
333Sensors and Materials, Vol. 35, No. 1 (2023) 333–346
MYU Tokyo

S & M 3171

*Corresponding author: e-mail: 83391860@qq.com
https://doi.org/10.18494/SAM4228

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Optimization Strategy for Building Tile Pyramid
of Massive Remote Sensing Images

Xiaoli Liu1* and Wei Sun2

1Chinese Academy of Surveying and Mapping, 28 Lianhuachi West Rd, Haidian District, Beijing 100830, China
2Piesat Information Technology Co., Ltd., Zone A, Yiyuan Cultural and Creative Industry Base,

Xingshikou Road, Haidian District, Beijing 100195, China

(Received October 31, 2022; accepted January 11, 2023)

Keywords: tile pyramid, massive remote sensing images, multithreading, parallelism

 The efficient building of tile pyramids is the basis for achieving efficient visualization of 
massive remote sensing images and network publishing. With the increasing number of images 
and amount of data from images, the existing method leads to excessive overall time 
consumption and low efficiency of the building process due to the poor quality of building 
algorithms and parallel strategies. In this study, an optimization strategy for building a tile 
pyramid of massive remote sensing images was proposed. This method comprehensively used 
the hierarchical blank tiles of remote sensing images and the strategy of multithreading parallel 
pyramid construction to reorganize the existing tile pyramid construction process. The 
experimental results showed that the method proposed in this study was less time-consuming 
and had an obviously improved overall efficiency compared with that of the existing method of 
building a tile pyramid using massive remote sensing images. Therefore, this method is more 
advantageous to use than previous methods.

1. Introduction

 Massive remote sensing images, especially with the characteristics of continuous time 
images, are remote sensing image data obtained from the same remote sensing platform and 
arranged in the order of their acquisition time and acquisition range; they are also called massive 
time-series images. Building a tile pyramid is the basis for achieving efficient visualization and 
network release of massive time-series images. The essence of the tile pyramid is to realize 
layered and blocked processing of remote sensing images within the scope of the viewpoint that 
is considered, to form tiles with different resolution ratios, and to construct the tile pyramid 
through resampling of the original remote sensing images to improve the response speed of 
image browsing and zooming.(1) Currently, with the increasing amount of remote sensing data 
and the increasing demands of network distribution, the development of methods to enable the 
rapid building of a tile pyramid for massive time-series images has become an urgent problem to 
be solved in the networked application of remote sensing images. In recent years, scholars 
worldwide have conducted extensive studies on the building of tile pyramids for time series 

mailto:83391860@qq.com
https://doi.org/10.18494/SAM4228
https://myukk.org/


334 Sensors and Materials, Vol. 35, No. 1 (2023)

images. According to processing methods for massive time-series images, the building of a tile 
pyramid can be done in one of the three ways: building based on image fusion,(2–6) building 
based on a mosaic dataset, and building based on map plotting.(7–11) Among these methods, 
building based on map plotting cannot be accomplished in a normal environment owing to its 
reliance on a rendering engine for map plotting and its extensive demands on the computing 
environment. Therefore, currently, the most commonly used methods for tile pyramid building 
are those based on image fusion and those based on a mosaic dataset.
 The building method based on image fusion usually performs image fusion and splicing 
according to the time series and then concurrently conducts tile cutting and pyramid building of 
the spliced large images. However, this method takes a long time to splice images and is not 
suitable for building a tile pyramid for massive time-series images with large volumes of data. 
The building method based on a mosaic dataset primarily uses the built-in image data model of 
ArcGIS to construct the tile pyramid, but this method requires manually inputting the massive 
time-series images. In addition, the two highlighted methods fail to realize the optimum 
configuration between the parallel use of the multiprocess and parallel strategy and the 
operational environment; thus, they have a lower overall efficiency in building a tile pyramid. 
Therefore, in this study, we proposed an optimization strategy for building a tile pyramid of 
massive remote sensing images without requiring image splicing, that conducts tile cutting 
according to the characteristics of the different forms of tiles in the overlapping areas of images, 
and that designs an optimization strategy for multithreading parallel processing to achieve the 
rapid building of a tile pyramid for massive time-series images. 

2. Related Work

2.1 Existing methods for building a tile pyramid

2.1.1 Building method based on image fusion

 The process of building a tile pyramid for massive time-series images based on the image 
fusion method usually includes two basic steps: image splicing and tile cutting. Image splicing 
mainly includes registration and fusion.(12) Although a large number of studies are focused on 
rapid image splicing,(13–15) the splicing process requires a large number of computations and a 
large amount of time owing to a large number of images and a significant amount of image 
overlapping.(11) Therefore, to improve the efficiency of building a tile pyramid, many studies 
focus on the optimization of the parallel strategy of tile cutting. Liu et al.(5) divided pyramid 
building into processes by adopting the secondary data processing strategy and achieved parallel 
tile building and outputting. He et al.(6) proposed the method of parallel pyramid building based 
on a message passing interface and set the parallel resampling of different particle sizes for 
different levels of tiles to reduce the data reading frequency. Liu et al.(2) proposed a parallel 
synthesis method for low-level tiles based on high-level tiles. The above methods are mainly 
based on parallel thread processing in the layered building of a pyramid to improve the building 
efficiency of the tile pyramid.



Sensors and Materials, Vol. 35, No. 1 (2023) 335

2.1.2 Building method based on a mosaic dataset

 A mosaic dataset is a type of grid data model introduced by ArcGIS10, which is used to 
manage a set of grid datasets that are stored in the form of a directory and viewed in the form of 
a mosaic image. A mosaic dataset has the same advantages as the other two types of grid data 
models of ArcGIS (the grid dataset and grid directory). A mosaic dataset can quickly browse the 
results of dynamic mosaic images, avoid the large image splicing workload, and independently 
retain the personality characteristics of each image. Therefore, it is more suitable for building a 
massive time-series image dataset and tile pyramid. Kuz’menko et al.(8) used a mosaic dataset to 
build a multilayered structure using landscape data, while Yang et al.(10) used a mosaic dataset to 
construct a pyramid for an orthoimage dataset and data storage. These results established that 
this method can be used for the management and network release of large-scale image data.

2.2 Shortcomings of existing methods

 Among the existing methods for building a tile pyramid for massive time-series images, the 
method based on image fusion is an easy one to implement. Additionally, the method based on a 
mosaic dataset was provided with a software tool that can meet the efficiency requirements for 
building a tile pyramid when the total number of images involved is small. However, dozens and 
even thousands of massive time-series images are generated, and the data volume can reach the 
level of hundreds of gigabytes (“GB” for short) and even terabytes (“TB” for short). In practical 
applications, the existing methods have the following limits or shortcomings.
 First, massive time-series images are arranged in order of collection time and range. In 
general, approximately 30% of the images overlap at the boundary edges of two adjacent images. 
The existing method based on image splicing must carry out registration, fusion, and other 
operations of the overlapped multiple series of images to splice them into one complete image; 
then, tile cutting and building must be done. Because extraction of the registration characteristic 
point, image resampling, and other steps require a large number of calculations during image 
splicing, and because the overlapping areas are constantly accumulated as the number of images 
increases, these processes must be repeated and become time-consuming.
 Second, to build a tile pyramid, most of the existing methods use the multiprocess parallel 
mode. The corresponding number of processes is determined according to the amount of 
parallelism, and then the cutting and outputting operations are carried out in these processes. As 
the creation, switching, and revocation of processes themselves will require a large calculation 
volume, and because balancing the tasks assigned to different processes is difficult, the 
processes cannot be completed simultaneously, and it becomes difficult to completely accept the 
advantages of parallelism. In addition, tile cutting and tile outputting are usually not matched 
with each other in terms of speed. The cutting speed mainly depends upon CPU performance, 
while the outputting speed mainly depends on the capacity of the memory and disk. As the CPU 
calculation speed is higher than that of the memory and because the internal calculation ability 
of each process is difficult to distribute equally, it is very difficult to realize the optimum 
utilization of the overall performance of the operating environment.



336 Sensors and Materials, Vol. 35, No. 1 (2023)

3. Method

 In view of the problems described, in this study, we propose an optimization strategy for 
building a tile pyramid of massive remote sensing images. The core of the method includes three 
parts: (1) implementing tile cutting of the nonoverlapping area of massive time-series images 
using the bottom-up method according to the time series, (2) replacing image splicing with dst_
over tile fusion in the overlapping area of massive time-series images to cut the tiles at the same 
position in the overlapping areas, and (3) replacing multiprocess parallelism with multithreading 
parallelism. This process takes full consideration of the computational burden of tile cutting and 
tile outputting and optimizes the parallel strategy for building a tile pyramid.

3.1 Tile cutting in the nonoverlapping area of massive time-series images

 In accordance with the coverage of the original image and preset tile size, the line and row 
numbers of all tiles corresponding to the image can be calculated with a formula detailed in Sect. 
2.4 to obtain positional information for all tiles corresponding to the massive time-series images. 
Therefore, all tiles can only be obtained by cutting in regard to their position without image 
splicing. However, the nonoverlapping area of images contains only one tile due to overlapping 
among the images, while the overlapping area has many tiles that have the same line and row 
numbers (called “tiles at the same position” for short). Therefore, it is necessary to conduct tile 
cutting in these two cases.
 For the nonoverlapping part of the massive time-series images, in this study, we adopt the 
more mature bottom-up method(2) for tile cutting. The method first carries out rendering, 
sampling, and parallel cutting of the bottommost tiles, which have similar tile levels and original 
image resolutions. The method then performs these operations on the other levels of tiles, 
starting directly from the bottommost tile and going upward layer by layer to reach the adjacent 
upper layer of tiles using the “Four in One” method. During parallel cutting, in this study, we 
propose to use a quantitative calculation method based on large tile cutting found in the 
literature.(16) The method is as follows.
 One cut can directly render one large tile that has a coverage of i*j (line*row) pieces of tiles 
and then cut it to obtain i*j pieces of tiles to avoid the time consumed by directly implementing 
i*j tile rendering operations. To realize the maximum utilization of the running environment, the 
values of i and j can be calculated with the following equations:

 ( )/ _ _ _ _ _i j M m thread m tile original m tile outpout∗ < + + , (1)

 ( )/ /i j ceil width height= . (2)

 In Eq. (1), M is the memory size consumed by running the parallel program, m_thread is the 
memory space occupied by one processing program, m_tile_original is the memory space 
consumed to render one tile, and m_tile_output is the memory space necessary for storing one 



Sensors and Materials, Vol. 35, No. 1 (2023) 337

Fig. 1. Schematic diagram for tile cutting in the overlapping area. (a) Overlapping image of two adjacent 
landscapes. (b) Line and row numbers obtained through the calculation of two images. (c) Coverage tile of image 1. 
(d) Coverage tile of image 2.

tile. In general, the total memory space for the rendering, storing, and programming of i*j pieces 
of tiles shall not exceed the memory space to be consumed by running the parallel program.
 In Eq. (2), ceil is the round up operation, width is the width of the original image, and height 
is the height of the original image, meaning that a large tile shape is consistent with the original 
image shape as far as possible; this step reduces the number of transparent tiles in the large tiles 
as much as possible.

3.2 Tile cutting in the overlapping area of massive time-series images

 For the overlapping parts of the massive time-series images, the concept of tile fusion is 
adopted in this study for tile cutting. As shown in Fig. 1(a), when images 1 and 2 are successively 
obtained adjacent images, the line and row numbers of the tiles in the coverage area can be 
obtained on the basis of existing parameters, as shown in Fig. 1(b). Fifteen pairs of tiles at the 
same position will be generated in the overlapping area, as shown in Figs. 1(c) and 1(d). The 
dst_over(17) method proposed by the Worldwide Web Consortium (W3C) is used for the fusion 
of these tiles at the same position.
 For completely overlapped tiles at the same position, such as tile Nos. 4, 11, 18, 25, and 32 at 
the same position, the dst_over tile fusion operation is carried out, and the result was that tile No. 
2 of the new image was used to replace the tile of the original No. 1 image.

(a) (b)

(c) (d)



338 Sensors and Materials, Vol. 35, No. 1 (2023)

Fig. 2. Schematic diagram for the fusion of tiles at the same position. (a) Tile No. 10 from image 1. (b) Tile No. 10 
from image 2. (c) Resulting tile after fusion.

 For partially overlapping tiles at the same position, which are the tiles located at the edge 
boundary location of images, such as tile Nos. 3, 5, 10, 12, 17, 19, 24, 26, 31, and 33, the fusion 
process of tile No. 10 at the same position in Figs. 1(c) and 1(d) was taken as an example, as 
shown in Fig. 2. Figure 2(a) corresponds to tile No. 10 obtained from the cutting of image 1. The 
left side of the figure is a pixel representation of the nonoverlapping area of the image, while the 
right side is a pixel representation of the overlapping area of image 1. Figure 2(b) corresponds to 
tile No. 10, which is obtained from the cutting of image 2. The left side shows transparent pixels, 
while the right side shows the pixels of the overlapping area. In the dst_over tile fusion operation, 
the area of transparent pixels still uses the pixel value of the tile shown in Fig. 2(a), and the pixels 
of the overlapping area use the pixel value of the tile shown in Fig. 2(b) to obtain the resulting 
tile, shown in Fig. 2(c). Through tile fusion, the tile of the overlapping area can be obtained by 
cutting without image splicing.

3.3 Optimization of the multithreading parallel strategy

 To make full use of the computing resources of the running environment, in this study, we 
replace the multiprocess with multithreading, which has lower resource consumption and fast 
switching for implementing the parallel strategy for building a tile pyramid.(18–20) Over the 
whole course of implementation of the strategy, only one process is enabled to conduct parallel 
processing of the threads for the tile cutting and tile outputting operations. That is, the cut 
operation is controlled using the thread pool, while the output operation is controlled by the 
output queue. Additionally, the hardware parameters of the existing running environment are 
used to calculate the state of the balance points between the two operations and to improve the 
building efficiency of the tile pyramid on the whole; the processing flow is shown in Fig. 3.
 All of the threads in the thread pool have three states: sleeping, activating, and dead. In 
addition, the control command of the thread pool is responsible for handling the allocation of 
each thread in the thread pool.
 For the cut processing of each tile in the cutting operation, a new independent thread is 
created and added into the cut thread pool (process 2 in Fig. 3). In accordance with the large tile 
cut form described in Sect. 2.1, the capacity of the thread pool is set to i*j, which is the number 
of tiles covered by one large tile. The new threads created are first in a sleeping state, and the 
control command accordingly activates n threads for the cutting operation according to the set 

(a) (b) (c)



Sensors and Materials, Vol. 35, No. 1 (2023) 339

Fig. 3. Multithreading parallel processing flow for the methods in this study.

number (n) of parallel cut threads (process 3 in Fig. 3). When the operations of certain threads 
are completed, the control command sets this thread in the dead state and removes it from the 
thread pool (process 4 in Fig. 3). In this way, the cut thread always continues to dynamically 
update the process to make the total number of threads in the cut thread pool always larger than 
the number of threads in the parallel process until the completion of the cutting operation to 
ensure that the entire cut course can make full use of the CPU calculation capacity of the running 
environment.
 In the output operation, each piece of tile that has been properly cut enters the output queue in 
order (process 5 in Fig. 3), and the total length of the output queue (total number of storage tiles) 
is set to the number of tiles (n*i*j) in the parallel cut processing, which is the total number of 
tiles resulting from one cutting operation of the cut thread pool. The enqueue and dequeue 
sequences of tiles follow the principle of “first in first out” (process 6 in Fig. 3). Similarly, the 
control command activates the output thread according to the set number of parallel output 
threads and stores the tile output in the database (processes 7, 8, and 9 in Fig. 3).
 The sum of the number of parallel cut threads (n) and the number of parallel output threads 
(m) is equivalent to the number of CPU logic cores in the running environment, and the specific 
values of n and m are related to the resolution of the original image and the calculation capacity 
of the specific running environment, respectively. This cut operation relies more on the CPU 
performance and n > m under normal conditions. Prior to the large-scale official building of a 
tile pyramid for massive time-series images, some images may be selected in advance for 
experimentation and a reasonable distribution of the n and m values.



340 Sensors and Materials, Vol. 35, No. 1 (2023)

3.4 Algorithm process and steps

 In accordance with the building method, the established building algorithm for a tile pyramid 
for massive time-series images includes the following steps.
 Step 1: Calculate the number of layers (Lmax) at the lowest level of the tile pyramid 
corresponding to the massive time-series image. In accordance with the spatial reference 
information in the image metadata, the worldwide scope [Xmin, Ymin, Xmax, and Ymax] of the 
constructed tile pyramid is determined. In accordance with the tile size, Eq. (3) is used to 
perform the cycle calculation of the ground resolution L_resolution corresponding to each layer 
of the tile pyramid.

 ( ) ( )_ / _ 2 , ,levelL resolution Xmax Xmin tile size level 0,1,2 ,n= − ∗ = …  (3)

 In the course of the cycle calculation, each calculated L_resolution value is compared with 
the image resolution. If L_resolution<image resolution, the corresponding level grade of this 
L_resolution is the number of layers (Lmax) at the lowest level of the tile pyramid.
 Step 2: Calculate the line and row numbers of tiles at the lowest layer (Lmax) of the image of 
the first landscape. In accordance with the extent of coverage of the image and corresponding 
ground resolution (Lmax_resolution) at the lowest layer Lmax, Eq. (4) is used to calculate the 
line and row numbers that occupy this image.

 

( ) ( )( )
( ) ( )( )
( ) ( )( )

_ - / _ ;

max _ max - / _ ;

_ / _ ;

max max _

Tile_Xmin = floor extent Xmin Xmin Lmax resolution tile_size

Tile_X = ceil extent X Xmin Lmax resolution tile_size

Tile_Ymin = floor Ymin extent Ymin Lmax resolution tile_size

Tile_Y = ceil Y extent Y

∗

∗

− ∗

−( ) ( )( )min / _ .Lmax resolution tile_size∗

 (4)

 Step 3: Implement tile rendering and cutting of tiles at the lowest layer (Lmax). Use the 
method described in Sect. 3.1 for tile cutting and then output it to the output queue. To reduce the 
time consumption of the redundant tile outputting and storage, the output is given if the tiles are 
transparent tiles after cutting.
 Step 4: Implement the fusion of tiles in the lowest layer (Lmax). Repeat steps 2 and 3 for the 
tiles of the second landscape and judge whether there are tiles at the same position in the output 
queue when tile outputting is implemented in procedure 3. If there are tiles at the same position, 
use the method described in Sect. 3.2 to fuse the tiles at the same position. Execute this operation 
until the cutting and outputting of the tiles at the lowest layer (Lmax) of all images is completed.
 Step 5: Generate tiles for the other layers. After completing the outputting of the tiles at the 
lowest layer, the tiles of the other layers are formed through tile merging to complete the building 
of the tile pyramid.



Sensors and Materials, Vol. 35, No. 1 (2023) 341

Fig. 4. (Color online) Overview of the scope of the experimental area and experimental data.

4. Experiment and Analysis

4.1 Experimental data and environment

 The experimental data are massive time-series image data from the Gaofen-2 satellite from a 
specific region of China’s Yangtze River Delta, with the coverage extent shown in Fig. 4. The 
duration of data collection was from April 30, 2017, to December 31, 2017. There are 256 
landscapes for which the image data size of each landscape was within 3.7–5.3 GB, and the total 
data size was 1.3 TB. All of these data were highly representative. The experimental data have 
an image resolution of 0.81 m and a spatial reference of WGS84. In accordance with Eq. (3), the 
layer number at the lowest level of the tile pyramid corresponding to this massive time-series 
image was calculated to be 18, and the layer number of the topmost level is 10. The sampling 
method for tile generation is the bilinear sampling method. In accordance with the massive time-
series image parameters and Eqs. (1) and (2), the number of large tiles rendered at a time is 
calculated to be 8*8. The building method based on image fusion that is represented in Ref. 2 
requires massive time-series image splicing in advance and is realized by using Erdas in this 
study. According to Sect. 3.3, the optimal parallel thread allocation scheme was determined 
using images of 4 landscapes in advance, of which the number of parallel cut threads was 6 and 
the number of parallel output threads was 2 based on the results of calculations. The method in 
Ref. 2 and the ArcGIS mosaic dataset method both use the multiprocess parallel mode, and the 
number of parallel processes set for these two methods was 8, which was equivalent to the total 
number of parallel threads in this study.



342 Sensors and Materials, Vol. 35, No. 1 (2023)

Table 1
Time consumed for building the tile pyramid for massive time-series images using the method proposed in this 
paper. (unit: s)
Number of landscapes
for massive
time-series images

Time consumed for 
tile cutting

at lowest layer

Time consumed 
for merging and producing 

tile pyramid

Total time 
consumed

4 139.363 97.756 237.119
16 1078.837 353.124 1431.961
32 2406.361 597.643 3004.004
64 5158.412 853.647 6012.059

128 10507.174 1533.871 12041.045
256 23100.998 3145.524 26246.522

Table 2
Time consumed for building the tile pyramid for massive time-series images using the method in Ref. 2. (unit: s)
Number of landscapes
for massive
time-series images

Image splicing Formation of pyramid Total time (s)

4 822.77 920.79 1743.56
16 3820.79 5167.37 8988.16
32 13611.88 11297.03 24908.91
64 31446.53 26600.99 58047.52

128 104829.7 53978.32 158808.02
256 294427.72 120201.98 414629.7

Table 3
Time consumed for building the tile pyramid for massive time-series images using the ArcGIS method. (unit: s)
Number of 
landscapes for 
massive time-
series images

Time 
consumed 

for building 
mosaic dataset

Time 
consumed for 
adding image 

data

Time consumed 
for building 

external 
enclosing frame

Time 
consumed for 

building image 
pyramid

Time 
consumed for 
formation of 
tile pyramid

Total 
time (s)

4 0.59 1.34 1.57 12.89 1157 1173.39
16 0.61 1.36 1.47 13.56 7043 7060
32 0.68 3.02 26 505 14215 14749.7
64 0.66 12.98 64 984 28360 29421.64

128 0.58 23.3 134 2001 56398 58556.88
256 0.64 52.06 277 4366 121520 126215.7

4.2	 Comparison	of	the	efficiency	of	methods

 The method proposed in this study, the method from Ref. 2, and the ArcGIS mosaic dataset 
method were used in the building experiment for the tile pyramid for massive time-series images 
in the same running environment. The data are shown in Tables 1–3, and the total time 
consumption results are shown in Fig. 5.
 It was observed that the average time consumed by the method proposed in this study was 
13.62 times less than that of the method from Ref. 2 and 4.84 times less than that of the ArcGIS 
mosaic dataset method. Among these methods, the time consumption of image splicing in the 
method from Ref. 2 was 67.3% of the total time consumption, and with the increase in the 



Sensors and Materials, Vol. 35, No. 1 (2023) 343

Fig. 5. (Color online) Comparison of the total time consumption of tile pyramid building for massive time-series 
images by different methods.

number of landscapes in the images, the time consumed for splicing exponentially increased, 
and the total time consumption was high. The time taken by the method from Ref. 2 to construct 
the tile pyramid after image splicing was 1.05 times faster than that of the ArcGIS mosaic 
dataset method due to the partial optimization of its tile cutting method. In addition, with the 
increase in the number of image scenes, the total time-consumption ratio between the method 
proposed in this study and the ArcGIS mosaic dataset method was reduced from 4.95 to 4.81. 
This reduction occurred because the corresponding tile fusion time was slightly increased due to 
the growth of the number of tiles at the same position cut using the method proposed in this 
study after the number of landscapes was increased.

4.3 Discussion of the CPU utilization ratio

 To further verify that the parallel strategy proposed in this study makes better use of the CPU 
calculation ability to build a pyramid for massive time-series images, the method proposed in 
this study was compared with the method from Ref. 2 and ArcGIS mosaic dataset method in 
terms of the CPU utilization ratio. The time used in the statistics was 2 min at intervals of 1 s; 
the results are shown in Fig. 6. It was observed that the method proposed in this study basically 
maintained an average CPU utilization ratio of approximately 97%, while the method from Ref. 
2 and the ArcGIS mosaic dataset method only maintained an average CPU utilization ratio of 
approximately 70–80%. Additionally, as the CPU utilization characteristics of tile cutting and 
tile outputting were not considered, the CPU utilization ratio exhibited a steep drop after a 
certain period.



344 Sensors and Materials, Vol. 35, No. 1 (2023)

Fig. 6. (Color online) Comparison of the CPU utilization ratio.* (Note*: To accurately reflect the consumption of 
the CPU in the building process of the tile pyramid, the method from Ref. 2, and the ArcGIS mosaic dataset method, 
we only selected the corresponding CPU consumption of the tile pyramid building without calculating the CPU 
consumption of the image splicing, image adding, and other processes.)

5. Conclusions

 The existing methods to build a tile pyramid for massive time-series images result in a long 
overall time consumption and low efficiency due to poor quality of building algorithms and 
parallel strategies when the number of images and amount of data from images are large. For this 
reason, in this study, we proposed an optimization strategy for building a tile pyramid from 
massive images. We implemented tile cutting according to the characteristics of different forms 
of tiles in the areas of image overlap, constructed a pyramid without image splicing, and adopted 
multithreading to optimize the parallel strategy in building the tile pyramid to realize the 
efficient and rapid building of the tile pyramid for massive time-series images. The main 
conclusions obtained through actual data verification of the massive time-series images are as 
follows.
(1)  In terms of the efficiency of the methods, the method proposed in this study, the method 

based on image fusion represented by Ref. 2, and the ArcGIS mosaic dataset method were 
used to conduct an experiment in the building of a tile pyramid for massive time-series 
images in the same running environment. The method proposed in this study had the shortest 
time consumption; it is 13.62 times faster than the method from Ref. 2, and 4.84 times faster 
than the ArcGIS mosaic dataset method.

(2)  In terms of CPU utilization, the method proposed in this study maintains a relatively stable 
average CPU utilization ratio of approximately 97%. The method from Ref. 2 and the ArcGIS 
mosaic dataset method have average CPU utilization rates of only approximately 70–80%.



Sensors and Materials, Vol. 35, No. 1 (2023) 345

 The method proposed in this study was more suitable for operation processing in a single 
machine environment. When the calculation environment is a distributed multinode 
collaboration, it is also necessary to carry out parallel strategy transformation of the 
corresponding environment, which is a future direction for this research.

References

 1 I. Viola, A. Kanitsar, and M. E. Groller: Proc. 2003 IEEE Visualization (IEEE, 2003) 309–316.
 2 S. Liu, Q. Wu, C. Luo, J. Li, and J. Ning: Geomatics World 22 (2015) 51 (in Chinese).
 3 L. Yi: Geomat. Inf. Sci. Wuhan Univ. 38 (2013) 278 (in Chinese). https://doi.org/10.13203/j.whugis2013.03.006
 4 Y. Liu, L. Chen, W. Xiong, L. Liu, and D. Yang: Proc. 2012 IEEE Int. Conf. Geoinformatics (IEEE, 2012) 1–7.
 5 P. Liu and J. Gong: Geomatics Inf. Sci. Wuhan Univ. 41 (2016) 117 (in Chinese). https://doi.org/10.13203/j.

whugis20130718
 6 G. He, W. Xiong, L. Chen, Q. Wu, and N. Jing: J. Geo-Inf. Sci. 17 (2015) 515 (in Chinese). https://doi.

org/10.3724/SP.J.1047.2015.00515
 7 ArcGIS. What is a mosaic dataset? http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/

what-is-a-mosaic-dataset.htm (accessed November 2022).
 8 E. I. Kuz’menko, A. A. Frolov, and A. V. Silaev. Geogr. Nat. Resour. 39 (2018) 175. https://doi.org/10.1134/

S1875372818020117
 9 J. Dong, Y. Huang, and P. Dong: Infrared 33 (2012) 30 (in Chinese).
 10 M. Yang, J. Liu, X. Li, and Y. Zhang: Geomatics World 1 (2014) 33 (in Chinese).
 11 N. Guo, W. Xiong, Q. Wu, and N. Jing: Adv. Electr. Comput. Eng. 16 (2016) 3. https://doi.org/10.4316/

AECE.2016.04001
 12 M. Brown and D. G. Lowe: Int. J. Comput. Vision 74 (2007) 59. https://doi.org/10.1007/s11263-006-0002-3
 13 Y. Yang, Y. Gao, H. Li, and Y. Han: AProc. 2011 Int. Symp. Image and Data Fusion (IEEE, 2011) 1-4.
 14 X. Xie, X. Yin, Q. Liu, F. Hu, T. Cai, J. Nan, and H. Xiong: J. Ambient Intell. Hum. Comput. 6 (2015) 835. 

https://doi.org/10.1007/s12652-015-0319-2
 15 J. Wang, J. Fang, X. Liu, D. Zhao, and Q. Xiao: Int. J. Remote Sens. 35 (2014) 5959. https://doi.org/10.1080/215

0704X.2014.943320
 16 X. Liu, Y. Zhang, J. Yang, and L. Hao: Sci. Surv. Mapp. 41 (2016) 144 (in Chinese). https://doi.org/10.16251/j.

cnki.1009-2307.2016.01.027
 17 Northway C. Understand Compositing and Color extensions in SVG 1.2 in 30 minutes, http://www.svgopen.

org/2005/papers/abstractsvgopen (accessed November 2022).
 18 A. C. Sodan, J. Machina, A. Deshmeh. K. Macnaughton, and B. Esbaugh: Computer 43 (2010) 24. https://doi.

org/10.1109/MC.2010.75
 19 L. Zhou, C. Jiao, and J. Lan: Microcomput. Inf. 17 (2005) 118 (in Chinese).
 20 C. Qin, L. Zhan, and A. Zhu: How to Apply the Geospatial Data Abstraction Library (GDAL) Properly to 

Parallel Geospatial Raster I/O? Transactions in GIS 18 (2015) 950. https://doi.org/10.1111/tgis.12068

About the Authors

 Xiaoli Liu received her Ph.D. degree from Shandong University of Science 
and Technology, Qingdao, China. She is currently an associate researcher at 
the Chinese Academy of Surveying and Mapping, Beijing, China. Her 
research interest is mainly in GIS software architecture design and 
development, and she has published several research papers in scholarly 
journals in this area.

https://doi.org/10.13203/j.whugis2013.03.006
https://doi.org/10.13203/j.whugis20130718
https://doi.org/10.13203/j.whugis20130718
https://doi.org/10.3724/SP.J.1047.2015.00515
https://doi.org/10.3724/SP.J.1047.2015.00515
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-a-mosaic-dataset.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-a-mosaic-dataset.htm
https://doi.org/10.1134/S1875372818020117
https://doi.org/10.1134/S1875372818020117
https://doi.org/10.4316/AECE.2016.04001
https://doi.org/10.4316/AECE.2016.04001
https://doi.org/10.1007/s11263-006-0002-3
https://doi.org/10.1007/s12652-015-0319-2
https://doi.org/10.1080/2150704X.2014.943320
https://doi.org/10.1080/2150704X.2014.943320
https://doi.org/10.16251/j.cnki.1009-2307.2016.01.027
https://doi.org/10.16251/j.cnki.1009-2307.2016.01.027
http://www.svgopen.org/2005/papers/abstractsvgopen
http://www.svgopen.org/2005/papers/abstractsvgopen
https://doi.org/10.1109/MC.2010.75
https://doi.org/10.1109/MC.2010.75
https://doi.org/10.1111/tgis.12068


346 Sensors and Materials, Vol. 35, No. 1 (2023)

 Wei Sun received his Ph.D. degree from Shandong University of Science and 
Technology, Qingdao, China. He is currently a senior engineer at Piesat 
Information Technology Co., Ltd., Beijing, China. His research interest is 
mainly in GIS software architecture and parallel algorithms. He has published 
several research papers in scholarly journals in this research area and has 
participated in several conferences.


