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	 Diabetic retinopathy (DR) affects the retina’s blood vessels and causes vision loss. Fundus 
images are used to diagnose DR, which is a lengthy process because experienced clinicians must 
accurately diagnose the disease and identify microlesions early to prevent blindness. Computer 
vision can be used for retinal image classification. The APTOS dataset contains 5990 normal, 
moderate, mild, proliferate, and severe retinal images. In this study, we proposed a convolutional 
neural network (CNN) ensemble for DR fundus grading. Each image channel was enhanced by 
contrast-limited adaptive histogram equalization (CLAHE) and gamma correction and then fed 
to 27 pretrained CNN models for one-time training to examine the DR grading. The results 
showed that MobileNet’s green channel with the CLAHE technique is sufficiently fast and 
accurate for disease classification. The grading retinal images had an accuracy of 96.95%, a 
precision of 96.17%, a sensitivity of 97.80%, an F1 score of 96.98%, and a specificity of 97.75%. 
In addition, the proposed method improves the speed and robustness of retinal DR grading.

1.	 Introduction

	 There are 2.2 billion people in the world with some form of vision impairment, according to 
the World Report on Vision presented by the World Health Organization (WHO) in October 
2019, and at least one billion of these cases could have been prevented through timely 
screening.(1) Patients with diabetes are more likely to experience vision loss or blindness as a 
direct result of diabetic retinopathy (DR).(2) Such patients often experience DR as a consequence 
of having high levels of glucose in their blood. DR occurs through the formation of abnormal 
blood vessels (leaks or swelling) at the posterior pole (back) of the eye, which damages the 
retina. If DR is not detected early, it can lead to permanent vision impairment. In terms of its 
clinical presentation, the two distinguishable stages of DR are proliferative diabetic retinopathy 
(PDR) and non-proliferative diabetic retinopathy (NPDR).(3) PDR, the more advanced stage of 
DR, can cause severe vision loss in patients if new aberrant arteries bleed into the vitreous 
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Fig. 1.	 (Color online) Grading of DR.

Table 1
Clinical features of DR.
Grade Clinical features Category
0 No signs observed Healthy
1 Microaneurysms present in one of the four quadrants Mild DR
2 Microaneurysms, dot and blot hemorrhages, hard exudates, cotton wool spots Moderate DR

3 Intraretinal microvascular abnormalities, definite venous beading, intraretinal 
hemorrhages Severe DR

4 Vitreous/preretinal hemorrhage PDR

humor or if there is tractional retinal detachment. NPDR is associated with the early stages of 
DR and characterized by increased vascular permeability and capillary occlusion in the retinal 
vasculature. NPDR is classified into three stages: mild, moderate, and severe. Table 1 outlines 
the clinical characteristics used to grade the severity of DR. As clinical features, microaneurysms 
are small red or pink dots, which are round areas of swelling in the blood vessels of the eye. Dot 
and blot hemorrhages are small red or pink dots, or round or irregularly shaped areas of bleeding 
in the retina. Hard exudates are deposits of fatty material that accumulate in the retina, which 
may appear as yellow or white spots on the retina. Cotton wool spots are areas of damaged nerve 
tissue in the retina, which may appear as white or pale-yellow areas on the retina. In this study, 
we propose a method with five classifications: normal, mild DR, moderate DR, severe DR, and 
PDR. Figure 1 depicts fundus images corresponding to these five classifications.
	 The imaging of the fundus is a frequently used method for grading DR in the general 
population. Manual fundus image screening takes a significant amount of time and is highly 
dependent on the ophthalmologist’s expertise.(4) Computer-aided medical image processing is a 
promising method for performing mass screening with prompt and accurate diagnoses. Various 
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computer-aided diagnostic systems based on conventional image processing methods have been 
reported. Image preprocessing can be performed in different ways, each of which can achieve 
high performance with less calculation time and improved output.
	 Sinan et al. developed a transfer convolutional neural network (CNN) to diagnose retinal 
diseases. This network supplanted a contrast-limited adaptive histogram filter with a ResNet50 
CNN that had been fine-tuned for optimal performance.(5) Kanjanasurat et al. demonstrated that 
contrast-limited adaptive histogram equalization (CLAHE) enhances blood vessel visibility in 
DR images when used in conjunction with Delaunay triangulation and optic disc retinal vascular 
patterns for personal identification.(6) By preprocessing data with an IterNet model capable of 
achieving high accuracy, Tenghongsakul et al. improved the quality of blood vessel extraction 
from the retinal green channel.(7)

	 In the preprocessing of CNN-based automated screening, Yuping et al. employed the image 
enhancement provided by the Caffe framework and achieved high performance.(8) By combining 
adaptive histogram equalization and morphological shape, Prateek et al. improved the detection 
of exudates in DR, using a cellphone to analyze their shape.(9)

	 Many CNN models have received considerable attention from researchers. Using the 
MESSIDOR database, Rancisco et al. demonstrated the application of deep residual transfer 
learning to the autonomous diagnosis of DR using various convolutional architectures.(10) 
Gayathri et al. used a lightweight CNN to classify DR and achieved high accuracy for both 
binary and multiclass classifications.(11) Xiang et al. graded images of DR by employing a 
lesion-attention pyramid network,(12) which generates a lesion-activation map that provides 
consistent lesion locations for clinical diagnosis. Teresa et al. used deep learning (DL) to analyze 
fundus images of the eye to determine the presence of DR.(13) In most cases, the maps focused on 
locations that are significant for diagnosis. The results of these studies demonstrate the 
significant potential of a second-opinion approach in determining the severity of DR. 
Sraddha et al. successfully classified DR by employing a DL architecture based on the 
segmented fundus image characteristics taken from the DIARETDB1 dataset.(14) This method 
outperformed more traditional methods. Zhan et al. used a coarse-to-fine classification for DR 
grading in conjunction with a CNN to identify five classes of DR severity,(15) significantly 
improving the classification of DR. AbdelMaksoud et al. used a new machine-learning-based 
classification system for DR grading to detect the early signs of DR. They used the new ML-
CAD system on four public datasets: DRIVE, STARE, IDRiD, and MESSIDOR.(16) Rory et al. 
integrated gradients and DL algorithms to assist the grading of DR.(17) This increased the 
accuracy of grading but also increased the time required for grading. De la Torre et al. tackled 
the problem of grading DR with an innovative method of pixelwise score propagation.(18) They 
assigned a score for each point of the fundus image. Hassan et al. presented a cascaded 
decoupled CNN for lesion-assisted identification and grading on OCT scans.(19) This network 
compared two distinct modules for grading retinopathy using lesion-assisted grading under 
clinical standards.
	 In this study, we investigated the classification of diabetic retinal images using 27 pretrained 
CNN models and various image enhancement techniques. The findings make two significant 
contributions. First, we review how various methods of image enhancement can increase the 
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Fig. 2.	 (Color online) Overall process proposed in this study.

accuracy in each channel of the retinal image. Second, we compare different pretrained CNN 
models to find a classification algorithm that produces the most accurate results in the shortest 
computing time.
	 The following is the structure of this paper. The datasets are described in Sect. 2.1. Image 
enhancement is discussed in Sect. 2.2 and the CNNs are described in Sect. 2.3. The findings are 
presented in Sect. 3. A conclusion is given in Sect. 4.

2.	 Materials and Methods

	 The block diagram in Fig. 2 shows the methodology of our research. An individual DR 
database from a previous publication.(7) was analyzed in this study. The experiments involved 
evaluating each channel of the original DR images using two improved techniques for classifying 
DR into five grades: none, mild, moderate, severe, and proliferative. The approach used 27 
pretrained CNNs in a single training session, as well as the classification of DR into two 
categories (no DR and DR). In addition to developing various performance matrices for 
quantifying network performance, we determined the elapsed time per image for the best-
performing network in each image enhancement classification technique.
	 The specifications of the study include information on the datasets and methods for 
improving strategies. In addition, performance matrices were used to assess the efficacy of 
various strategies. The following is a description of the parameters of the investigation, including 
information about the datasets, improvement strategies, methods used, and performance 
matrices.
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2.1	 Datasets

	 The Kaggle APTOS 2019 Blindness Detection (APTOS2019) dataset was created specifically 
for the Asia Pacific Tele-Ophthalmology Society’s 2019 Blindness Detection competition. This 
dataset, which is publicly available, was used to evaluate the DR grading in this study. It is a 
large collection of retinal images obtained under various imaging conditions. The collection was 
compiled to develop a machine learning model that could detect blindness without the need for 
medical screening. This dataset consists of 3662 color retinal images obtained from a variety of 
subjects in rural India. A clinician evaluated each image for DR and assigned it a severity score 
between 0 and 4 (1–mild, 2–moderate, 3–severe, 4–multiple). No PDR was present. As with any 
real-world dataset, both the images and the labels contain noise. The images may contain 
artifacts, be out of focus, or have inappropriate exposure. The photographs were collected over 
an extended period from a variety of medical facilities using a variety of camera types.

2.2	 Image enhancement techniques

	 Image enhancement is the process of highlighting important details during image processing 
and reducing or removing irrelevant details to improve image quality. The objective is to make 
images such as those in Fig. 3 more useful for a particular task. In this study, CLAHE and 
gamma correction were employed. This subsection describes these image enhancement 
techniques.

2.2.1	 Contrast-limited adaptive histogram equalization

	 Histogram equalization (HE) can be upgraded to a more sophisticated adaptive histogram 
equalization (AHE), which equalizes the histograms of small sections and increases the contrast 
of each region separately. Thus, the contrast and edges in each section of an image are modified 
in accordance with the local distribution of pixel intensities, rather than the actual image itself. 
However, this can increase the noise of the image. CLAHE prevents the contrast from being 
amplified to an undesirable degree. CLAHE is designed to work on discrete parts of an image, 
which it refers to as tiles, rather than the entire picture. After the so-called fictitious boundaries 
have been removed, the adjoining tiles are blended by bilinear interpolation.

2.2.2 Gamma correction

	 During image normalization, linear operations on individual pixels, such as scalar 
multiplication, addition, and subtraction, are carried out. These operations are performed on the 
pixels themselves. The pixels in the source image are subjected to a nonlinear operation known 
as gamma correction. Alternating the pixel values is one way that gamma correction can help 
improve the quality of an image. This is achieved by using the projection relationship between 
the pixel value and the gamma value, which is determined using an internal map.
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Fig. 3.	 (Color online) Image enhancement technique and histogram.

2.3	 Convolutional neural networks

	 Deep learning (DL) is an approach in machine learning that uses artificial neural networks 
and is modeled after the architecture of the human brain. DL also refers to methods that can 
automatically learn the mathematical representation of hidden and intrinsic relations within 
data.
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	 It extracts the spatial and temporal characteristics of an image in an automated fashion using 
neural networks. DenseNet121, DenseNet169, DenseNet201, EfficientNetB0 to EfficientNetB7, 
Inception ResNetV2, InceptionV3, MobileNet, MobileNetV2, MobileNetV3Large, 
MobileNetV3Small, NASNetMobile, ResNet101, ResNet101V2, ResNet152, ResNet152V2, 
ResNet50, ResNet50V2, VGG16, VGG19, and Xception were among the 27 pretrained DL CNNs 
used for the evaluation in this study.
	 DenseNet121, DenseNet169, and DenseNet201 are CNNs developed by Huang et al. in 
2017.(20) These models use dense connectivity, meaning that each layer in the network is 
connected to all the previous layers, which allows the network to learn more efficiently and 
reduces the number of parameters needed to train a model. DenseNet121 has 121 layers and 
approximately 8 million parameters, while DenseNet169 has 169 layers and approximately 14 
million parameters. DenseNet201 has 201 layers and approximately 20 million parameters. 
These models have high accuracy and efficiency and are often used in applications such as 
image classification and object detection.
	 EfficientNetB0 to EfficientNetB7 are CNN models developed by Tan and Le in 2019.(21) 
These models use a combination of efficient architecture design and model scaling to improve 
their accuracy and efficiency. They use techniques such as depthwise separable convolutions and 
weight-sharing to reduce the number of parameters needed to train them. EfficientNetB0 has 6.4 
million parameters, while EfficientNetB7 has 66.4 million parameters.
	 Inception ResNetV2 is a CNN model developed by Szegedy et al. in 2016.(22) It combines the 
Inception architecture, which uses a combination of different filters and pooling operations to 
capture complex patterns in the data, with the Residual Network (ResNet) architecture, which 
uses skip connections to improve the flow of information through the network. Inception 
ResNetV2 has approximately 55 million parameters and has high accuracy and efficiency.
	 InceptionV3 is a CNN model developed by Szegedy et al. in 2015.(23) It uses the Inception 
architecture with a few modifications, such as the use of batch normalization and more filters in 
some layers. It has approximately 23.9 million parameters and has high accuracy and efficiency. 
It is often used in applications such as image classification and object detection.
	 MobileNet, MobileNetV2, MobileNetV3Large, and MobileNetV3Small are CNN models 
developed by Google.(24) These models use a combination of depthwise separable and pointwise 
convolutions to reduce the number of parameters needed to train a model. MobileNet has 
approximately 4.2 million parameters, while MobileNetV2 has approximately 3.4 million 
parameters. MobileNetV3Large and MobileNetV3Small have approximately 9.9 and 2.5 million 
parameters, respectively. These models are designed to be efficient and run well on mobile 
devices and are often used in applications such as image classification and object detection.
	 NASNetMobile is a CNN model developed by Google in 2018.(25) It is designed to be efficient 
and accurate and has approximately 5.3 million parameters.
	 ResNet101, ResNet101V2, ResNet152, ResNet152V2, ResNet50, and ResNet50V2 are CNN 
models developed by He et al. in 2015.(26) These models use the ResNet architecture, which uses 
skip connections to improve the flow of information through the network. ResNet101 has 
approximately 44.6 million parameters, while ResNet101V2 has approximately 44.5 million 
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parameters. ResNet152 has approximately 60.2 million parameters, while ResNet152V2 has 
approximately 60.1 million parameters. ResNet50 has approximately 25.6 million parameters.
	 VGG16 and VGG19 are CNNs developed by Simonyan and Zisserman in 2014.(27) These 
models have high accuracy and are often used in applications such as image classification and 
object detection. VGG16 has approximately 138 million parameters, while VGG19 has 
approximately 143 million parameters. These models use a series of convolutional layers with 
small 3 × 3 filters, followed by max pooling layers, to extract features from the input data.
	 Xception is a CNN model developed by Chollet in 2016.(28) It has high accuracy and 
efficiency, and is often used in applications such as image classification and object detection. 
Xception has approximately 22 million parameters and uses a combination of depthwise 
separable and pointwise convolutions to reduce the number of parameters needed to train a 
model. It also uses a special type of skip connection called an “excitation” connection, which 
helps to improve the flow of information through the network.

2.4	 Evaluation

	 Accuracy, sensitivity, specificity, precision, and F1 score were the five performance metrics 
used to evaluate the classification performance of the various CNNs. These metrics are defined 
in Eqs. (1)–(5). The networks were compared using performance metrics specific to each class, 
as well as an overall accuracy metric. This was necessary because each class contained a 
different number of images.

	 Accuracy (ACC) = (TP + TN) / (TP + FN + FP + TN)	 (1)

	 Sensitivity (SE) = TP / (TP + FN)	 (2)

	 Specificity (SP) = TN / (FP + TN)	 (3)

	 Precision (P) = TP / (TP + FP)	 (4)

	 F1 score (F) = 2 * TP / (2 * TP + FN + FP)	 (5)

	 We used the terms true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) to indicate the images correctly identified as having diabetic disease, the healthy 
retina images correctly identified as normal, the images incorrectly identified as diabetic, and 
the unhealthy retina images that were incorrectly identified as healthy, respectively. We 
compared the performance characteristics of classification networks by analyzing their elapsed 
time per image, which is the amount of time required for each network to classify an input image 
into each category.
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Fig. 4.	 (Color online) Block diagram of the experimental setup.

Fig. 5.	 (Color online) Accuracies of models for classification between the five classes of DR images by using two 
image enhancement methods.

3.	 Results

	 The initial step of the experiment consisted of enhancing the quality of the original images. 
Following this, the dataset was divided into a learning set of 70% and a test set of 30%. Then, the 
learning dataset was used to instruct the model and determine which model provided the best 
overall performance. After obtaining the model with the highest performance, the test dataset 
was used for evaluation. Figure 4 is a block diagram of the experimental setup.
	 The aim of the experiments was to determine how DR patients should be compared with 
normal patients. Figure 5 shows a comparison of the accuracies of the models in classifying the 
images by using two image enhancement methods. The initial part of the experiment consisted 
of assessing how well each model performed. Only one session was required to learn the model.
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Fig. 5.	 (Color online) (Continued) Accuracies of models for classification between the five classes of DR images by 
using two image enhancement methods.
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	 Each chart provides specific information regarding the accuracy of each method and the 
color space of the image, which is broken down into 12 categories: RGB, RGB with CLAHE, 
RGB with Gamma, R channel, R channel with CLAHE, R channel with Gamma, B channel, B 
channel with CLAHE, B channel with Gamma, G channel, G channel with CLAHE, and G 
channel with Gamma. The following are the findings for each model and technique. When used 
in conjunction with DenseNet201, the green channel image and the CLAHE technique achieved 
the highest accuracy of 79.33%, as shown in Fig. 5, but the processing of this model took a 
considerable amount of time.
	 On the other hand, the minimum amount of time needed to calculate MobileNetV3Small was 
38.68 s (Fig. 6), but the accuracy was below 75%. Selecting models and improving image quality 
involve making trade-offs between accuracy and processing time. MobileNet and CLAHE were 
combined to create the model used in this investigation, which had an accuracy of 74.9% and a 
training time of 111.41 s per epoch.
	 Comparing the accuracies of the models in each improvement technique for each color 
channel of a DR image, in most cases we found that the gamma technique was more accurate 
than the CLAHE technique for both color and red channel images. This is because the gamma 
technique uses a gamma matrix instead of a CLAHE matrix to calculate its improvements. 
However, for the green channel, the CLAHE technique was more accurate. The green channel 
with CLAHE also had a significantly higher accuracy for color images in some models, despite 
having no significant technical bearing. Most of the technical improvements demonstrated an 
increase in accuracy, as seen in the results and performance comparison in Table 2.(29–38)

	 Figure 7 shows the outcomes of using the MobileNet model on a test set organized according 
to the severity of the disease after the model had been trained for a total of 50 epochs. Normal 
subjects were identified with a precision of 96%. Among those with DR, the precision was 50% 
for mild DR, 68% for moderate DR, 43% for severe DR, and 59% for proliferative DR. Figure 8 
illustrates an example of classification into the five grades of DR with MobileNet.

Fig. 6.	 (Color online) Training time for each model.
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Fig. 7.	 (Color online) Confusion matrix of MobileNet with five classifications.

Table 2
Comparison of performance characteristics of the DR grading.
Author (year) Dataset (class) Architecture ACC (%) SEN (%) SP (%) P (%) F1 (%)
Gabriel et al.(29) (2017) EyePACs (2) VGG16 83.68 57.47 93.65 — —
Sraddha et al.(30) (2021) DIARETDB1(2) Custom 98.7 99.6 98.2 — —
Ramzi et al.(31) (2021) APTOS 2019(2) ResNet 96.35 — — — —
Zhan et al.(32) (2020) EyePACs (2) CF-DRNet 83.10 53.99 91.22 — —
Ghosh et al.(37) (2017) EyePACs (2) Custom 95 — — — —
Shaohua et al.(33) (2018) EyePACs (5) VGGNet 95.68 86.47 97.43 — —
Zhitao et al.(34) (2021) EyePACs (5) SE-MIDNet 88.24 99.43 97.6 — —
Mehedi et al.(35) (2022) APTOS 2019 (5) Custom 92.49 92 — 93 93
Yusaku et al.(36) (2020) EyePACs (5) Custom 48.8 81.5 71.9 — —
Ghosh et al.(37) (2017) EyePACs (5) CNN 85 95 88.2 — —
Shanthi et al.(38) (2019) MESSIDOR (5) Custom 96.6 95.3 97.3 95.3 —
Our proposed APTOS 2019 (5) MobileNet 96.95 97.80 97.75 96.17 96.98

	 In addition, in the case that only one disease is considered from the model that came before it, 
Fig. 9 depicts the confusion matrix for MobileNet, which included two classifications. When 
evaluating retinal images, we obtained an accuracy of 96.95%, a precision of 96.17%, a 
sensitivity of 97.80%, a specificity of 96.98%, a specificity of 97.75%, and an F1 score of 
96.98%.
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Fig. 9.	 (Color online) Confusion matrix of MobileNet with two classifications.

Fig. 8.	 (Color online) Example of classification into five DR grades with MobileNet.
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4.	 Conclusion

	 We proposed a method of grading DR using two distinct image enhancement techniques for 
each image channel and 27 pretrained CNN models for a single epoch. Using the Kaggle APTOS 
2019 Blindness Detection dataset, performance was categorized as normal, moderate, mild, 
proliferate, or severe. The MobileNet model with CLAHE enhancement and the green channel 
demonstrated the best performance. The five-class DR grading system achieved high accuracy 
for normal images. For the two-class evaluation, the F1 score was 96.98%, the sensitivity was 
97.80%, and the accuracy was 96.17%. Even though the CNN model with the enhancement 
technique has made more precise management and therapy possible, ophthalmologists must 
further improve its performance, interpretability, and reliability. In the future, the trained model 
in this study will be embedded into a controller or mobile phone application connected to a 
microscope for DR grading.
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