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	 In this work, we established a speed identification scheme for the surface-mounted vector-
controlled permanent magnet synchronous motor (PMSM) drive. The decoupled vector-
controlled PMSM drive was developed using the stator current and voltage. The speed loop and 
two-axis stator current loops were designed in accordance with this decoupling mathematical 
model. Hall effect current sensors were used to detect the PMSM currents. A general regression 
neural network (GRNN) was used to develop the speed identification scheme, and smooth curve 
adaptation of the pattern layer was used in the modified particle swarm optimization (PSO) 
algorithm. The two-axis stator current controllers and speed controller were designed using the 
root locus and Bode plot. The MATLAB\Simulink® toolbox was used to establish the simulation 
scheme and all control algorithms were realized using a TI DSP 6713-and-F2812 control card. 
Simulation and experimental results, including the estimated rotor speed, stator current, 
estimated electromagnetic torque, and the stator flux locus, confirmed the effectiveness of the 
proposed approach.

1.	 Introduction

	 The development of electric vehicles and precision machines demands a large number of 
energy-saving high-performance drives. Only the permanent magnet synchronous motor 
(PMSM) rotor has high-permeability permanent magnets without winding copper loss, making 
the PMSM drives widely used in today’s intelligent machines. However, the coupling and time-
varying mathematical model makes the control of PMSM more complicated than that of DC 
motors. According to the vector-controlled theory of AC motors,(1) the complicated mathematical 
model of a PMSM is separated into the torque-current and flux-current components through 
coordinate transformation, which are orthogonal to each other, and then the maximum torque-
to-current ratio of a PMSM is achieved. A traditional vector-controlled PMSM drive requires an 
encoder to detect the shaft position. However, such a sensor reduces the robustness of the PMSM 
drive and is unsuitable for use in a hostile environment. Hence, the development of speed 
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identification techniques in place of this position sensor is required for vector-controlled PMSM 
drives. Some speed identification methods for vector-controlled PMSM drives have been 
developed: speed identification using the extended Kalman filter,(2–5) speed determination by 
adopting adaptive control or the optimal control theory,(6–8) speed estimation based on the 
electromotive force or flux of the motor,(9–11) and speed identification scheme designed with a 
high-frequency signal injection and fuzzy logic control.(12–14) In this research, a speed 
identification scheme was established using the general regression neural network (GRNN) to 
improve the speed identification using a small amount of training data.(15) Electromagnetic Hall 
effect currents were used to detect the stator current for the implementation of the speed 
adjustment scheme.
	 This paper comprises six sections. In Sect. 1, we present the research motivation and 
background, and review the literature on speed identification methods for vector-controlled 
PMSM drives. In Sect. 2, the establishment of the decoupled vector-controlled PMSM drive is 
described. The details of the design of the speed identification procedure of GRNN for the 
vector-controlled PMSM drive are given in Sect. 3. In Sect. 4, we explain in detail the smooth 
curve adaptation of the pattern layer using the modified particle swarm optimization (PSO) 
algorithm. Sections 5 and 6 cover the experimental setup and results, discussion, and 
conclusions.

2.	 Vector-controlled PMSM Drive 

	 Suppose the permanent magnets are arranged on the surface of the rotor without damping 
winding and the magnetic axis of the permanent magnet is consistent with the d-axis of the rotor 
shaft. The two-axis stator current state matrix of a PMSM in the synchronous reference 
coordinate frame is given by (16)

	
1 ,
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ds ds dss s e
e e e
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R L Lpi i v

ω
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where p = d/dt is the differential operator, j stands for the imaginary part, e e e
s ds qsi i ji= +


 is the 
stator current, e e e

s ds qsv v jv= +
  is the stator voltage, Rs and Ls are the resistance and inductance of 

the stator, respectively, λF is the equivalent rotor magnet flux produced by the permanent magnet 
of the rotor, and ωe is the speed of the synchronous reference coordinate frame.
	 An inspection of the first row of the state equation in Eq. (1) shows that the second term on 
the right side is a coupling component in relation to the q-axis stator current. Furthermore, an 
inspection of the second row of Eq. (1) shows that the first and fourth terms on the right side are 
the coupling components related to the d-axis stator current and rotor magnet flux, respectively. 
These coupling components define the two-axis stator voltage feed-forward compensation 
matrix as
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	 Hence, the two-axis stator current state matrix is decoupled from Eq. (1) to Eq. (3)
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where e
dsv ′  and e

qsv ′  are the outputs of the two-axis stator current controllers. The voltage command 
matrix of the two-axis stator current control loops is expressed as
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where 
*e

dsv  and 
*e

qsv  are the voltage commands of the d-axis and q-axis stator current control loops, 
respectively. The resulting electromagnetic torque of a PMSM is derived using

	  ( 2) ,e
e F qsT P iλ= 	 (5)

where P denotes the PMSM pole numbers. An inspection of Eq. (5) shows that the equivalent 
rotor magnet flux λF and the q-axis stator current e

qsi  are orthogonal to each other, the maximum 
torque-to-current ratio is achieved in the vector-controlled PMSM drive, and the electromagnetic 
torque is dominated by the q-axis stator current. The mechanical equation of the motor is 
obtained as

	 ,e L m rm m rmT T B J pω ω− = + 	 (6)

where TL is the load torque, Bm and Jm respectively are the viscous friction coefficient and the 
motor inertia, ωrm = (2/P)ωr is the mechanical speed of the motor rotor shaft, and ωr is the 
electric speed of the rotor.
	 Using the first and second rows of Eq. (3), the plant transfer functions of the d-axis and q-axis 
stator current control loops are respectively given by

	 _
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where s is the Laplace operator. Because the bandwidth of the inner q-axis stator current control 
loop is much higher than that of the outer speed control loop, the closed-loop gain of the q-axis 
stator current control loop can be regarded as one unit. According to Eq. (6) and the definition of 
the torque error (ΔTe = Te − TL), the plant transfer function of the speed control loop is given by

	 _
1( ) .

  
m

plant speed
m m

JG s
s B J

=
+

	 (9)

	 Figure 1 shows the decoupled control block diagram of the vector-controlled PMSM drive. 
Here, Kps and Kis are the proportional and integral gains of the speed controller, Kpd and Kid are 
the proportional and integral gains of the d-axis stator current controller, and Kpq and Kiq are the 
proportional and integral gains of the q-axis stator current controller, respectively. Because the 
rotor flux is a permanent magnet, the d-axis stator current command is set as 0.
	 Here, the speed controller and the d-axis and q-axis stator current controllers were designed 
using the root locus and Bode plot. Table 1 shows the proportional gain (Kp), integral gain (Ki), 
and bandwidth (B.W) for the three control loops.

Table 1
Controller parameters and bandwidth.
Controller type Kp Ki B.W
d-axis stator current 18 39600 420
q-axis stator current 16 36000 413
speed 4 100 5.56

Fig. 1.	 Block diagram of the decoupling vector-controlled PMSM drive.
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3.	 Speed Identification Scheme Based on GRNN 

	 In this study, the feedback speed signal of the traditional vector-controlled PMSM drive is 
replaced by a predicted speed. This speed identification scheme was developed based on GRNN. 
GRNN can be constructed as a multiple regression adjustment model with multiple inputs and 
multiple outputs. It can also be constructed as an automatic predictive model with high-
dimensional nonlinear best input and output mapping relationships.(17,18) In this system, the 
training datasets of GRNN were obtained from the traditional vector-controlled PMSM drive. 
Here, the two-axis stator voltage ( s

dsv , s
qsv ) and two-axis stator current ( s

dsi , s
qsi ) in the stationary 

reference coordinate frame were selected as inputs, the synchronous position angle (θe) was 
selected as the output, and the smooth curve adaptation of the pattern layer was used in the 
modified PSO algorithm.(19) GRNN consists of the input layer, pattern layer, summation layer, 
and output layer, as shown in Fig. 2.

3.1	 Input layer

	 In the input layer of the proposed speed identification GRNN model, the input datasets are 
[ ,  ,  ,  s s s s

ds qs ds qsv v i i ]. The weight matrix between the input layer and the pattern layer is set as

	 [ ]
_ max _ max _ max _ max

( ) ( )( ) ( ), , , ,  0,1 ,
s ss s
qs qsds ds

nk nks s s s
ds qs ds qs

v n i nv n i nw w
v v i i

 
 = ∈
  

	 (10)

Fig. 2.	 (Color online) Speed identification scheme based on GRNN.



1592	 Sensors and Materials, Vol. 35, No. 5 (2023)

where [ _ max _ max _ max _ max,  ,  ,  s s s s
ds qs ds qsv v i i ] is the maximum value of [ ,  ,  ,  s s s s

ds qs ds qsv v i i ], 
n = 1, 2, ..., N, and N is the number of training datasets. The normalized training database was 
acquired from the traditional vector-controlled PMSM drive.

3.2	 Pattern layer

	 The number of pattern layers is determined by the training objects. More complex training 
objects require more pattern layers and, consequently, more computational burden. The pattern 
layer is approximated using a Gaussian function as

	
2

1

( )exp ,
2

N
k k

nn
kH x p

σ=

 −
= − 

  
∑ 	 (11)

where xk is the input of the Gaussian function, pk is the training database of the GRNN, 
k = 1, 2, 3, 4, and σn denotes the smoothing parameters that can be adjusted by the optimization 
algorithm. In this study, the modified PSO was used to adjust the smoothing parameters.

3.3	 Summating layer

	 The summating layer comprises two operations. The first operation is summing all neurons 
in the pattern layer as expressed by Eq. (12). The other operation is multiplying each layer of the 
datasets by the output of the training datasets. The sum of the product is given by Eq. (13).

	 ,D kS H=∑ 	 (12)

	 .Y k kS H Y=∑ 	 (13)

Here, Yk is the output of the training datasets.

3.4	 Output layer

	 The output layer is obtained by dividing Eq. (13) by Eq. (12) and normalizing the result, as 
given by Eq. (14). In this study, the output layer provides the estimated synchronous position 
angle ( êθ ). By differentiating the estimated synchronous position angle and multiplying the 
result by 2/P, the estimated rotor shaft speed ( ˆrmω ) is then obtained, as shown in Fig. 2.

	 Y
max

D

SY Y
S

= 	 (14)

Here, êY θ=  and Ymax is the maximum of the training datasets.
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4.	 Smooth Curve Adaptation of Pattern Layer Using Modified PSO Algorithm

	 The modified PSO was used to achieve smooth curve adaptation of the pattern layer because 
the algorithm is easily implemented and suitable for time-varying conditions. The smooth curve 
adaptation using the modified PSO is expressed as 

	 1
1 1 _ 2 2( ) ( ),p p p p

g g best g g best grand randσ σ γ σ σ γ σ σ+∆ = ∆ + ⋅ ⋅ − + ⋅ ⋅ − 	 (15)

	 1 1 1 1( ) ,
max

p
p

γ β α α= − + 	 (16)

	 2 2 2 2( ) ,
max

p
p

γ β α α= − + 	 (17)

	 1 1,p p p
g g gσ σ σ+ += + ∆ 	 (18)

where g = 1, 2, ..., G is the number of particle swarms, p = 1, 2, ... is the number of iterations, 
pmax is the maximum number of iterations, σbest is the best solution at the p − 1th iteration, σbest_g 
is the best solution of the g particle at the pth iteration, 1 [0,  1]rand ∈  and 2 [0,  1]rand ∈  are 
random, γ1 and γ2 are adjustable time-varying acceleration parameters, γ1 (individual parameter) 
is decreased from β1 = 2.5 to α1 = 0.5, γ2 (swarm parameter) is increased from β2 = 0.5 to 
α2 = 2.5, and 1p

gσ +∆  (time-varying adjustment parameter) corresponds to each travel distance of 
the particle swarm. In the initial search, 1p

gσ +∆  allows each particle to reach the target as soon as 
possible to avoid a local search. When approaching the target, the travel distance is reduced to 
search the global best solution. In the learning process, the best solution and learning experience 
of each iteration are retained, the optimal smooth curve adaptation can be quickly achieved, and 
the best parameters with adaptive learning and automatic decision-marking are obtained. 
Figure 3 shows the flow chart of the proposed modified PSO smooth curve adaptation.
	 Figure 4 shows the block diagram of the proposed speed identification vector-controlled 
PMSM drive using the GRNN, which includes the speed controller, q-axis and d-axis stator 
current controllers, d-axis and q-axis stator voltage decoupling, coordinate transformation 
between the two-axis synchronous reference frame and two-axis stationary reference frame 
(2 2e s⇒ , 2 2e s⇐ ), coordinate transformation between the three-phase system and two-axis 
stationary reference frame (2 3s ⇒ , 2 3s ⇐ ), and the GRNN rotor speed identification scheme. 
In this system, the speed controller and d-axis and q-axis stator current controllers were designed 
using the root locus and Bode plot, and the smooth curve adaptation of the pattern layer was 
used in the modified PSO algorithm.
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5.	 Experimental Setup and Results

	 A 3-phase, 220 V, 0.75 kW, Y-connected, standard surface-mounted PMSM is used as the 
controlled plant for experimentation to confirm the effectiveness of the proposed speed 

Fig. 3.	 Flow chart of proposed pattern layer smooth curve adaption using modified PSO.

Fig. 4.	 (Color online) Speed identification vector-controlled PMSM drive based on GRNN.
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identification vector-controlled PMSM drive based on GRNN. In a running cycle, the speed 
command is designed as follows: forward direction acceleration from t = 0 to t = 1 s; forward 
direction steady-state running over 1 ≤ t ≤ 4 s; forward direction braking to reach zero speed in 
the interval 4 ≤ t ≤ 5 s; reverse direction acceleration from t = 5 to t = 6 s; reverse direction 
steady-state running over 6 ≤ t ≤ 9 s; and reverse direction braking to reach zero speed in the 
interval 9 ≤ t ≤ 10 s.
	 Figures 5 and 6 show the simulated and measured responses with 3 N-m load for reversible 
steady-state speed commands at 1800 rev/min. Each figure contains six responses: (a) command 

Fig. 5.	 (Color online) Simulated responses of the proposed speed identification vector-controlled PMSM drive 
based on GRNN with 3 N-m load for reversible steady-state speed command of 1800 rev/min. (a) Actual rotor speed, 
(b) estimated rotor speed, (c) electromagnetic torque, (d) stator current, (e) synchronous position angle, and (f) stator 
flux locus.

(a) (b)

(c) (d)

(e) (f)
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(dashed line) and actual (solid line) rotor speed; (b) command (dashed line) and estimated (solid) 
rotor speed; (c) electromagnetic torque; (d) stator current; (e) synchronous position angle; and (f) 
stator flux locus (q-axis vs d-axis).
	 From the simulated and measured responses, the accurate estimation of the rotor speed was 
attained using the GRNN scheme. The synchronous position angle and stator flux locus 
confirmed that the coordinate transformation between the synchronous reference frame and the 
stationary reference frame was effected. Good responses for the stator current and 
electromagnetic torque were also effectively achieved. Hence, the proposed speed identification 

Fig. 6.	 (Color online) Experimental responses of the proposed speed identification vector-controlled PMSM drive 
based on GRNN with 3 N-m load for reversible steady-state speed command of 1800 rev/min. (a) Actual rotor speed, 
(b) estimated rotor speed, (c) electromagnetic torque, (d) stator current, (e) synchronous position angle, and (f) stator 
flux locus.

(a) (b)

(c) (d)

(e) (f)
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vector-controlled PMSM drive using GRNN showed that the desired performance can be 
acquired.

6.	 Conclusions

	 A speed identification scheme based on the GRNN was developed for vector-controlled 
PMSM drives. The decoupled vector-controlled PMSM drive was established using the stator 
current and voltage. The root locus and Bode plot were used to design the speed controller and 
the d-axis and q-axis stator current controllers. The GRNN was used to design the speed 
identification scheme, and the smooth curve adaptation of the pattern layer was used in the 
modified PSO algorithm. The three-phase stator currents for implementing the speed 
identification vector-controlled PMSM drive based on the GRNN scheme were provided by the 
Hall effect current sensors. Simulation and experimental results for reversible steady-state speed 
commands under a load condition confirmed the promising performance of the proposed speed 
identification method for the vector-controlled PMSM drive.
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