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 The tire sidewall is the weakest part of the entire tire. Although the tire sidewall is not 
directly in contact with the ground, it often undergoes great deformation. Weather, road 
conditions, and driving habits can also affect the tire life. Cracking is one of the earliest signs of 
tire aging and deterioration. If a driver does not regularly inspect their vehicle, damage to a tire 
may remain undetected and an uncontrolled tire explosion may occur. In this study, we use deep-
learning-based artificial intelligence computer vision to train a deep neural network model using 
a large number of digital images to detect tire sidewall cracks instead of traditional sensors, 
inspection devices, or visual inspection methods. In this study, tire sidewall crack images were 
preprocessed and annotated using the annotation program VGG Image Annotator (VIA).  
Residual network 50 (ResNet50) is used as the backbone of mask-region-based convolutional 
neural networks (Mask R-CNNs). The preprocessing training and test results of our dataset show 
that the improved Mask R-CNN has better mean accuracy (mAP) and detection accuracy than 
the original Mask R-CNN and Faster-R-CNN and can not only reduce inspection costs and time, 
but also improve the efficiency of tire crack analysis.

1. Introduction

 The performance of tires has an important influence on the safety of vehicles. Tires in 
practical use inevitably encounter a variety of complex and harsh road conditions that can cause 
tire wear, scratches, fatigue cracks, and other defects, making tire quality inspection very 
important for the tire industry. Tires, most of which are made of synthetic rubber, harden over 
time. Usually after four years of installation, small cracks appear in the tire sidewall. Cracks in 
the sidewall are more dangerous than cracks in the tread, because most sidewalls are only half 
the thickness of the tread, and the steel wire is the weakest at the sidewall. Thus, if a serious 
crack occurs in the sidewall, the tire should be replaced immediately.
 The tire plunger tester system has been used by Taiwan Rubber Research & Test Center 
(TRC) as the tire quality inspection standard in Taiwan. The test items include the bead 
unseating test; plunger test; lateral, vertical, and envelope stiffness tests; footprint analysis; 
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dimension measurement; and inflation and vertical pressure tests.(1) There are other similar 
testing systems used in the tire industry.(2) However, these systems are expensive and not 
specifically used to detect tire cracks. Behroozinia et al. proposed a health monitoring algorithm 
to predict the location of cracks by comparing the acceleration signals of undamaged and 
damaged tires obtained from a triaxial accelerometer connected to the tire’s inner liner.(3) 
However, this system requires the installation of additional sensors and is not suitable for 
practical crack inspection.
 Computer vision is a technology that uses image sensors and computers to replace the human 
eyes to recognize, track, and measure targets, and then uses machine learning or deep learning 
techniques to achieve accurate recognition through further image processing. Computer vision 
combined with artificial intelligence has been widely used in various types of sensors, such as 
light detection and ranging (LiDAR) and radio detection and ranging (RADAR), for sensing the 
physical environment around self-driving cars,(4–6) and computer vision is often paired with 
cameras to identify and classify people, objects, and debris. It can significantly improve the 
shortcomings of traditional manual inspection and realize high-speed and accurate inspection in 
automatic production. In recent years, many algorithms based on convolutional neural networks 
(CNNs) have developed rapidly in the field of image recognition. Object detection is a very 
important field in computer vision, which has undergone major changes since the introduction of 
deep learning. The most well-known regions with CNN features (R-CNN) is the CNN series, as 
well as You Only Look Once (YOLO) and single-shot object detection (SSD). The development 
history of the R-CNN series includes R-CNN in 2014,(7) and Fast-R-CNN(8) and Faster-R-CNN(9) 
in 2015. As an alternative to the traditional visual methods, the mask-region-based CNN (Mask 
R-CNN) is a case segmentation model combining fully convolutional networks (FCNs) and 
Faster-R-CNN.(10)

 The use of data augmentation to increase the diversity and amount of training data has 
become an essential part of deep learning model training for image data. Mikołajczyk and 
Grochowski proposed a data augmentation approach and used the generated output to train deep 
learning models, demonstrating the importance of data enhancement in deep learning image 
classification models.(11) To demonstrate the use of Mask R-CNN in entertainment and how the 
model performs on different instances during training, Paste and Chickerur used different 
cartoon episodes featuring the cartoon characters Tom and Jerry and converted them into 
frames. They selected around 1500 images, which were arranged so that no two images had a 
similar object size, color, background, camera angle, and so forth. Mask R-CNN was used to 
segment the cat and mouse images with the purpose of studying the behavior of the model while 
performing semantic segmentation. This enabled the authors to infer some insights about how 
the model is trained and to analyze the types of results achieved in a variety of instances during 
the training phase of the model.(12)

 Zhu et al. applied Mask R-CNN to automatic tooth detection and segmentation. Among the 
100 images obtained from a hospital, 80 images were used as training data, 10 images were used 
as validation data, and the remaining 10 images were used as testing data. They found that Mask 
R-CNN also performs well in the segmentation of complex and crowded tooth structures.(13) In 
the field of image identification, Saha et al. proposed a combination of image segmentation and 
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image restoration to enhance existing road images and create an obstacle-free (vehicle) road 
dataset. The method used image inpainting to remove vehicles from input images. Mask R-CNN 
was employed to detect vehicles, and an in-image model was used to remove the detected 
objects. To improve the efficiency of identification, a morphological transformation method was 
used. Morphological transformations were also adjusted to the output, and multiple iterations 
were sometimes required to improve the results.(14)

 The use of a deep learning algorithm to automatically detect road potholes was proposed by 
Rohitaa et al. Three deep learning models, namely, CNN, Mask R-CNN, and YOLOv3, were 
trained and tested using a dataset. The results of the three models were compared using 
evaluation metrics. Their system also incorporated hardware components for reporting potholes 
so that action could be taken to repair and maintain roads and to warn drivers of potholes.(15) 

Zhang et al. proposed a segmentation algorithm for vehicle damage detection based on migration 
learning and an improved Mask R-CNN.(16) They first collected car damage images for 
preprocessing, then used Labelme to make dataset labels and divided the dataset into a training 
set and test set. The results showed that compared with the original Mask R-CNN, the improved 
Mask R-CNN has better average precision value, detection accuracy, and mask accuracy.
 To reduce the cost and increase the accuracy of identification, in this study, we applied Mask 
R-CNN to deep-learning-based artificial intelligence computer vision for object detection and 
instance segmentation of tire cracks as an alternative to expensive testers and additional sensors.

2. Materials and Methods
 
 In this study, the whole process from a standard crack diagram to the generation of an 
accurate segmentation diagram is shown in Fig. 1. The set of preloaded object images must be 
preprocessed to a fixed size, then the fixed-size dataset is labeled to enhance the training data by 
data augmentation. Unlike the original Mask R-CNN, in this stage, we add a step of image 

Fig. 1. (Color online) System flowchart.
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histogram equalization (HE) to obtain uniformly distributed color intensities to improve object 
recognition. The processed dataset is fed into a neural network model for training, and the 
masked region is substituted into the CNN after the training to obtain the final result.

2.1 Mask R-CNN

 Mask R-CNN is one of the structures of instance segmentation, which is a prototype of 
Faster-R-CNN with the addition of branches of the mask. The region of interest (ROI) pooling in 
Faster-R-CNN is also changed to ROI Align in Mask R-CNN. Because the ROI pooling 
operation is not based on pixel-to-pixel alignment in the image, an integer that has little 
influence on the boundary box but a great influence on the accuracy of mask segmentation will 
be selected. A semantic segmentation branch is added to realize the prediction relationship 
between the mask and classification. The mask branch only performs semantic segmentation, 
and the other branch performs the classification prediction operation. Figure 2 shows the 
workflow of Mask R-CNN.

2.2 Backbone

 CNNs have a very wide range of applications in the field of image classification. 
Theoretically, the deeper the network structure, the better its fitting ability should be. However, 
it has been experimentally found that when the depth of the network reaches a certain level, the 
performance of the network decreases rather than increases. ResNet is a residual network, which 
can be understood as a sub-network that is stacked to form a very deep network. ResNet utilizes 
skip connections to add the output of the previous layer to the output of the stacked layers, 
simplifying the training of these networks and improving the efficiency of deep neural networks 
with many neural layers while minimizing the percentage error. The numbers in the names of 
CNNs, such as 50 and 101, represent the number of convolutional plus fully connected layers. 

Fig. 2. (Color online) Mask R-CNN workflow.
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Generally, residual network 101 (ResNet101) is used for the backbone network of Mask R-CNN, 
but too many layers will reduce the computing efficiency. The method of crack detection used in 
this study requires a low number of network layers. Therefore, to improve the computing speed, 
residual network 50 (ResNet50) is adopted in this study.
 Different objects or their features are different in size (or scale) on different images. When we 
perform object detection, feature extraction at a single scale is often insufficient. Image 
pyramids are a common tool for solving problems at different scales. Most object detection 
algorithms only use the top-level features of an image pyramid for prediction; whereas the 
bottom-level features have less semantic information but accurate object locations, higher-level 
features have more semantic information but coarser object locations, and the detection accuracy 
may be low for small objects. The feature proposal network (FPN) algorithm combines the 
concepts of a top-down pathway and skip connections, making full use of the CNN to generate 
feature maps at each stage while allowing each feature map in the image pyramid to have higher-
quality feature information. The FPN extracts side features at different scales from the ResNet 
backbone for each layer and uses the high resolution of the lower-layer features and the high 
semantic information of the higher-layer features for prediction by fusing the features of these 
different layers.

2.3 Region proposal network

 Before the development of Faster-R-CNN, a selective search was used to extract the post-
selection box in object detection architectures such as R-CNN and Fast-R-CNN. Compared with 
a region proposal network (RPN), a selective search is more time-consuming and cannot 
integrate the whole object detection into one network. The main goal of an RPN is to realize the 
function of region proposal. This is performed by scanning the image and identifying areas that 
may contain objects. An RPN runs at very high speed on a GPU. The use of weights in an FPN 
allows an RPN to efficiently reuse the extracted features and avoid double computation.

2.4 Feature pyramid network

 An FPN is used to improve the feature extraction ability of a CNN by fusing feature maps of 
different scales. To extract features from an FPN, Mask R-CNN obtains input images through a 
CNN. In Fig. 3, the five gray boxes with different widths and heights depicted as C1 to C5 
represent the five stages of ResNet50.(17) A CNN is a collection of filters with training weights 
and biases. The weights and biases determine the features to be emphasized or ignored in the 
input image. During training, the weights and biases are optimized to perform a given task on a 
given dataset. In Mask R-CNN, ResNet50 is used to extract the main features. An increase in 
width and height indicates an increase in depth and a decrease in resolution of the convolutional 
layer in ResNet50. The feature map created by the CNN is transferred to the FPN in the next 
step.(18) Since most CNNs reduce the size of the input image during feature extraction, the FPN 
recovers the spatial information that may be lost during the reduction. The feature maps 
extracted by the FPN are recovered to the five feature maps P5 to P1 with different sizes.
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 Both Mask R-CNN and Faster-R-CNN use the same RPN. Under the preset conditions, three 
anchor scales are used. Each scale contains almost all the targets in the training process, but 
sometimes the training model leads to unnecessary calculations. Faster-R-CNN uses ROI 
pooling. The role of ROI pooling is to pool the corresponding region in the feature map into a 
fixed size according to the position coordinates of the preselected box for subsequent 
classification and bounding box regression operations. Since the position of the preselected box 
is usually obtained from the model regression, it is generally a floating-point number, and the 
pooled feature map requires a fixed size. In the discretization process, coordinates are rounded 
to integers, which leads to inaccuracy of the feature map. ROI Align removes the quantization 
operation and uses bilinear interpolation to obtain the image values on the pixel points with 
floating-point coordinates, which preserves the position of the decimal point so that features 
align correctly with the input. As shown in Fig. 4, ROI Align divides the candidate area into 
k × k cells, calculates four fixed coordinate positions in each cell, computes the values of these 
four positions by bilinear interpolation, and then performs the maximum pooling operation.
 The bilinear interpolation performed by ROI Align is shown in Fig. 5.(19) The last interpolation 
point is P, and the four fixed coordinate positions A11, A12, A21, and A22 in the cell are known. B1 
is obtained from A11 and A21 by linear interpolation. Similarly, B2 is obtained from A12 and A22 
by linear interpolation, as shown in Eqs. (1) and (2). P is obtained from B1 and B2 by linear 
interpolation, as shown in Eq. (3). The bilinear interpolation performed to find the coordinates 
(x, y) is given by Eq. (4).(20)
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Fig. 3. (Color online) FPN network architecture.
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2.5	 Gaussian	filter

 The Gaussian filter, also known as the Gaussian blur or Gaussian smoothing, is a commonly 
used method to create a smooth image or reduce image noise. It preserves multiple image 
information after processing.
 Equation (5) is the formula of the specific Gaussian filter function, where σ is the standard 
deviation. If σ is smaller, then the center coefficient of the generated template becomes larger 
and the surrounding coefficients become smaller; thus, the smoothing effect on the image is not 
obvious. In contrast, when σ is larger, then the difference between the individual coefficients of 
the generated template is not significant, making the template more similar to the mean template, 
and the smoothing effect on the image is more obvious. 
 k is the size of the required filter template, and a common template size is a (2k + 1) × (2k + 1) 
matrix with an odd number of rows and columns. The minimum template size is 3 × 3 when 
k = 1.

 ( ) ( )2 2
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Fig. 4. (Color online) ROI Align. Fig. 5. (Color online) Bilinear interpolation in ROI 
Align.
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 Taking a 3 × 3 Gaussian filter template as an example, x and y represent the numbers of rows 
and columns, respectively, and the coordinates of each position (x, y) are shown in Fig. 6. The 
coordinates of each position are substituted into Hx,y, each value obtained is arranged according 
to the position, and the filter kernel is obtained. 
 The following is a demonstration of a 3 × 3 Gaussian filter template calculation. When the 
standard deviation σ is 1.5, by substituting this value into Eq. (5), the results in Table 1 are 
normalized to those in Table 2.

2.6 HE

 HE, which can evenly distribute the color intensity of image pixels, can give an image richer 
colors and improve its contrast, preventing the image from being overexposed or too dim. HE is 
often used to optimize overexposed or dim images. Its main purpose is to evenly map the color 
intensity of the original image pixels to the entire color range to obtain a uniformly distributed 
color intensity image. In this paper, we modified the original Mask R-CNN process by adding an 
HE step to the image set to improve the detection recognition of the graphs. 
 Equation (6) is the formula used for HE,(21) where x is the current pixel value, cdf represents 
the cumulative distribution function, S is the greyscale value (0–255), and L and W are the height 
and width of the image, respectively.

 ( ) ( )
( ) ( )1min

min

cdf x cdf
h x round S

L W cdf
 −

= −  × − 
 (6)

 In Fig. 7, the left side is the color intensity range before equalization, and the right side is the 
color intensity range after equalization. The x-axis of the greyscale histogram shows the 

Fig. 6. (Color online) 3 × 3 Gaussian filter template.

Table 1
Gaussian filter with σ = 1.5, k = 1.

0.0453542 0.0566406 0.0453542
0.0566406 0.0707355 0.0566406
0.0453542 0.0566406 0.0453542

Table 2
Gaussian filter (normalized) with σ = 1.5, k = 1.

0.0947416 0.118318 0.0947416
0.118318 0.147761 0.118318
0.0947416 0.118318 0.0947416
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brightness of the pixels (0–255) and the y-axis shows the number of pixels of a given brightness. 
The color intensity of the original image pixels is mapped uniformly over the entire color range.
 Figure 8(a) is an image of a tire with cracks, and Fig. 8(b) shows that its brightness is 
concentrated around 50, indicating that it is a dark image. Figure 9(a) shows the HE results; the 
image is obviously brighter than that in Fig. 8(a). Figure 9(b) shows that the brightness is evenly 
distributed, with a maximum value appearing above a value of 250, indicating that the bright 
area accounts for a large proportion of the image.

2.7 Data augmentation

 The general reason for overfitting is that the training sample data is insufficient or the model 
is overtrained; thus, a model trained with the sample data has low prediction ability for data 
outside the sample. The purpose of data augmentation is to create more data by transforming the 
existing dataset by flipping, panning, adjusting the brightness, and adjusting the scale to create 
more data. Although the same images are used, the machine regards the transformed images as 
new images.

Fig. 7. (Color online) Color intensity range before and after HE.

Fig. 8. (Color online) (a) Original image and (b) greyscale histogram.

(b)(a)
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 The tire dataset used in this paper is from a dataset of 554 tire cracks provided by Yaswanth 
Gali of Kaggle, which is a widely recognized machine learning and data science community 
with a large number of open datasets for scientific work. By preprocessing to exclude many 
cracks unrelated to the tire sidewall, the original 554 images were reduced to 234 images. To 
avoid overfitting and reduced prediction accuracy due to overfitting, the training dataset was 
augmented by horizontally flipping the images and other transformations.
 Figures 10(a)–10(f) show randomly rotated images with different rotation angles generated to 
enhance the image effect with a maximum deviation of ±40°, which are used to simulate 
photography from different angles.

Fig. 10. Images randomly rotated by ±40°.

(a) (b) (c)

(d) (e) (f)

Fig. 9. (Color online) (a) Image and (b) greyscale histogram after equalization.

(b)(a)
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 Random shifts can randomly generate enhanced images with horizontal and vertical 
differences between their centers. The images are randomly shifted by their length and width 
with a maximum offset of 20% as shown in Figs. 11(a)–11(f). Random shears are used to 
randomly generate enhanced images without moving the vertical axis, as shown in Figs. 12(a) 
and 12(b). The images in Fig. 13 were generated by shearing the image counterclockwise by 
different angles. Random zooms can randomly generate different zoom ratios to enhance the 
diversity of images, as shown in Figs. 14(a)–14(f). Finally, random flips can randomly generate 
horizontal and vertical flips to enhance the diversity of images, as shown in Figs. 15(a)–15(f).

Fig. 11. Images randomly shifted by up to 20%.

(a) (b) (c)

(d) (e) (f)

Fig. 12. (a) Images before and (b) after random shears.
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Fig. 13. Randomly sheared images.

(d) (e) (f)

(a) (b) (c)

Fig. 14. Randomly zoomed images.

(a) (b) (c)

(d) (e) (f)

3. Experimental Results

3.1 Experimental data

 Figure 16 shows part of the dataset of healthy tire sidewalls, and Fig. 17 shows part of the 
dataset of tire sidewalls with cracks.
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Fig. 15. Randomly flipped images.

(a) (b) (c)

(d) (e) (f)

Fig. 16. (Color online) Healthy tire sidewalls.
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Fig. 17. (Color online) Tires with cracks in the sidewall.

3.2 Data augmentation results

 In the machine learning, the entire dataset cannot be used for training, and some of the 
datasets must be retained as test data to evaluate the final performance of the model. Holdout 
validation is a static method of dividing datasets into training sets, validation sets, and test sets 
according to a fixed ratio. In this study, holdout validation is used with the dataset divided into a 
fixed 8:1:1 ratio of training, validation, and test sets as shown in Fig. 18.(22)

 Mean accuracy (mAP) is currently the most commonly used metric to measure the 
performance of an object detection model. It is based on the sub-metrics of the confusion matrix, 
union intersection (IoU), recall, and precision. A confusion matrix has four attributes: true 
positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs). Object 
detection mainly requires manual labeling, which is usually marked as a rectangular bounding 
box called the ground truth, and the bounding box generated by deep learning identification is 
called the predicted bounding box. IoU is equal to the area of the intersection of two bounding 
boxes divided by the area of the union, and this value is between 0 and 1. If IoU is greater than a 
threshold (usually 0.5), the target is considered as a TP; otherwise, it is considered as an FP. A 
higher IoU indicates that the predicted bounding box coordinates are very similar to the ground-
truth box coordinates. The proportion of predicted targets that are actually targets is called the 
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precision [Eq. (7)], which indicates whether the result is accurate when the model predicts the 
target. The actual proportion of targets that are correctly predicted to be targets is called the 
recall [Eq. (8)], which indicates the ability of the model to find the targets. AP is the area under 
the precision–recall curve. Since precision and recall are both between 0 and 1, AP is also 
between 0 and 1. As shown in Eq. (9), AP divides recall into 11 points, namely {0, 0.1, ..., 0.9, 1.0}, 
and finds the maximum precision of these points for averaging. mAP is the average of the AP of 
each class, which is expressed as Eq. (10).

 TPPrecision
TP FP

=
+

 (7)

 TPRecall
TP FN

=
+

 (8)

 
{ }

( )
0,0.1, 0.2, ,1

1
11 r

AP P r
∈ …

= ∑  (9)

 
 P(r): interpolated precision that takes maximum precision over all recalls greater than r.

 
1 k

i
i

mAP AP
k

= ∑  (10)

 After data augmentation, the number of images in the dataset was increased from 234 to 
5850. The original training set was expanded from 188 to 4680, the validation set was expanded 

Fig. 18. (Color online) Workflow of holdout method.



828 Sensors and Materials, Vol. 35, No. 3 (2023)

from 23 to 585, the test set was expanded from 23 to 585, and the mAP value was increased from 
0.56 to 0.82. The results in Table 3 show that mAP of the training data was greatly improved 
from 0.56 to 0.82. This demonstrates that data augmentation effectively enhances mAP and does 
not cause overfitting due to insufficient data.

3.3 Experimental results

 The neural network of supervised learning must be annotated with images before training, so 
that the trained model knows the location of the recognition target and can perform classification. 
VGG Image Annotator (VIA) is an open-source image annotation tool developed by the Visual 
Geometry Group. It can annotate rectangles, circles, ellipses, polygons, points, and lines. In this 
study, we use VIA to annotate images before training the model. Because of the irregular shape 
of the cracks, we use polygons to mark the target area, so that the target area and the background 
are completely separated. This allows better differentiation between the target area and the 
background during model training.
 Figures 19–21 show images of tire cracks from the test datasets that have different 
brightnesses, shapes, and sizes. The experimental results show that Mask R-CNN successfully 
detected multiple cracks. As shown in Fig. 19, all cracks were detected without FPs in a bright 
environment, and detection was not affected by the text on the sidewalls. Figure 20 shows that 
among the complex cracks, some small cracks were not precisely segmented due to the resolution 
limitation. In Fig. 21, the original image of the tire sidewall was dark, and the brightness of many 
cracks was too close to that of the background, so even when HE was used, the detection 
performance was limited. Although the positioning accuracy was high, the actual segmentation 
effect was poor.
 Image classification determines whether the input image contains a specific object. Object 
localization is further marked by a bounding box. By using ground truth and predicted bounding 
boxes, indices of precision and recall can help us evaluate the performance of the model. In this 
case, precision means the proportion of all cracks predicted by the system that are indeed cracks, 
and recall means the proportion of all actual cracks that are correctly predicted by the system. 
Precision and recall are influenced by each other. Ideally, both should be high, but in general, if 
the precision is high, the recall is low, and if the recall is low, the precision is high. Nine, four, 
and two cracks were detected in the images in Figs. 19–21, respectively. The cracks in each 
image are given a letter in alphabetical order, and their localization precision, localization recall, 
classification precision, and classification recall are calculated. Table 4 shows the performance 
evaluation results of the trained Mask R-CNN model as percentages (higher is better). These 
four evaluations are all high, showing that our proposed system model achieves good results.

Table 3
Comparison table of mAP before and after data augmentation.

Training Validation Test mAP
Before data augmentation 188 23 23 0.56
After data augmentation 4680 585 585 0.82
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Fig. 19. (Color online) Crack detection result of trained Mask R-CNN in bright-light environment (I). (a) Original 
image and (b) crack detection.

Fig. 20. (Color online) Crack detection result of trained Mask R-CNN in bright-light environment (II). (a) Original 
image and (b) crack detection.

Fig. 21. (Color online) Crack detection results of trained Mask R-CNN in low-light environment. (a) Original image 
and (b) crack detection.

(a) (b)

(a) (b)

(a) (b)
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3.4 Comparison of evaluation results

 To demonstrate the effectiveness of the system, we compared the proposed algorithm with 
the original Mask R-CNN and the original Faster-R-CNN, and the experimental results are 
shown in Table 5. The test environment for this experiment is as follows: CPU: Intel 
i7-9700@4.5G, RAM: DDR4 16G@2666 MHz, GPU: Nvidia GeForce GTX1050 2G, OS: 
Windows 10 Professional (x64), programming language: Python 3.6.
 The training time of the proposed modified Mask R-CNN is close to that of the original Mask 
R-CNN but slower than that of Faster-R-CNN. For model detection, it is much faster than the 
original Mask R-CNN network but still slightly slower than Faster-R-CNN. However, it has the 
highest performance for mAP and localization precision, as shown in Fig. 22. This result shows 
that our HE preprocessing of the images can indeed improve the performance of the system 
model.

Table 4
Evaluation results.

Localization precision Localization recall Classification 
precision Classification recall

Fig. 19 
cracks

A 92.63 100 86.28 92.35
B 98.32 86.48 87.52 81.53
C 100 100 93.48 87.56
D 100 100 89.63 88.25
E 94.86 92.38 81.26 80.29
F 100 100 93.51 95.21
G 100 100 82.42 81.65
H 97.42 95.07 86.39 84.28
I 100 100 91.54 86.76
Average 98.13 97.1 88 86.43

Fig. 20 
cracks

A 90.27 93.58 91.32 83.27
B 100 98.48 86.59 94.63
C 97.56 100 91.43 87.59
D 99.04 100 95.06 82.65
Average 96.71 98.01 91.1 87.03

Fig. 21 
cracks

A 88.53 91.43 92.41 84.59
B 82.48 97.02 77.12 92.2
Average 85.5 94.22 84.76 88.39
Overall 
average 93.44 96.44 87.95 87.28

Table 5
Comparison of evaluation results.

Modified Mask R-CNN Original Mask R-CNN Original Faster-R-CNN
mAP (%) 91 82 73
Localization precision (%) 93.4 90.1 89.7
Training time (h) 10.5 11 8
Test time (s) 5.5 10.2 4.5
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4. Conclusions

 In this study, we propose a modified Mask R-CNN algorithm for the detection of tire cracks.
Unlike the traditional Mask R-CNN algorithm, we add HE to the data preprocessing of the 
image set to improve the recognition ability and use data augmentation to expand the data of the 
image set fivefold to avoid overfitting. The experimental results show that mAP of the training 
data is improved by 46.4%. In the tire crack detection experiment, good results were obtained for 
both the precision and recall evaluation metrics, and about half of the localization evaluation 
metrics reached 100% under different light scenarios. Our proposed method was also compared 
with the original Mask R-CNN and Faster-R-CNN and achieved the best results in both mAP 
and localization accuracy, thus demonstrating the good performance of the proposed method.
 There are still some shortcomings of the proposed method. For example, although HE can 
improve the problem of too dark or too bright images, it may not be possible to separate objects 
from the background if the object tones are too similar to the background color. In addition, 
since open-source datasets are for machine learning training under ideal conditions, it is 
sometimes impossible to accurately segment cracks without obvious damage. In the future, we 
hope to increase the accuracy of crack segmentation by increasing the diversity of the dataset 
and improving the edge contours used in image enhancement.
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