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	 In this paper, the adaptive Monte Carlo localization (AMCL) error in terms of similar data 
detected by light detection and ranging (LiDAR) in different locations is investigated. This 
localization causes a robot to move to the incorrect location temporarily. We propose the fusion 
of landmark-based localization using an iBeacon device combined with the AMCL algorithm. 
This technique can solve the probabilistic localization problem of the conventional techniques 
applied in mobile robots by fusing the timed elastic band (TEB) and scan-matching algorithms, 
which reduces the error from 7 cm to less than 3 cm. The proposed technique is implemented on 
a clean-room-type mobile robot with 100 kg payload certificated by the SOP39 standard.

1.	 Introduction

	 Many industries such as the automotive and electronics industries are using mobile robots to 
replace complex conveyors in their factories. Mobile robots can be categorized into automated 
guided vehicles (AGVs) and autonomous intelligent vehicles (AIVs). AGVs can only travel in 
accordance with guidelines, while AIVs can move anywhere without modifying the 
infrastructure. AIVs are one of the keys to realizing intelligent factories and have inspired many 
mobile robot research topics. Dudzik used the OptiTRACK motion capture system to localize a 
wheeled mobile robot using image data from an IR camera installed on a wall with the Hausdorff 
distance algorithm.(1) However, this technique is not suitable in an industrial environment. 
Okuyama et al. attempted to improve trajectory planning for differential-drive mobile robots 
based on a resilient propagation algorithm to minimize the trajectory time.(2) Rogne et al. 
focused on MEMS sensors and used an inertial measurement method to prevent the dead 
reckoning state.(3)  An issue faced by factories is that it is difficult to align mobile robots with 
target machines, leading to the requirement of an additional system such as an articulated robot, 
a Cartesian robot, or an additional conveyor system for proper alignment. To overcome this 
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problem, our paper presents a method of minimizing the error from localization and improving 
the parking accuracy for mobile robots. The primary objective of a mobile robot is to accurately 
transport production equipment from one location to another while navigating through a 
crowded environment filled with other machines. Achieving a low positioning error while 
carrying out this task is a significant challenge in mobile robot control. Consequently, much 
research has been conducted on enhancing the accuracy of localization. There have been many 
studies on accuracy improvement in localization. For example, Jung et al.(4) proposed the 
integration of an unscented Kalman filter (UKF) and a fuzzy inference system (FIS) to improve 
the positioning accuracy of AGVs. Yilmaz and Temeltas(5) proposed the self-adaptive Monte 
Carlo (SA-MCL) method for the indoor localization of AGVs. Their techniques focused on 
modifying the particle filter algorithm to improve the positioning accuracy of the robot. They 
obtained accuracies of 6.69 and 4.74 cm in the x- and y-directions, respectively.
	 The first sensor in the mobile robot system applied in our research is a 2D light detection and 
ranging (LiDAR) sensor. LiDAR is used to measure distances by illuminating a target with laser 
light and measuring the time for the reflected light to return to the receivers. Systems such as the 
Google self-driving car also use LiDAR sensors combined with high-accuracy GPS/INS systems 
to enable cars to drive long distances without user control. Three-dimensional LiDAR has also 
been applied in ecology to monitor animals.(6) Wolcott and Eustice proposed a method of 
applying 3D LiDAR with a monocular camera to autonomous driving.(7) In their research, a 
LiDAR sensor was used in a mobile robot to scan the environment, in which the information 
provided by the sensor was the distance to an obstacle. Scan matching is an algorithm that can be 
used with a LiDAR sensor.(8,9) This algorithm transforms the point cloud obtained by LiDAR 
into odometry information by iteratively solving an optimization problem by comparing the 
current scan of a LiDAR map with the previous scan to calculate the changes in the orientation 
and position of the robot. Scan matching significantly improves the accuracy of odometry. This 
algorithm has been employed in numerous studies.(10,11)

	 The adaptive Monte Carlo localization (AMCL) algorithm is employed in probabilistic 
localization systems to determine the position of a robot using information from a LiDAR 
sensor. In some cases, the approximation may not be precise, especially when the LiDAR data 
from two different rooms are comparable. To address this challenge, the AMCL algorithm 
incorporates landmark-based localization, which is part of our proposed technique. Additionally, 
Bluetooth Low Energy (BLE) technology has been widely adopted in the robotics field, 
particularly for indoor positioning applications. BLE technology in commercial radio 
transceivers has been developed with received signal strength indicator (RSSI)-based ranging 
techniques, making it suitable for indoor localization applications. Previous studies(12–14) have 
utilized BLE in smart homes, with one using the ring localization algorithm and BLE to achieve 
a high accuracy of 0.4 m in determining the position of a receiver device.(15) Trilateration has 
also been used as a technique to estimate the position of a device by utilizing the RSSI from at 
least three BLE beacons.(16) The distances from the beacons to the device are calculated and 
represented as overlapping circles to determine the device position.
	 In this study, we propose a mobile robot that modifies the navigation stack from the original 
robot operating system (ROS) move_base package. The navigation process in the move_base 
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package starts from the map_server package, which provides data for the occupancy grid map 
created from simultaneous localization and mapping (SLAM) using the Hector SLAM method. 
The first step in the navigation stack is to generate a global path planner from the occupancy 
grid map information. The robot then follows this path to reach its destination. The sets of 
information from laser scanning, AMCL, and odometry are combined to estimate the local path. 
In this paper, the original algorithm is also replaced with the timed elastic band (TEB) local 
planner(17) to generate a smooth trajectory and reduce the travel time. Additionally, we apply 
landmark-based localization to estimate the final position, which also helps to prevent the 
instability of the localization in similar environments. 

2.	 System Architecture

	 In our research, the AIV is the main part to be improved. The localization and navigation 
require data from the sensor and send the control signal to the motor driver. This section 
describes all linkages of the robot components.
	 As shown in Figs. 1 and 2, the robot navigation obtains information from the LiDAR sensors 
to measure the distance between the robot and the surrounding environment. The large amount 
of data obtained from LiDAR is transferred to the main processor via Gigabit Ethernet in the 
ROS as a laser scan topic (/scan). The laser scan is used in many packages in the ROS, such as 
the localization, navigation, and visible odometry packages. After that, the localization package 
calculates the position of the robot on a virtual map based on the information from the laser scan 
and odometry. The odometry is handled by the ROS topic named /odom, which is derived from 
the forward kinematics as shown in Fig. 3. The odometry provides the linear velocity and 
angular velocity to the ROS. As shown in Fig. 4, these parameters are calculated from the speeds 
of the robot wheels as follows:

	 1 2
2rv ω ω+

= ,	 (1)

Fig. 1.	 (Color online) Hardware components. Fig. 2.	 (Color online) Differential-drive mobile robot.
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where vr and ωr are the linear and angular velocities of the robot, respectively, ω1 and ω2 are the 
speeds of the two wheels, and l is the distance between the wheels.
	 As shown in Fig. 5, to control the module, the inverse kinematics algorithm and a speed 
control mechanism such as proportional–integral–derivative (PID) control are utilized. The 
motion planning produces output in the form of linear and angular velocities, which are 
transferred to the microcontroller for further computation. To control the motor speed, the linear 
and angular velocities of the robot must be converted to the wheel speeds using the inverse 
kinematics algorithm,(18) as expressed by

	 1
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where L is the wheel diameter.

Fig. 3.	 (Color online) Diagram illustrating the 
construction of the odometry module.

Fig. 4.	 Differential drive kinematics.

Fig. 5.	 (Color online) Diagram of the motor control from the motion planning module.
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	 The wheel diameter and robot width, equal to the distance between the wheels, are used in 
the calculation. The resulting wheel speeds serve as reference values for PID control, which are 
continually compared with the current speed measured by the encoder sensor. This approach 
enables the high-precision control of the robot.

3.	 Improvement of Localization 

	 Generally, the default method of robot localization provided by the stack move_base inside 
the ROS is AMCL,(19) which is a probabilistic localization system for a robot moving in 2D 
space. Owing to its probabilistic concept, AMCL can recorrect the position of a robot better than 
only encoder-based odometry. If the wheels of the robot slip as the robot moves on a surface, this 
will increase the total error on the encoder for localization. However, this problem can be solved 
by applying the visual odometry algorithm called scan matching.(20) Scan matching is applied to 
the ROS by replacing the odometry information with the information received from the wheels. 
The iterative closest/corresponding point (ICP) algorithm, as shown in Fig. 6 and given in Eq. 
(4), matches the surface Sref and a set of points {pi} using the point-to-line metric concept. The 
minimization of the distance between points pi and surface q that is projected on surface Sref is 
the matching point on the surface used to estimate the position of the moving robot. In industrial 
mobile robot localization, the point on surface q is the point cloud received from the LiDAR. 
Therefore, the matching of the surface can be used to track the traveling distance of the robot 
applied in the ROS odometry node.

	 { }2
� ,i ⊕⊕ −∑ ∏ �

i iq
p q S p q 	 (4)

	 In Fig. 7, the scan-matching node is replaced by the position obtained from odometry before 
it is input to the AMCL algorithm to estimate the position of the robot.

Fig. 6.	 (Color online) Point-to-line metric approximating distance to surface.



1478	 Sensors and Materials, Vol. 35, No. 4 (2023)

4.	 Improvement of Navigation 

	 The relationships in the ROS navigation stack are schematically shown in Fig. 8. The 
navigation stack is a built-in Dynamics Window Approach (DWA) local planner.
	 The TEB technique replaces the original configuration of the navigation stack. The proposed 
TEB planner and the DWA are both able to find a collision-free path to the goal despite the 
obstruction caused by dynamic obstacles. The DWA often reduces the robot speed to avoid 
imminent collisions. In contrast, the TEB technique can consider alternative future evolutions of 
a scenario, enabling a robot to navigate toward the goal at a speed close to its maximum speed.
	 As shown in Fig. 9, the global objective function V*(b), which is formulated in terms of the 
cost function, is to be minimized. It represents a summary of the total time intervals ΔT between 
two consecutive configurations in Eq. (5). This ensures that the TEB technique optimizes the  
traveling time of the robot.

	 ( ) 1* 2
1  n

kkV b T∆−
=

=∑ 	 (5)

Fig. 7.	 Replacement of scan-matching node.
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5.	 Landmark-based Localization

	 AMCL is a probabilistic localization system based on LiDAR and odometry information. 
Owing to the probabilistic nature of AMCL, it incorrectly estimates the robot location when the 
shapes of the room and factory production line are simlar. To overcome this problem, we propose 
landmark-based localization based on iBeacon, a BLE device, which is incorporated in AMCL 
and used to block incorrect positions in the new iterations of AMCL location estimation using 
the condition obtained from landmark-based localization.
	 As shown in Table 1, the MCL algorithm is typically implemented in three steps. First, a set 
of particles is generated. The belief Xt represents the possible position and orientation (pose) of 
the robot in the known map. Second, the particles are updated on the basis of the robot control 
inputs and sensor measurements. This is done by applying the control inputs to each particle to 
predict how it will move in the environment, then comparing the predicted pose of each particle 
with those obtained from the actual sensor. In the third step, the updated set of particles is used 
to estimate the robot pose. The particle distribution is used to calculate the new position of the 
robot. Subsequently, as the proposed method, the robot pose is fused with the pose estimated 
from iBeacon. In the fusion method, the robot pose value is not merged with the location 
estimated from iBeacon, but the truth is reconsidered using iBeacon instead. Therefore, the new 
robot position might not be published if it is not in the estimated location of iBeacon.

Fig. 8.	 (Color online) ROS navigation stack.(21)

Fig. 9.	 TEB trajectory representation.
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	 The proposed algorithm is expressed by Eq. (6) and shown in Fig. 10. The iBeacon installation 
and coverage area are shown in Fig. 11.

	 ( ) ( )2 2
ba b a b aE X X Y Y= − + − 	 (6)

Fig. 10.	 AMCL estimation blocking algorithm.

Fig. 11.	 (Color online) iBeacon installation and coverage area.

Table 1
MLC algorithm.(22)

0: Function MCL (Xt−1, ut, zt):

1: t tX X= = ∅

2: for m = 1 to M:
3: 	 xt

[m] = motion_update(ut, xt−1
[m])

4: 	 wt
[m] = sensor_update(zt, xt

[m])

5: [ ] [ ],m m
t t t tX X x w= +

6: end for
7: for m = 1 to M:

8: [ ] [ ]draw from with probabilitym m
t t tx X w∝

9: 	 Xt = Xt + xt
[m]

10: end for
11: return Xt
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Here, Xb and Yb are the coordinates (x, y) of the robot obtained from landmark-based localization. 
Xa and Ya are the coordinates (x, y) of the robot obtained from AMCL.
	 The position obtained from landmark-based localization can be calculated from the 
trilateration method. This method determines the location by measuring the received signal 
strength (RSS) between the robot and iBeacon. The distance between the robot and iBeacon is 
expressed using the RSS as Eq. (7). The position of the robot can be calculated by trilateration 
using Eqs. (8)–(10). iBeacon must be installed in the overlap area in any location on the map. At 
least three iBeacon signal devices are required for sufficient signal strength for reliable detection.

	

0

1010

i
kR R

i
kd γ

−

= 	 (7)

R0	: RSS of iBeacon
i
kR 	: reference RSS value at 1 m distance
γ	 : path loss exponent

i
kd 	: distance between the device and iBeacon

	 ( ) ( )2 2 2
1 1 1b b b b bX X Y Y d− + − = 	 (8)

	 ( ) ( )2 2 2
2 2 2b b b b bX X Y Y d− + − = 	 (9)

	 ( ) ( )2 2 2
�b b b b bX X Y Y d− + − = 	 (10)

6.	 Testing
	
	 We propose a testing technique for use in collaborative hard disk production lines, in which 
the accuracy measurement method must be considered. Visual inspection using a monocular 
camera is performed in various localization applications such as underwater vehicle 
positioning.(23) The test results in this paper are obtained by visual inspection techniques to 
measure the robot position at any target point. This technique can also eliminate human error 
from measurement. The accuracy of the visual inspection testing system is verified by taking 40 
shots of a checkerboard adhered on the top of the stationary robot, as shown in Fig. 12. The 
captured images are then processed using template matching to determine the robot position. 
The testing system must be verified to meet the hard disk drive factory standards by proofing 
the measurement unit with the Gage Repeatability and Reproducibility (Gage R&R) 
methodology. The Minitab program processes the measured position(24) to obtain a result that is 
accurate within the acceptable value of 10%.
	 After the testing system is verified, the repeatability and accuracy are tested by commanding 
the robot to move from the initial position to the destination position 70 times. Figures 13(a)–
13(c) show the result of testing robot parking. The robot has the ability to park along the X-axis 
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Fig. 13.	 Parking positions in the (a) X- and (b) Y-directions, and (c) orientation, where the expected values are 
−75.5 mm, −24.0 mm, and 176.5°, respectively.

Fig. 12.	 (Color online) Accuracy and repeatability test using image processing.

(a) (b)

(c)
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aligned with the target machine with an accuracy of ±29 mm. The gap from the machine, which 
was measured in the Y-direction, is ±14 mm and the parking orientation accuracy is ±1.9°. This 
parking accuracy indicates that the proposed method combining the TEB technique and scan 
matching in the AMCL algorithm can achieve an acceptable position error of less than 3 cm in 
the X- and Y-directions with low orientational error.
	 Although the parking accuracy is improved, the localization problem of the probabilistic 
approach still exists. The robot is tested by navigating from the center of the testing area to the 
target room. In this test, there are two rooms (Room A and Room B) having the same data 
detected by LiDAR as shown in Fig. 14(a). From the navigation testing, we found that the 
localization algorithm of the robot resulted in the mislocation of around 10%. Such mislocation 
occurred because of the similar point cloud data received from the LiDAR of Room A and Room 
B. Since conventional AMCL uses statistical data, the covariance obtained from matching the 
robot map and real-time data of LiDAR is less than zero in both rooms. Therefore, these results 
indicate that conventional AMCL cannot classify the locations of these two different rooms.
	 Figure 15 shows a comparison of the performance of the proposed technique for blocking 
incorrect position estimates with that of the conventional AMCL method. The comparison 
shows the robot positions in the X- and Y-directions, and the orientation. At 2.3 s, the 
conventional AMCL method causes the robot position to swap to another room with similar 
point cloud data. However, the proposed technique prevents this position swap by blocking 
incorrect estimates and keeping the robot stable in its destination area, resulting in improved 
performance, as shown by the red line. The proposed technique works by blocking position 
estimates that are more than 2 m from the position estimated by the landmark-based localization 
(iBeacon) method, and instead it uses the previous estimate as the current robot position.

(a) (b)

Fig. 14.	 (Color online) Robot in the (a) testing area and (b) a similar room.
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7.	 Conclusion

	 We have presented a solution to improve the location accuracy and solve the mislocation 
problem in mobile robots. The proposed technique integrates LiDAR and landmark-based 
localization using iBeacons to help overcome mislocation problems and effectively prevent 
positional problems. The integration of the TEB and scan-matching techniques increases the 
robot accuracy by utilizing LiDAR data. A testing technique is developed to meet factory 
standards and ensure repeatability. By utilizing computer vision and Gage R&R methodology, 
the technique reduces human error. The robot completed a repetitive test 70 times, and the 
results showed an average error of 29 mm in the alignment from the machine (X-direction), 
meeting the requirement of ±5 cm, and a gap of 14 mm (Y-axis) between the machine and the 
robot with a maximum error of 20 cm, as well as a low average orientation error of 1.9°. These 
results are expected to lead to more reliable robot localization and have the potential to 
significantly improve the performance of mobile robots in real-world applications.

Fig. 15.	 (Color online) Comparison of results of conventional localization and proposed techniques in terms of (a) 
X- and (b) Y-directions, and (c) robot orientation.

(a) (b)

(c)
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