (CNN-LSTM and CNN-transformer) were used to understand the differences 
between the classification models. A total of 127 combinations using the three classification 
models were tested. The findings are as follows:
•	 A strong correlation between combinations of sensor positions and classification performance 

was found. 
•	 A larger number of sensors did not necessarily yield better classification performance.
•	 The sensors placed on the right sides of the subjects exhibited better classification 

performance than those on the left side and center because of the effect of the dominant hand 
(all participants were right-handed). 

•	 The combination of four sensors placed on the left and right wrists, right upper arm, and right 
thigh was the best.

•	 Assuming that sensors could be integrated with smartwatches and smartphones, practical 
combinations where a smart watch was worn on the nondominant wrist (left) and a 
smartphone was kept in the left or right trouser pocket were ranked 85th and 87th 
performance-wise in the 127 combinations, lower than the best combination by 0.147 and 
0.149, respectively.

•	 A comparison of the three evaluation methods showed the lower, average, and upper bounds 
of classification performance. Training a classifier using a small amount of data from the test 
participants significantly improved classification performance. 

•	 The RF model required processing time for feature calculation, which caused a significantly 
longer processing time per window than DL-based models. Thus, the CNN-LSTM model 
would be a better choice than RF if a large amount of data is used for training the model.

	 The findings of this study enable application designers who use activity information to 
choose a combination of the sensor positions based on the requirements for the wearability of 
sensors and classification performance of activities according to their interests. In the future, we 
plan to apply active learning,(29) a machine-learning method that engages the user in the labeling 
process, to adapt the decision boundary of a classifier to the data distribution of a particular user. 
Furthermore, we will investigate a method to determine the best combination for a new set of 
activities without evaluating all the combinations.
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Appendix

Table A1
(Color online) Concrete values (F1-scores in LOPO-CV) of the heatmap presented in Fig. 5. Unlike other tables, the 
F1-scores are rounded off to two decimal places for readability. The numbers in the leftmost column correspond 
to the ones in Fig. 5, representing combinations of sensor positions. The symbols in the first row correspond to the 
activities in Fig. 1. 
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Table A1 (Continued) 


