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 Slip detection is an essential technology for robotic grippers to autonomously grasp unknown 
objects and can be achieved using a tactile sensor. In this paper, we propose a high-performance 
multilayer-perceptron-based slip detection algorithm that utilizes only normal force data 
obtained by frequency selective surface(FSS) sensor arrays. This is achieved in three stages in 
this study. First, slip and no-slip training data are aggregated such that the data closely resemble 
those of the real world. Second, the most suitable means of preprocessing the raw sensor output 
is identified. Third, the classification method with the highest performance is chosen on the 
basis of a performance comparison among various classification techniques. The online 
performance of the algorithm is evaluated by conducting two tasks: a simple pick and place task 
and a task of maintaining a stable grasp of an object whose weight is changing.

1. Introduction

 With the progress in technology and the increasing demand for the facilitation of human 
lifestyles, the paradigm in the research field of robotics has shifted from developing automated 
industrial robots to advanced human-assistant robots. This has made autonomous grasping by 
robotic grippers an increasingly important area of research. Robots that are capable of grasping 
and manipulating unknown objects autonomously could provide humans with valuable 
assistance. Autonomous grasping technology has been examined from a variety of perspectives. 
For example, compliant grip mechanisms have been developed in which a robotic gripper can 
passively adapt to the shape of the target object.(1–3) Despite the simple structure of these 
mechanisms and their capability of holding objects with a good grip, they cannot grasp thin or 
sharp objects. There have also been studies on reconfigurable grippers, such as vacuum suction 
grippers, which can be adapted to the shape of different objects to exert a suction force on them.
(4) In addition, the concept of adjustable grippers has been advanced, where the gripper is able to 
change both its shape and orientation in accordance with the object.(5) Reconfigurable grippers 
and adjustable grippers are generally beneficial in grasping objects of various shapes, but they 
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do not possess powerful grasping capabilities. These mechanisms are unlikely to provide an 
ideal solution to the problem of autonomous grasp techniques, since such techniques require the 
capability of not only grasping objects of many shapes, but also exerting a considerable grasp 
force. It is possible to achieve both characteristics using rigid robotic grippers, such as robotic 
hands or parallel grippers, equipped with a high-performance slip detection algorithm.(6,7)

 This type of mechanism can grasp a variety of objects while exerting sufficient grasp forces 
to ensure a solid grasp. Accordingly, most studies carried out on autonomous grasping have been 
concerned with developing algorithms for detecting slip. The research on slip detection 
algorithms for robotic grippers can be divided into four major phases: the development of 
sensors, the method of data collection, the method of data processing, and the classification 
method. Previous studies have generally focused on only some of these topics. The most 
commonly proposed or investigated types of sensors are electrode-based sensors such as 
BioTac,(8–11) center-of-pressure sensors,(12) and force-sensitive-resistor sensors.(13) Other 
commonly investigated sensors include the photodiode-based OptoForce sensor,(14) laser 
Doppler velocimeter sensors,(15,16) the vision-data-based GelSight sensor,(17) and TacTip 
sensors.(18) The output of these sensors can be force, torque, vibration, pressure, or point of 
contact. As part of the data collection process, in addition to acquiring sensor data for the control 
system, various approaches have also been applied to collect sensor data for training purposes. 
When a robotic gripper grasping a target object reduces its grasping force, slip is induced.(18) As 
slip occurs, by using a fixed camera to detect an ArUco marker on the object, it is possible to 
detect both the amount and the time of slip. Other methods of collecting sensor data involve 
dragging a sensor along the surface of the target object(11,19) or simply pulling it down.(9)

 The acquisition of raw data from the sensor is followed by a preprocessing phase in which 
input data for the classification phase is produced. This preprocessing phase has been a focus of 
study for researchers and various methods have been implemented. The raw data from the sensor 
was converted into data that represents the change in force per unit of time by Su et al.(8) 
Johansson and Flanagan analyzed frequency-domain data and concluded that vibration 
amplitudes at certain frequencies can respond to contact, transient motion, and the release of an 
object.(20) Similarly, other studies utilized this method in which the sensor output is first 
converted into frequency-domain data then divided into predetermined frequency ranges.(8,11,21) 
James and Lepora suggested using the velocities of the moving contact points for classification.
(18) Finally, Stachowsky et al. utilized the sensor data covariance to detect slip.(13) Despite the 
availability of these methods, some researchers did not preprocess the raw sensor data and used 
it directly for the next phase.(9,11,12,22,23)

 As mentioned above, the final phase in slip detection is classification, which has been 
investigated by many researchers, and a variety of classification methods have been developed to 
improve the detection of slip. Here, the support vector machine (SVM) and logistic regression 
(LR) are the most common methods of classification,(18) while the use of empirical data as a 
threshold for slip detection is one of the naive approaches.(8,13,18,21)

 Furthermore, owing to advances in computational power, many studies implemented deep 
neural networks. A long-short-term memory (LSTM) neural network was used by Van Wyk and 
Falco to develop robust slip detectors.(11) Later, Deng et al. implemented a multilayer perceptron 
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(MLP) network on the hidden layers of an LSTM-based encoder–decoder.(9) Gaussian mixtures 
and convolutional neural networks have also been used in several studies.(9,23)

 Although previous studies have achieved significant improvements in slip detection 
performance, some limitations must be considered. The data collection methods used in these 
studies often obtain data that is unrepresentative of real-life slip and no-slip conditions. 
Moreover, the preprocessing and classification methods used have not often been compared with 
other possible approaches.
 In contrast to previous studies, in this study, we aim to construct a high-performance slip 
detection algorithm based entirely on normal force data. We first use sensor arrays comprising 
frequency selective surface (FSS) normal force sensors, which are piezoresistive sensors 
manufactured by Honeywell Inc., to collect slip and no-slip data. The full hardware setup is 
shown in Fig. 1. To collect the slip and no-slip data using these sensors, we use mini steel balls to 
gradually increase the object’s weight and, consequently, induce slip. As a result of this 
methodology, we aggregate both linear and rotational slip data that are also distinguishable and 
continuous, which are characteristics of real-world slip data. Regarding the type of preprocessed 
data and classification method, unlike in previous studies, we thoroughly examine and 
investigate the available methods and select the one with the highest performance. After 
constructing the detection algorithm, we demonstrate its performance in executing two tasks: a 
simple pick and place task, and a task of maintaining a stable grasp of an object whose weight is 
changing.

2. Hardware Setup

2.1 Sensor array

 We use two sensor arrays, each containing five FSS sensors, which are mounted on a 
customized circuit board, as shown in Fig. 1. In addition, a customized silicon cover is attached 
to encapsulate the entire array. A maximum operating force of 14.7 N can be applied to each FSS 

Fig. 1. (Color online) Developed hardware setup for experiment, including 3-DOF arm with gripper and sensor 
arrays.
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sensor, and the sampling rate for the sensor array is 80 Hz. An HX711 analog-to-digital converter 
(JK Electronics Co.) and an Arduino Mega-2560 microcontroller board are used to transmit the 
data from the sensor array to the PC.

2.2 Gripper and manipulator

 As shown in Fig. 1, the Robotis RM-X52-TNM gripper has a simple parallel gripper 
mechanism that is operated by two links and a single crank. A Robotis Dynamixel actuator 
(XM430-W350-T) is implemented on both the gripper and manipulator. Without a load, the 
motor rotates at 45 rpm and has a stall torque of 4.2 Nm. The maximum distance between the 
gripper jaws is 75 mm without a sensor and 60 mm with a sensor. Using the Kinetic Robot 
Operating System, the gripper and manipulator are integrated with the sensor arrays on the PC.

3. Collection of Training Data

 To select the most appropriate data processing and ultimately train the classification 
structure, we require raw sensor outputs that have been labeled as slip or no-slip. To achieve this, 
we examined two data collection methods used in previous research. In one method, the sensor 
is dragged over the surface of the target object,(11,19) and in the other method, slip is produced by 
reducing the gripping force of the gripper while holding an object.(9) Following the examination 
of the results, we concluded that neither method is suitable for the collection of training data, and 
we proposed an alternative novel approach.

3.1 Methods from previous research

 Figure 2(a) shows the output of the 10-channel sensor arrays when the sensor drag method is 
applied. As shown in this figure, when the gripper is dragged, there is a clear distinction between 
slip and no-slip data. The advantage of this method is that it is very simple to implement and can 
be used to gather a large amount of data. However, this method does not allow the aggregated 
analysis of data for mild slips. Moreover, although slip is usually composed of both linear and 
rotational slip, only linear slip data is collected by this method. Figure 2(b) shows the normalized 
output signal when the force reduction method is applied.

Fig. 2. (Color online) FSS sensor array signal output for (a) sensor drag method and (b) force reduction method.
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 With the reduction of the grasp force, natural slip is induced, leading to both linear and 
rotational slip. However, as can be seen in the figure, the data show very discrete changes and, 
more importantly, there is no clear distinction between the times when slip does and does not 
occur. In summary, neither method is suitable for the collection of training data.

3.2 Proposed method

 We propose the following alternative method of collecting data. The gripper grasps a target 
object that has been marked with an ArUco marker. Four objects in the form of open boxes made 
of different materials on each side are provided (40 mm by 60 mm by 60 mm). Miniature steel 
balls are poured into the object to gradually increase its weight, causing slip, while a camera 
detects the pitch and height of the object, as shown in Fig. 3. Using the moving-average 
information of these two types of data, the sensor signal is automatically classified as slip or no-
slip. As can be seen in Fig. 4, the information from the marker identifies the time of slip and no-
slip; then the sensor signal outputs are labeled accordingly. The proposed method has the 
advantages of being able to differentiate between slip and no-slip, gather mild-slip data, avoid 
discrete data changes, and include both linear and rotational slip data.

4. Means of Processing Raw Sensor Output

 In this section, four candidate methods are compared to determine the most suitable method 
for processing the raw sensor output. The selected method for processing data is then enhanced 
through the adjustment of parameters.

4.1 Selection of suitable processed data

 Following the collection of slip and no-slip data, we examine which type of data is most 
suitable for input to the classification phase. In general, there are four potential options: the sum 
of the FSS signals, the difference between the sums per unit time, the covariance between the 

Fig. 3. (Color online) Schematic of the proposed data collection method.
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channels of the sensor array, and the Fourier transformed sum of the signals. The candidates are 
compared on the basis of the obtained data and the results of the Kolmogorov–Smirnov (KS) 
test. The results of each processed data type for a sample data set are shown in Fig. 5. As can be 
seen from the figure, the force sum is not applicable since the baseline itself changes constantly. 
Next, the force derivative shows inadequate distinction between mild-slip and no-slip data. Also, 
the p-value for the force derivative is relatively high. Covariance and frequency are advantageous 
because they can distinguish between mild-slip and no-slip regions, and their p-values are also 
low, although even these data contain some false negatives. To reduce the likelihood of such 
occurrences, we selected a sequence that includes both covariance and frequency information.

4.2 Parameter adjustment: covariance

 First, the algorithm for computing the covariance is arranged such that the difference between 
consecutive FSS signal outputs is calculated first:

 1)ˆ ( ) ( ) (i k i k i kt F t F td −= − . (1)

 Then, normalization is conducted:

Fig. 4. (Color online) ArUco marker data and FSS signal data obtained by the proposed method. (a) Data acquired 
with ArUco marker (pitch and height). (b) 10-channel output signal from FSS arrays.
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 Covariance is finally calculated as

 ( ) ( ) ( )T
k k kCov t X t X t= . (4)

 In this algorithm, the window size n determines the distinction between the patterns of slip 
data and no-slip data; the larger the value, the larger the disparity between the patterns of the 
two groups. As shown by the results in Fig. 6(a), with increasing n, the likelihood of false 
negatives is reduced. By experimentation, we found that the optimal value of n was 10.

4.3 Parameter adjustment: frequency

 The frequency is computed using the fast Fourier transform after the 10-channel data of the 
FSS are added together. In the case of the frequency, the number of data time steps included in 
the transform determines the number of sample frequencies. Similar to covariance, the larger the 

Fig. 5. (Color online) Four candidates for suitable processed data. (a) Force sum (p-value: N/A). (b) Force 
derivative (p-value: 8.35 × 10−29). (c) Covariance (p-value: 1.37 × 10−117). (d) Frequency (p-value: 3.89 × 10−111).
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window size n, the larger the distinction between the slip and no-slip patterns, as can be seen in 
Fig. 6(b). However, for the frequency, a larger n means a longer decay time (the time for the slip 
pattern to fade away after the slip is over). The decay time is also a significant factor since it may 
induce false positives once the slip is no longer occurring. To resolve this issue, the p-values and 
decay time were computed and examined for different values of n. We set a window size of 40 
based on the fact that it is more important for the algorithm to be able to classify mild slips than 
to have short decay times.

5.	 Classification	Method

 After choosing the most suitable input data for the classification method, we compared the 
performance of five potential classification methods. Next, the algorithm was evaluated offline 
and further improvements were made to enhance its performance.

5.1	 Selection	of	appropriate	classification	method

 The potential classification methods were an SVM, LR, an LSTM network autoencoder 
combined with an MLP in the hidden layers, an LSTM network with an MLP, and lastly, a 

Fig. 6. (Color online) (a) Behavior of covariance data for window sizes of 1, 5, and 10. (b) Behavior of frequency 
data for window sizes of 10, 20, and 40.
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simple MLP. The test was conducted using the training data that had been collected with the four 
materials and the results are shown in Fig. 7. According to the results, the MLP network had the 
highest average accuracy of 98% and was thus selected as the classification method.

5.2	 Offline	performance	evaluation

 Having chosen the classification method, we conducted a simple offline performance 
evaluation. A validation data set was given to the trained network and the results were observed. 
Out of 2800 time steps of data, 162 corresponded to false negatives and 47 corresponded to false 
positives. The false negatives are due to the insensitivity of the network, and the false positives 
occur because of the long decay time. To improve these results, the algorithm was modified so 
that there would be a queue of lookback sequences. The idea was to incorporate past data into 
the algorithm and thus improve the classification performance. After the modification, for the 
same validation data, the numbers of false negatives and false positives decreased to 103 and 36, 
respectively, while the other performance evaluation parameters remained almost the same. In 
short, the network was further improved by the modification.

5.3 Proposed network

 The proposed network, including the lookback queue, is shown in Fig. 8. As can be seen, the 
algorithm computes the covariance and frequency separately, then combines them into a single 

Fig.	7.	 (Color	online)	Accuracy	of	the	potential	classification	methods	for	training	the	data	set.

Fig.	8.	 (Color	online)	Schematic	of	the	proposed	slip	classification	network.
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sequence. After that, the sequence is made into a lookback queue and finally applied to the MLP 
network. The average training accuracy of this network for the four chosen materials was 98.4% 
and the online classification rate was 75 Hz.

6. Online Performance Evaluation

 An online performance evaluation was conducted with the proposed network. Two tasks—a 
pick and place task and a task of maintaining a stable grasp of an object whose weight was 
changing—were conducted 10 times each for all four materials. The former task involved 
picking up the target object from the ground and placing it back down, and the latter task 
involved maintaining the grasp of the target object as mini steel balls were poured into it. As 
shown in Fig. 9, performance was excellent for plastic and paper but lower for aluminum.

7. Conclusion

 In this study, we investigated and compared various combinations of methods that can be 
used to implement slip detection for robot grippers equipped with tactile sensors. By using our 
newly proposed collection method, selecting the most appropriate processed data, and choosing 
the classification method with the highest performance, we developed a highly accurate slip 
detection algorithm based only on normal force data. The results of both offline and online 
evaluations indicate that the selected methods are sufficiently effective and have high 
performance. Even though the setup in this study cannot be precisely replicated for other objects 
and environments, or even in industry, the methodology outlined in this study can serve as a 
reference for selecting methods to detect slip. Our future work will be focused on two areas: 
improving the detection accuracy of the algorithm by collecting more training data, and 
conducting online evaluations that take into consideration the deformation of the target object.

Fig. 9. (Color online) Number of successes of the two tasks for each material.
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