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 In this paper, we discuss and utilize the multiple-reflection attenuated total reflectance (ATR) 
method of near-infrared spectroscopy (NIRS) for the determination of glycogen content in 
Japanese wagyu beef. We have also conducted experiments on diffuse reflection to compare the 
experimental results. Glycogen, as a reservoir of glucose units, has a positive effect on the 
palatability of wagyu beef. The obtained nontreated spectra were preprocessed by several 
different methods, then a calibration and prediction model between spectral data and glycogen 
content was developed by partial least squares regression (PLSR). We found that when the 
multiple-reflection ATR method and the diffuse reflection method are used for NIR spectroscopy 
methods, there is a significant difference in their ability to predict the glycogen content in wagyu 
beef. The determination coefficient of the best prediction model for the spectra obtained by the 
multiple-reflection ATR method was 0.72 for the measurement of glycogen content in wagyu 
beef, whereas that obtained by the diffuse reflection method was only 0.29. Through experiments 
and data analysis, we found that the multiple-reflection ATR method is promising for predicting 
glycogen content in wagyu beef. The results of these experiments have important implications 
for the development of future small portable beef glycogen sensors.

1. Introduction

 Japanese wagyu beef, a unique livestock product in Japan, has long been appreciated by 
consumers worldwide for its exceptional taste, beautiful marbling, and rich nutrition. The high 
quality of wagyu beef cannot be separated from the strict grade differentiation standards. 
Currently, beef trade is graded on the basis of meat quality and yield, which is based on the 
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“Beef Trade Standards” approved by the Japanese Ministry of Agriculture, Forestry and 
Fisheries and established by the Japan Meat Grading Association.(1) Some researchers have 
shown that the most distinctive feature of wagyu beef is its marbling, which indicates high fat 
content.(2) Within the acceptable range, a higher intramuscular fat (IMF) content results in better 
tenderness and juiciness, thus improving the overall palatability.(3)

 It is undeniable that tenderness is the most important factor affecting the palatability of 
beef.(4) However, when tenderness is in the acceptable range, flavor becomes the most important 
factor affecting consumer preference for beef.(5,6) It has been found that monosaccharides such 
as glucose can promote the formation of meat flavor through the Maillard reaction when 
heated.(7) Glycogen, a stored form of sugar in animals, is related to the amount of 
monosaccharides after slaughter.(8) The higher the glycogen content, the higher the 
monosaccharide content in the beef after slaughter, and the more intense the Maillard reaction of 
the beef. In our previous work, a sensory panel test was used to determine the relationship 
between sensory attributes (e.g., sweetness, fattiness, aroma, tenderness, flavor, and overall 
evaluation) and chemical composition characteristics (e.g., moisture, protein, free amino acid, 
glycogen, and fatty acid content) of Japanese wagyu beef prepared by the simmering method.(9) 

According to the results of multiple regression analysis, there was a positive correlation between 
the sensory attributes and the glycogen content. Therefore, studying the glycogen content, as one 
of the important factors affecting beef flavor, is important.
 One of the common methods used to determine glycogen content in beef is the iodine binding 
method. However, this method not only requires many samples, but the preparation of solutions 
also requires much time,(10) making it difficult to complete the determination at the slaughter 
site.
 The method proposed and used in this study is Fourier transform near-infrared spectroscopy 
(FT-NIR). As a simple, nondestructive, fast, and accurate technique, FT-NIR has been widely 
used for the measurement of various food components.(11,12) This includes the assessment of 
meat quality.(13) NIR spectroscopy is an analytical method that uses the near-infrared region of 
the electromagnetic spectrum (4000–12500 cm−1). In NIR spectroscopy, the absorption of light 
is measured at different wavelengths in the near-infrared region of the sample. The recorded NIR 
spectra include overtones and combined vibrations of molecules containing C–H (5590 and 5917 
cm−1), N–H (5330 and 6443 cm−1), or O–H (5128 cm−1) groups.(14) Because these groups are 
widely present in various organic materials, this makes NIR spectroscopy the preferred choice 
for the analysis of organic materials in the food and agricultural industries. Previously, our team 
used FT-NIR spectroscopy coupled with multivariable data processing to predict the glycogen 
content in Japanese wagyu beef samples. Our study showed that the performance of predictive 
models for glycogen content predictive was not very strong, with the determination coefficient 
being only 0.42.(15)  

 In this study, our main objective is to verify whether the multiple-reflection attenuated total 
reflectance (ATR) method can be used to rapidly analyze the glycogen content in Japanese 
wagyu beef. This is a technique that is important for building an environment consistent with 
well-being. This technology enabled us to develop small portable beef glycogen determination 
sensors. The sensor allows for a more scientific and appropriate grading of beef quality based on 
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the relationship between glycogen content and beef palatability. In this way, people can better 
understand the quality of beef and choose the best quality of beef for their cooking needs. We 
also used the diffuse reflection method and compared the results of the two methods. To 
accomplish our goal, we conducted two sets of experiments. In the first set, we measured the 
spectra of samples enriched with glycogen using the two methods and developed predictive 
models to verify which method was more effective. In the second set of experiments, we 
measured 21 wagyu beef samples also using both methods to determine the feasibility of the 
multiple-reflection ATR method for measuring the glycogen content in wagyu beef. Both sets of 
experiments were conducted to determine the relationship between glycogen content and NIR 
spectra on the basis of partial least squares regression (PLSR).

2. Materials and Methods

2.1 Preparation of beef samples enriched with glycogen

 The samples used were thawed and frozen beef sold within the consumption period. They 
were purchased in block form, and the blocks were subsequently ground into minced meat in the 
laboratory using a mincer at room temperature (25 ℃) to facilitate the subsequent addition of 
glycogen to them. Glycogen powder (from Oyster, FUJIFILM Wako Pure Chemical Corporation) 
was used in the experiments. The delineated glycogen content in the beef is shown in Table 1. 
These values are added glycogen concentrations and do not take into account the glycogen 
naturally present in the beef.
 Ten samples were prepared for each concentration. We added the glycogen powder to the beef 
samples in accurate amounts. A glass stirring rod was used to mix thoroughly the glycogen 
powder with the beef. In this way, 100 beef samples were obtained. They were used in the 
experiments to compare the results of both diffuse reflection and multiple-reflection ATR 
methods. The only difference in sample handling between the two methods is the difference in 
the number of grams per small sample. Diffuse reflection requires 3 g of beef per experiment. 
The multiple-reflection ATR, on the other hand, has a larger contact plane because of its 
multiple-reflection principle, so each experiment requires 4 g of beef to cover the entire plane.
 In summary, each method has 10 glycogen concentrations, each with 10 samples, for a total 
of 100 beef samples. They were applied to the experiments to evaluate the ability of both 
methods to measure glycogen content.

2.2 Preparation of wagyu beef samples with known glycogen content

 The wagyu beef samples analyzed in this study were from Tottori Prefecture, Japan. Carcass 
characteristics of meat located between the sixth and seventh ribs (the longissimus thoracis 

Table 1 
Glycogen concentration in beef samples obtained by adding glycogen powder. The fraction ratios are mass percents.
Glycogen (wt%) 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
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muscle) were evaluated following the standards of the Japan Meat Grading Association,(1) and 
the quality grades of meat were higher than Grade 4 (4 or 5). A total of 21 samples were taken. 
The common substances and their contents in wagyu beef are shown in Table 2. It can be seen 
that the glycogen content is only a small part of the total material composition of beef. The 
average concentration of glycogen in wagyu beef is only 0.12%. This also proves that the 
analysis of glycogen content is difficult. One sample of the longissimus thoracis muscle was 
collected from each of the 21 carcasses, minced, and stored at −30 ℃ until analysis. Each meat 
sample had an identification number. After being frozen and transported to our laboratory, we 
stored the samples in a freezer at −24 ℃. Before the experiment, the samples were thawed at 
room temperature (25 ℃) for 2 h, and then 12 g of each of the 21 wagyu samples were taken for 
the experiment. The wagyu samples were evenly divided into three portions of 4 g each. A total 
of 63 samples were used for each method in this experiment.

2.3 Determination of glycogen content 

 The glycogen content was determined by the iodine binding method according to Dreiling et 
al.(16) About 0.5 g of meat sample was homogenized with 5 ml of cold 7% perchloric acid for 30 s 
at 30000 rpm. The samples were subsequently left for 10 min at room temperature and then 
filtered with filter paper (Advantec, No.1, Japan). The fraction including glycogen was collected 
and used for glycogen measurement. The glycogen content was determined using a 
spectrophotometer (Shimadzu, UV-1200V, Japan) at 460 nm and calculated as milligrams per 
gram of raw meat.

2.4 NIR instruments and accessories

 The spectrometer used was an FT-NIR spectrometer (PerkinElmer, Frontier NIR 
Spectrometer, USA). It was equipped with two near-infrared reflectance accessories: a diffuse 
reflection accessory (PerkinElmer, NIRA, USA), and a multiple-reflection ATR accessory 
(Horizontal Attenuated Total Ref lectance Optics Division for Perkin Frontier, PIKE 
TECHNOLOGIES) for the measurements. Figure 1 shows an illustration of the two accessories. 
The wall surface of the diffuse reflection integrating sphere is a circular plane of 7 mm radius. 
The wall surface of the multiple-reflection ATR is a rectangular plane of 10 mm × 80 mm area. 
During the experiment, the sample was evenly and tightly adhered to the wall surface to ensure 
that no light was exposed and to reduce the interference of bubbles. For spectra with high 

Table 2
Reference measurements of the contents of various components of 21 wagyu beef samples.

Moisture (%) Protein (%) Fat (%) Glycogen (%) Monosaccharides (%)
Mannose Glucose Ribose

Mean 38.37 10.75 50.52 0.12 0.02 0.07 0.07
SD 7.00 1.96 9.03 0.05 0.01 0.03 0.03
Max. 52.61 14.74 70.11 0.23 0.03 0.14 0.14
Min. 23.18 6.49 32.15 0.04 0.00 0.03 0.00
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interference, we adjusted the sample state and re-examined the spectrum until the results were 
satisfactory. The measurement environment was room temperature (25 ℃). Each spectrum was 
the average of 16 measurements at 8 cm−1 resolution over the range from 12500 to 4000 cm−1. 
With 16 measurements, the calibration and prediction model was robust, and only a short test 
time was needed. The absorbance spectra were acquired as logarithmically transformed 
reflectance log(1/R). 

2.5 Data analysis 

2.5.1  Spectral preprocessing

 Preprocessing is important for the spectra before modeling the data. It can reduce the sample-
to-sample variability due to scattering and optical interference and improve the predictive 
capability of models. We tried to use several preprocessing methods before modeling, including 
smoothing, normalization, and determination of standard normal variable (SNV).

Fig. 1. (Color online) Pictures of the two near-infrared reflectance accessories. (a) Diffuse reflection accessory 
without samples. (b) Multiple-reflection ATR accessory without samples. (c) Diffuse reflection accessory with 
samples. (d) Multiple-reflection ATR accessory with samples.

(a) (b)

(c) (d)
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 The purpose of smoothing is to eliminate the random noise in the spectral signal and improve 
the signal-to-noise ratio of the sample signal. Firstly, the SNV was used to normalize the data. 
The SNV is obtained by subtracting the mean value of the spectrum from each wavelength in the 
spectrum and dividing it by the standard deviation of the spectrum.(17) Next is normalization. 
The main purpose of data normalization is to minimize or even exclude duplicated data. 
Normalization is similar to SNV, with the difference that the former averages the columns of the 
spectra and the latter averages the rows.(18)

 The preprocessed spectra are used for modeling. The goodness of the model is determined by 
looking at the coefficients of determination of the prediction and calibration sets.

2.5.2 PLSR

 PLSR generalizes and combines the features of principal component analysis and multiple 
regression. PLSR is particularly useful when we need to predict a set of dependent variables 
from a set of a large number of independent variables.(19) The PLSR modeling process is divided 
into two steps. The first step is to build a calibration model based on the calibration data. To 
ensure that the obtained calibration model is not overfitted, the leave-one-out method is 
generally used for cross-validation. The second step is to build a predictive model based on the 
validation method. The predictive model is used to check the reliability of the calibration model 
and to ensure that the relevant calibration model works properly.(20) In this study, owing to the 
small number of samples, the calibration model was validated using the leave-one-out cross-
validation method after the calibration model was established, and a prediction model for the 
glycogen content in beef was established.
 In this experiment, we used the determination coefficient of calibration (Rc

2) and prediction 
(Rp

2) set, and the root mean square errors of calibration (RMSEC) and prediction (RMSEP) to 
evaluate the performance of the prediction model. It is worth mentioning that good models 
should have high Rc

2 and Rp
2 values and low RMSEC and RMSEP values. The small difference 

between RMSEC and RMSEP indicates that the model is stable.(21) In addition, the predictive 
performance of the model can be evaluated using the value of the residual predictive deviation 
(RPD). When the value of RPD is greater than or equal to 3, it means that the model is excellent; 
when the value of RPD is greater than 2 and less than 3, it means that the model is average; when 
the value of RPD is less than 2, it means that the model is poor or its predictive ability is 
unreliable.(22)

2.5.3 Feature spectral selection

 For quantitative analysis, it is very important to choose the best feature spectra. On the one 
hand, feature spectra can eliminate irrelevant wavelengths and make the spectral analysis more 
effective, and on the other hand, a smaller wavelength range with the same effect makes the 
subsequent spectral analysis instruments easier to develop. In this study, we used the loading 
coefficients in the PLSR model to select the wavelengths that have the greatest effect on the 
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prediction of glycogen content in Japanese wagyu beef. All data analysis programs used 
throughout the work were implemented using The Unscrambler X software (CAMO software, X 
10.5, Norway).

3. Results and Discussion

3.1 Experimental measurement of beef samples with added glycogen using FT-NIR

3.1.1	 Experimental	results	of	diffuse	reflection	

 Figures 2(a) and 2(b) show the original absorption spectra of 100 beef samples enriched with 
glycogen obtained by diffuse reflection and multiple-reflection ATR methods in the region of 
12500–4000 cm−1, expressed in absorbance, respectively. The absorption band in this region is 
mainly generated by the low-energy electron leap and stretching vibrations of hydrogen-
containing atomic groups (e.g., O–H, N–H, C–H).(23) It can be seen in the figure that there are 
two large absorption peaks at 6900 and 5170 cm−1. They are formed due to the first and second 
overtones generated by the O–H stretching vibration in the water molecule. Because the beef 
samples contain a lot of water, these two peaks appear to be large.(24) Additionally, the wave 
numbers at 7040, 6330, 5710, and 5920 cm−1 were found to be the most useful for developing the 
calibrations in the known studies on glycogen.(25) Except for 6330 cm−1, the peaks of the 
remaining wave numbers could be observed in this experiment. These data show consistency in 
the NIR region when the same functional group is present in different substances.
 After obtaining the original spectra, a preprocessing method was used to process the spectra 
in order to reduce the effects of sample preparation and light scattering. The experimental results 
are shown in Table 3. PLSR models for glycogen prediction were developed in the range of 
12500–4000 cm−1. The results show that the normalization-smoothing model predicts glycogen 
with the highest Rp

2 value of 0.04 and RPD of 1.01. The low value of R2 and the value of 
RPD < 2 indicate that the model is not robust. It also indicates that the diffuse reflection method 
is not strong in predicting glycogen content in beef samples enriched with glycogen.

3.1.2	 Experimental	results	of	multiple-reflection	ATR

 Figure 2(c) shows that there is a large difference in absorbance between the spectrograms 
obtained by the two methods, with the absorbance of diffuse reflection being about ten times 
higher than that of multiple-reflection ATR. However, there is not much difference between the 
two in terms of waveform. This indicates that the type of functional group has little effect on the 
two methods, but there are differences in the absorbance of the functional groups when using 
different methods. This may be related to the fact that the multiple-reflection ATR method can 
expand the absorption signal of low-concentration substances by several times through several 
reflections. After obtaining the original spectra, they were processed with multiple preprocessing 
methods. 
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 The experimental results are shown in Table 4. As shown, the highest Rp
2 value of 0.82 was 

obtained for the normalization-smoothing-treated model. The value of RDP was 2.37. This can 
be considered a good predictive result. It indicates that the multiple-reflection ATR method has 
the potential to correctly predict the glycogen content in wagyu beef and is worth using in  
experiments with real wagyu beef samples.

Fig. 2. (Color online) Nontreated spectra of 100 beef samples. (a) Diffuse reflection method. (b) Multiple-reflection 
ATR method. (c) Comparison graph, where the selected samples are all beef samples with glycogen content of 0.35 
mg/g.

(b)

(c)

(a)
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3.2 Measurement of Tottori wagyu beef samples using FT-NIR

3.2.1	 Experimental	results	of	diffuse	reflection

 The original absorption spectra obtained by diffuse reflection and multiple-reflection ATR 
methods for a wagyu sample in the region of 12500–4000 cm−1 are shown in Fig. 3. After pre-
processing, a new spectrum with low noise and high signal-to-noise ratio was obtained.
The reference results of glycogen content in Japanese wagyu beef analyzed in this study are 
presented in Table 2. The glycogen content in 21 samples ranged between 0.43 and 2.29 mg/g. 
The experimental results are shown in Table 5. The results show that with different pre-
treatments, the SNV-treated spectrum obtained has the best predictive ability, and the model 
predicts the highest Rp

2 value of glycogen at 0.29. The RPD value is 1.20, which is also close to 
the results reported in the existing experiments for the measurement of glycogen content in 
wagyu.(15) It was further found that the PLSR model obtained using the diffuse reflection 
method was not very reliable in predicting glycogen content; further studies are needed to obtain 
a more robust model for the analysis.

Table 3
PLSR results obtained by diffuse reflection method for predicting glycogen content in beef samples enriched with 
glycogen.

Preprocessing Spectral region 
(cm−1)

Calibration Prediction RPD
Rc

2 RMSE Rp
2 RMSE

Glycogen 
(mg/g)

Nontreated 12500–4000 0.0567 0.1395 0.0362 0.1424 1.0085
Smoothing 12500–4000 0.0572 0.1395 0.0390 0.1420 1.0114

Normalization 12500–4000 0.0574 0.1394 0.0398 0.1421 1.0107
Normalization- 

smoothing 12500–4000 0.0575 0.1394 0.0399 0.1421 1.0107

R2, coefficient of determination.
RMSE, root mean square error.
RPD, ratio of standard deviation to root mean square error of cross-validation.

Table 4
PLSR results obtained by multiple-reflection ATR method for predicting glycogen content in beef samples enriched 
with glycogen.

Preprocessing Spectral region 
(cm−1)

Calibration Prediction RPD
Rc

2 RMSE Rp
2 RMSE

Glycogen 
(mg/g)

Nontreated 12500–4000 0.9156 0.0417 0.7986 0.0651 2.2061
Smoothing 12500–4000 0.9146 0.0420 0.8084 0.0638 2.2510

Normalization 12500–4000 0.9155 0.0413 0.8165 0.0624 2.3015
Normalization- 

smoothing 12500–4000 0.9225 0.0400 0.8241 0.0607 2.3660

R2, coefficient of determination.
RMSE, root mean square error.
RPD, ratio of standard deviation to root mean square error of cross-validation.
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3.2.2	 Experimental	results	of	multiple-reflection	ATR

3.2.2.1 12500–4000 cm−1 region

 Wagyu beef samples from Tottori Prefecture in the spectral range of 12500–4000 cm−1 were 
used for glycogen content prediction using the PLSR model. The results of spectra nontreated 
and preprocessed by different methods are shown in Table 6. To graphically illustrate the 
performance of this model, the values of the calibration and prediction set of the model with the 
best results obtained by preprocessing are shown in Fig. 4. The results show that the best PLSR 
model for glycogen prediction was established using normalization-baseline-preprocessed 
spectra. The best PLSR model predicted glycogen with the highest Rp

2 value of 0.72, the lowest 
PMSE value of 0.27, and the RPD value of 1.8861. The relationship between the normalization-
baseline-preprocessed spectra and the regression coefficients is plotted in Fig. 5, which shows 
that the large peaks at 6900 and 5170 cm−1 in the spectra do not have a significant effect on the 
regression coefficients. This is consistent with the previous report describing these two peaks as 
O–H in water molecules.(24) At the same time, the peaks at 7040, 5920, and 5710 cm−1 affect the 
variation of the regression coefficients. This is also consistent with the previous findings of 

Table 5
PLSR results obtained by diffuse reflection method for predicting glycogen content in wagyu beef.

Preprocessing Spectral region 
(cm−1)

Calibration Prediction RPD
Rc

2 RMSE Rp
2 RMSE

Glycogen 
(mg/g)

Nontreated 12500–4000 0.3928 0.3893 0.2170 0.4492 1.1354
Normalization 12500–4000 0.4335 0.3761 0.2778 0.4315 1.1819

SNV 12500–4000 0.4288 0.3776 0.2935 0.4267 1.1952
R2, coefficient of determination.
RMSE, root mean square error.
RPD, ratio of standard deviation to root mean square error of cross-validation.
SNV, standard normal variate.

Fig. 3. (Color online) Comparison of wagyu spectra of the two methods.
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Brown.(25) Moreover, the two absorption peaks at 4300 and 4260 cm−1 also have a large effect on 
the variation of the regression coefficients. This may be related to the binding tone generated by 
the stretching and changing angle of the –CH2 group in glycogen between 4310–4260 and 4350–

Table 6
PLSR results obtained by multiple-reflection ATR method for predicting glycogen content in wagyu beef (Region: 
12500–4000 cm−1).

Preprocessing Calibration Prediction RPDRc
2 RMSE Rp

2 RMSE
Nontreated 0.7396 0.2549 0.6015 0.3205 1.5913

Parameters

Smoothing

Moving average
11 0.6719 0.2862 0.5266 0.3493 1.4601
31 0.7396 0.2549 0.5807 0.3290 1.5502

101 0.7396 0.2549 0.5809 0.3216 1.5858

Gaussian filter
11 0.6992 0.2740 0.5560 0.3383 1.5075
31 0.6313 0.3034 0.4870 0.3636 1.4026

101 0.6023 0.3151 0.4704 0.3695 1.3802

Median filter
11 0.6860 0.2800 0.5401 0.3443 1.4813
31 0.6350 0.3018 0.4932 0.3614 1.4112

101 0.6120 0.3112 0.4743 0.3681 1.3855

Normalization

Area normalization 0.7820 0.2333 0.6422 0.3037 1.6793
Maximum normalization 0.8191 0.2125 0.6627 0.2948 1.7300
Range normalization 0.7582 0.2457 0.6187 0.3135 1.6268
Mean normalization 0.6766 0.2841 0.3855 0.3980 1.2814

SNV

None

0.8618 0.1857 0.6474 0.3015 1.6915
Baseline 0.7864 0.2309 0.6493 0.3007 1.6960
Normalization-baseline 0.8248 0.2091 0.7164 0.2704 1.8861
Normalization-baseline-SNV 0.7356 0.2570 0.5930 0.3239 1.5746
R2, coefficient of determination.
RMSE, root mean square error.
RPD, ratio of standard deviation to root mean square error of cross-validation.
SNV, standard normal variate.

Fig. 4. (Color online) Best model for predicting glycogen content obtained by the multiple-reflection ATR method 
(12500–4000 cm−1 region).
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4260 wave numbers.(26) In addition, since the near-infrared absorption peaks are coupling peaks 
or overtone peaks of the fundamental vibration absorption peaks, it is difficult to determine the 
exact attribution. This means that one peak may represent multiple substances, and one 
substance may exist in several peaks.
 Compared with the results of the experiments with the addition of glycogen powder shown in 
Sect. 3.1.2, the prediction model showed a decrease in Rp

2 and RPD values. The best prediction 
models in both experiments were obtained after normalization-baseline preprocessing. The RPD 
value of the former was 2.36 and that of the latter was 1.8861. According to available studies, the 
fat content in beef can be easily measured by NIR spectroscopy.(27) Owing to the consistency of 
the functional groups of glycogen and fat, it is possible that an interaction in the spectra occurs. 
It is inferred that the reduced predictive ability of the model may be related to the higher fat 
content in wagyu beef. In addition, the number of samples used for the predictive model 
construction was only 63. This is smaller than the 100 samples in the first set of experiments, 
which may also be one of the reasons why the model in the experiment is not very robust.
 It is clear that the multiple-reflection ATR method is much better than the diffuse reflection 
method in predicting the glycogen content in wagyu beef, and there is much room for 
improvement.

3.2.2.2 8000–4000 cm−1 region

 There are a large number of combination bands and overtones in the NIR spectrum, and they 
tend to affect the construction of predictive models. Therefore, it is important to select the 
wavelength of a certain spectral region. In this study, we selected the important spectra using the 
regression coefficients obtained from the PLSR model to build a simplified PLSR model. 
 After that, we chose to build a simplified PLSR model using spectra from the 8000–4000 
cm−1 region. The performance of the PLSR model to predict the glycogen content is shown in 
Table 7. To graphically illustrate the performance of this model, the values of the calibration and 
prediction set of the model with the best results obtained by preprocessing are shown in Fig. 6.

Fig. 5. (Color online) Plot of spectra vs regression coefficients (12500–4000 cm−1 region).
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 The results show that the best PLSR model based on feature spectra with the highest Rp
2 

value of 0.65, the lowest RMSEP value of 0.30, and an RPD value of 1.69 was obtained. These 
results are similar to those obtained using the best PLSR model based on full spectra. A narrow 
range reduces the difficulty of instrumentation and makes the collection of data more efficient. 

Fig. 6. (Color online) Best model for predicting glycogen content obtained using the multiple-reflection ATR 
method (8000–4000 cm−1 region).

Table 7
PLSR results obtained by multiple-reflection ATR method for predicting glycogen content in wagyu beef (Region: 
8000–4000 cm−1).

Preprocessing Calibration Prediction RPDRc
2 RMSE Rp

2 RMSE
Nontreated 0.5828 0.3227 0.4734 0.3684 1.3844

Parameters

Smoothing

Moving average
11 0.5810 0.3234 0.4722 0.3688 1.3829
31 0.5811 0.3234 0.4702 0.3695 1.3802

101 0.5759 0.3254 0.4581 0.3737 1.3647

Gaussian filter
11 0.5815 0.3232 0.4759 0.3676 1.3874
31 0.5801 0.3238 0.4684 0.3702 1.3776

101 0.5771 0.3249 0.4618 0.3714 1.3732

Median filter
11 0.5812 0.3233 0.4739 0.3683 1.3847
31 0.5850 0.3219 0.4740 0.3682 1.3851

101 0.5916 0.3193 0.4842 0.3646 1.3988

Normalization

Area normalization 0.7463 0.2514 0.5936 0.3258 1.5654
Maximum normalization 0.8098 0.2179 0.6003 0.3210 1.5888
Range normalization 0.5454 0.3369 0.4455 0.3781 1.3488
Mean normalization 0.3429 0.4050 0.2830 0.4299 1.1863

SNV 0.7439 0.2529 0.5763 0.3723 1.3699
Baseline 0.7174 0.2977 0.5982 0.3305 1.5431
Normalization-baseline 0.8022 0.2222 0.6458 0.3025 1.6860
Normalization-baseline-SNV 0.8067 0.2197 0.6136 0.3137 1.6258
R2, coefficient of determination.
RMSE, root mean square error.
RPD, ratio of standard deviation to root mean square error of cross-validation.
SNV, standard normal variate.
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The relationship between the normalization-baseline-preprocessed spectra and the regression 
coefficients is plotted in Fig. 7. Compared with the results for the 125000–4000 cm−1 wave 
number interval, the effect of noise in the high wave number interval is no longer present, and 
the previously insignificant effect of the 8000–4000 cm−1 wave number interval is now 
magnified. As a result, in addition to the peak of the spectrum, high regression coefficients are 
also seen in the flat areas. This indicates that the effect of the same groups as glycogen in other 
substances has increased. This may be the reason why the model RPD values are lower than 
those of the 12500–4000 cm−1 region model. However, the peaks at 7040, 5920, and 4300 cm−1 
can still be identified.   
 In summary, the wave number range in 12500–4000 or 8000–4000 cm−1 region does not 
have a significant effect on the accuracy of the predictive model. Among the predictive models 
built with 8000–4000 cm−1, normalization-baseline has the best preprocessing effect with an 
RPD value of 1.69.

4. Conclusions

 In this study, the glycogen content in Japanese wagyu beef samples was predicted using 
multiple-reflection ATR and diffuse reflection methods in FT-NIR spectroscopy combined with 
multivariable data processing. In the experiments for the prediction of glycogen content in beef 
samples enriched with glycogen, the PLSR model developed using the multiple-reflection ATR 
method with 100 samples was better for the prediction of glycogen content in beef than the 
diffuse reflection method. The PLSR model established using the diffuse reflection method was 
not satisfactory for predicting glycogen content in beef. In the experiments for predicting 
glycogen content in Japanese wagyu beef, the PLSR model for 63 samples developed using the 
multiple-reflection ATR method was satisfactory for the prediction of glycogen content in 
wagyu beef. The PLSR model established using the diffuse reflection method also did not 

Fig. 7. (Color online) Plot of spectra vs regression coefficient (8000–4000 cm−1 region).
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predict glycogen content in wagyu beef well. One of the reasons for this is that the concentration 
of glycogen in beef itself is very low, which makes the measurement very difficult. Moreover, 
the multiple-reflection ATR method enhanced the light signal of glycogen by multiple 
reflections, which reduced the difficulty of glycogen content measurement in beef. In the future, 
we will improve the experiment by optimizing the analysis method, replacing the instrument 
plug-in with a more flexible one, and increasing the number of samples. Overall, the multiple-
reflection ATR method is promising for predicting glycogen content in wagyu beef, and this 
result has important implications for the development of small portable beef glycogen 
determination sensors. 
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