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	 3D modeling of the indoor environment is essential for urban applications such as indoor 
navigation, emergency simulations, floor planning, and building construction. With the 
development of laser scanning sensors, 3D laser scanners can quickly obtain high-density, high-
precision 3D coordinates and attribute information, which brings significant advantages in 
collecting 3D information on indoor scenes. Many studies have been published on the fast 
reconstruction of 3D models based on point cloud data obtained by various types of laser 
scanning sensors. In this paper, we review state-of-the-art automated 3D indoor modeling 
technologies. The 3D modeling standards for indoor environments are introduced, and data 
acquisition based on laser scanning sensors and characteristics of point clouds are discussed. 
Indoor object classification and indoor room segmentation are also examined in detail. The 3D 
indoor reconstruction methods (i.e., line-based, plane-based, and volume-based) are 
systematically introduced and the advantages and disadvantages of these methods are presented. 
Future research directions in this field are discussed and summarized. This review can help 
researchers improve current approaches or develop new techniques for 3D indoor reconstruction.

1.	 Introduction

	 With rapid developments in communication and computer technology, urban informatization 
has gradually developed from a digital city to a smart city. However, realizing a smart city 
requires the use of digital spatial information to express the real world, making urban spatial 
structures more digital, transparent, and convenient to serve social needs.(1) Accurate, detailed, 
and structured building models are crucial in developing smart cities. Today, more than 80% of 
human activities (e.g., office work, commercial activities, learning, and living) are conducted 
indoors, significantly increasing demands for spatial information about indoor environments.
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	 As abstract plane expressions of geographical space objectives, 2D maps are traditionally the 
source of indoor space analysis. Such maps are not intuitive enough to express complex indoor 
environments and lack spatial structure relations, and they are unable to provide indoor 3D 
space services, such as indoor navigation,(2,3) emergency services,(4,5) architectural design,(6) 
virtual reality,(7) energy consumption estimation,(8) signal simulation,(9) and other requirements 
of a smart city. In recent years, increased attention has been given to acquiring indoor 3D spatial 
data, and numerous modeling approaches have been developed for reconstructing high-precision 
3D indoor models. The most traditional is the manual reconstruction of high-precision models 
with commercial software (e.g., CAD, Revit and 3DReshaper, SketchUp, and 3DMax), which 
requires a significant amount of manual processing, has high labor costs and low efficiency, and 
is difficult to adapt to large-scale indoor mapping and modeling needs. 
	 With the development of laser scanning sensors in the past decade, 3D laser scanners can 
quickly obtain high-density, high-precision 3D coordinates and attribute information on objects 
sitting on surfaces, which are not affected by light and have strong penetrability.(10) As a highly 
effective means to obtain spatial data for real-scene 3D reconstruction, numerous studies have 
explored using various types of laser scanning equipment and optical imagers for indoor spatial 
data acquisition. 
	 Sensors can be divided into three categories according to the data source (see Fig. 1): red 
green blue depth (RGBD) sensors, terrestrial laser scanners, and mobile laser scanners (e.g., 
handheld, backpack, or push-cart). An RGBD panorama may be acquired by a camera and a 
depth sensor,(11) and this method has added advantages of affordability and convenience. 
However, image acquisition is affected by lighting conditions, and an image may have both 
distortion and noise, which can cause difficulties in building accurate large-scale models. 
Terrestrial laser scanning (TLS) has been used to collect 3D geometric information with high 
density and accuracy. Owing to the need for laborious scan station resetting, protracted 
registration procedures, and high costs, TLS often suffers from low mapping efficiency and is 
often excluded in large-scale indoor data acquisition. With developments in simultaneous 
localization and mapping (SLAM), the indoor mobile light detection and ranging (LiDAR) 
measurement system integrates an inertial measurement unit (IMU), laser scanner, digital 
camera, and other instruments and equipment to obtain high-density and high-precision 3D laser 
point clouds continuously and to reduce occlusion effects. The easy-to-use, low-cost mobile laser 
scanning (MLS) equipment has been widely used for data acquisition for large indoor scenes.(12) 
Owing to the complexities of indoor environments, data collection is affected considerably by 
numerous factors, such as moving objects and multiple reflections. These issues may result in 
large deviations in point clouds, huge amounts of noise, and uneven density distribution and 
therefore create challenges for the automatic reconstruction of indoor models.
	 Integration of LiDAR into smartphones opens up a whole new world of possibilities for 3D 
indoor/outdoor mapping since the iPhone 12 Pro and iPhone 12 Pro Max became available. 
Although these systems offer new opportunities for democratization in the use of scanning 
technology, data quality is lower than data captured from high-end LiDAR sensors. In large 
indoor scenes, the point clouds are clearly incorrect: walls may not be perpendicular, and they 
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Fig. 1.	 (Color online) Different types of data acquisition equipment: (a) RGB-D (Kinect), (b) TLS, (c) MLS 
(handheld), (d) MLS (backpack), (e) push-cart (MLS), and (f) iPhone 12 Pro Max.

may be represented by partially overlapped surfaces. The detection range of the device is only 5 
meters, and it is only stable for mapping small environments.(13,14)

	 Point clouds collected by various laser scanning sensors provide robust data for indoor model 
reconstruction. Furthermore, the reconstructed indoor model may be useful for applications 
involving urban spaces. Therefore, the amount of research on the reconstruction of indoor 
models using point clouds has substantially increased in recent years, and many methods that 
address some of the limitations have been proposed. In this paper, we comprehensively review 
and discuss the current literature, techniques, and issues of indoor model reconstruction. In Sect. 
2, we introduce the open model standard, LiDAR measurement system for indoor scenes, and 
the characteristics of the collected data, while in Sect. 3, we explain the classification and 
extraction of indoor scenes (including indoor object classification and room segmentation). In 
Sect. 4, we introduce the technologies related to the 3D reconstruction of indoor environments 
based on line, plane, and volume elements according to different types of vectors. Additional 
discussion of the advantages and disadvantages of existing methods and future research 
directions are provided in Sect. 5, after which we present conclusion in Sect. 6.

(a) (b) (c)

(d) (e) (f)
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Fig. 2.	 (Color online) Building hierarchy model in CityGML2.0 (LOD0-LOD4). (https://www.citygml.org/
ongoingdev/tudelft-lods/)

2.	 Preliminaries

2.1	 Indoor modeling standard

	 As the foundation of modeling, the building model standard has been improved over years of 
development. It includes the City geography markup language (CityGML)(15) formulated by the 
Open Geospatial Consortium (OGC), the Industry Foundation Classes (IFC) formulated by 
buildingSMART,(16) and indoor geography markup language (indoorGML).(17)

	 Published by OGC in 2012, CityGML 2.0 defines detailed standards for level of detail 
(LOD)0–4 in describing building models. Their CityGML3.0, released in 2018, integrates the 
LOD4 indoor model version 2.0 into LOD 0–3, which is more compatible with indoorGML and 
IFC standards. CityGML is a format used for data exchange and storage of virtual 3D city 
models and is a general data model used to express 3D city templates. It has geometric, 
topological, semantic, and appearance information on targets. 
	 BuildingSMART defines the conceptual data model and exchange file format of building 
information modeling (BIM) data(18) and develops global BIM technologies, which are accepted 
by International Organization for Standardization (ISO) 16739 standards. BuildingSMART 
develops and maintains IFC standards that include indoor spaces and outdoor spaces. For indoor 
space models, IFC mainly defines characteristics for indoor structural models, such as walls, 
doors, panels, and windows. 
	 Developed by OGC in 2012, the standard data model IndoorGML is based on Extensible 
Markup Language (XML) to exchange modeling data formats. IndoorGML is not an independent 
standard but is derived from CityGML LOD0–4 and IFC.(19) IndoorGML contains the definition 
of indoor space, which has a semantic, topological, and geometric model framework(20) and is 
intended to meet the application requirements of indoor space.

2.1.1	 CityGML model standard

	 Organized and compiled in 2002, CityGML is committed to the development, 
commercialization, and spatial visualization of exchange 3D models and realizes the data storage 
and exchange of urban 3D models through XML.(15) The CityGML standard model covers 
indoor and outdoor spaces. In CityGML 2.0, the building space is represented by five consecutive 
LOD models (LOD0–LOD4), as shown in Fig. 2.

https://www.citygml.org/ongoingdev/tudelft-lods/
https://www.citygml.org/ongoingdev/tudelft-lods/
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Fig. 3.	 (Color online) Building hierarchy model in CityGML3.0 (LOD0-LOD3).

LOD0 is the 2.5D terrain model composed of triangular irregular networks.
LOD1 �is a simple cube that represents the target location of the urban scene and does not have 

structural characteristics.
LOD2 is a 3D model composed of boundary surfaces with a detailed roof structure.
LOD3 �is the volume model composed of a detailed roof, floor, ceiling, wall, door, window, and 

other body elements.
LOD4 is the expression of the detailed information of the indoor room and building furniture.
	 In CityGML 3.0, the building space is represented by four consecutive LOD models (LOD0–
3), integrating the indoor grade model LOD4 in CityGML into LOD0–3 (Fig. 3). 

2.1.2	 IFC model standard

	 The main contribution of the IFC standard is the research and development of global BIM 
technology, which defines the conceptual data model and exchange file format of BIM data.(18) 
BIM is increasingly used for comprehensive construction planning and turning facility 
management into a common digital foundation. IFC defines BIM as a wide range of geometric 
and abstract entities with spatial relationships. It differs from a single geometric representation, 
such as unordered point clouds, unconnected surface features, and unstructured boundary grids.
	 The BIM/IFC model is very similar to the actual physical structure of a building that has the 
building entity model (wall, floor, ceiling) with semantic, geometric, structural, and attribute 
information and volume elements that have interconnection information.(21) Because BIM 
models have increasingly been applied in many fields, such as difference detection between BIM 
models and actual completion point clouds,(22) building management, and energy simulation,(23) 
the automatic reconstruction of the BIM model has become a research topic of considerable 
current interest. 

2.1.3	 IndoorGML model standard

	 The IndoorGML standard model expresses, stores, and exchanges indoor space information, 
in support of the indoor location service system.(17) IndoorGML provides a standard framework 
to express the geometric, topological, and semantic features of indoor space cells and uses the 
XML application architecture extension language. The space cell expressions are as follows: 
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Fig. 4.	 (Color online) Topological graph of indoor space.(17)

(1)	geometric information: it contains the 2D surface model and 3D volume model.
(2)	�topological graph: The core module of indoorGML is the spatial structure model. A 

topological graph is formed by the geometric units of 2D surfaces and 3D volumes; the 
spatial objects are the graph nodes, and the adjacent objects are the edges of the graph. The 
specific contents include: 1) an ID for each cell belonging to the index number of the room; 2) 
a common boundary for each cell with other cells that do not cover each other; and 3) location 
information for each cell. The diagram for this is shown in Fig 4.

(3)	�semantic information: both indoor units and boundaries have attribute information, such as 
corridors, stairs, elevators, rooms, doors, and windows.

	 The IndoorGML standard has been applied to a variety of indoor location services, such as 
blind navigation,(24) indoor photo location,(25) and other smart city applications.(26)

2.2	 Mobile LiDAR measurement system and data characteristics

	 According to analyses of human activity trajectories, more than 80% of activities are 
conducted indoors. Thus, indoor data collection and 3D model reconstruction are important 
tasks in urban construction. Compared with outdoor locations, the indoor environment is more 
complex, has serious occlusions, and has no global navigation satellite system (GNSS) signals; 
the model accuracy requirements are also higher (about 0.1 m).(27) 
	 With developments in sensor technology, various types of laser scanning and optical imaging 
instruments have been developed  for obtaining indoor 3D spatial data. The main instrument 
types are RGBD depth sensor, TLS, and MLS. The easy-to-use, low-cost MLS equipment has 
been widely used for data acquisition for large indoor scenes. We focus herein on the MLS 
measurement system and discuss the characteristics of collected data. 
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2.2.1	 Mobile LiDAR measurement system

	 In the past decade, mobile measurement systems have been widely studied by industry 
practitioners and academic researchers, mainly for surveying and mapping, to improve the 
acquisition of indoor 3D laser point clouds. The indoor mobile 3D mapping hardware system 
consists of a mobile platform and with one or more sensors installed on it. Mobile platforms 
generally include a handheld, a backpack, and a push-cart. The sensors can be divided into two 
categories: sensors that perceive the environment, and sensors that sense the state of motion 
(position, speed, and posture). The sensors that perceive the environment include cameras, laser 
radar, and RGBD cameras, while the sensors that sense the state of motion mainly include 
inertial navigation sensors, odometers, and magnetometers.(28) 
	 For complex indoor environments without GNSS, the mobile measurement system adopts the 
SLAM technology consisting of two main types: visual SLAM (VSLAM), based on a binocular 
camera or depth camera integrated with IMU; and a LiDAR-based SLAM (LSLAM) integrated 
with IMU. The hardware system can synchronously collect inertial measurement data, laser 
radar, and image texture data. Inertial measurements, LiDAR data, and other data files stream 
into the software system, and the laser-assisted inertial navigation mapping system obtains 
centimeter-level 3D trajectories and point clouds. Compared with the traditional methods of 
mobile measurement, the mobile measurement system is independent of GNSS, flexible, and 
convenient, greatly improving the efficiency of data collection.(28)

	 Owing to advancements in SLAM technology, the price of mobile measure equipment has 
declined, its volume and weight have decreased, and its performance has improved. Given the 
progress achieved in practical SLAM navigation, the technology has been applied to many tasks 
and devices, including robot positioning and navigation, augmented reality and virtual reality 
(AR/VR), unmanned aerial vehicles (UAV), and unmanned driving.(29)

2.2.2	 Mobile LiDAR point cloud characteristics

	 The SLAM mobile measurement system adopts a closed-loop route in acquiring data; the 
starting and ending points are the same, so the 3D laser point clouds and trajectories can be 
obtained simultaneously. However, owing to the complexities of the indoor environment, 
abundant targets, moving objects, and multiple reflections, point clouds generated from mobile 
LiDAR measurements may have significant shortcomings that seriously impede the 
reconstruction of high-quality indoor models.
	 The data characteristics of mobile LiDAR systems are as follows:
(1)	3D coordinates with high density and precision
	 The measurement area is not affected by GNSS signal limitations, lighting, or weather 
conditions. The indoor equipment for mobile LiDAR measurements is self-positioned through 
position estimation and feature matching and has stable ranging performance. Therefore, the 
point cloud data collected can achieve centimeter-level accuracy and support 3D target extraction 
and model reconstruction.(30) Laser point clouds are also characterized by high density that can 
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reach hundreds or even thousands of points per square meter, which is useful for calculating 
local features. 
(2)	Discreteness
	 The mobile LiDAR system obtains the 3D coordinates of a target by emitting a pulsed laser 
beam and measuring the time and distance traveled. The distance between the target points is 
uneven and discrete. Unlike the features of 2D images stored in a plane array, the 3D laser point 
cloud is discrete and unstructured, causing difficulties in managing the space of massive data, 
displaying 3D in real time, extracting target elements, and reconstructing models. Currently, 
spatial indexes are usually constructed using kdtree, quadtree, or octree.(30)

(3)	Data loss 
	 In a complex indoor environment, incomplete laser point cloud data is an unavoidable 
problem. For example, objects with different materials absorb signals; the mirror reflection of 
smooth object surfaces may cause echo information to be unreceivable, resulting in data loss. 
Stairs, glass, and moving objects can result in occlusion and drift that may make the target 
expression incomplete and weaken spatial relationships, further affecting the object extraction 
and classification of point clouds.(30)

(4)	Uneven density distribution
	 The data collected by the mobile LiDAR measurement system usually has a large number of 
redundancies in the local area, while the local area itself is relatively sparse.(30) Before data 
processing, the original point clouds are usually sampled down using a uniform grid to reduce 
the problem of uneven density without affecting the point cloud characteristics.
(5)	Geometric position distortion
	 The point cloud data acquired by the SLAM mobile measurement system is solved through a 
graph optimization algorithm. However, the algorithm has numerous limitations, such as 
geometric structure deformation, data drift, local structure layering, and overlapping of point 
clouds.(30) These limitations can result in substantial gaps between point cloud-generated images 
and the real indoor structure. Some examples include a wall not being vertical to the ground, the 
ceiling not being parallel to the floor, and other geometric structural deviations.
(6)	Short effective observation distance
	 The mobile LiDAR measurement system is generally equipped with a Velodyne VLP-16 or 
Velodyne VLP-32 laser scanner. The effective distance of the collected point clouds is only 30–
100 meters, which is only applicable to limited indoor spaces and not suitable for large-scale 
outdoor measurements.(30)

3.	 Classification and extraction of indoor scenes

	 Indoor scenes include offices, residential houses, parking lots, and shopping areas. These 
scenes are composed of rigid structural elements such as ceilings, floors, walls, windows, doors, 
columns, individual room spaces, and indoor furniture. The extraction and classification of 
indoor objects and room segmentation provide semantic information for the reconstruction of an 
indoor scene.
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3.1	 Indoor object classification

	 The two main types of indoor point cloud classification method are: (1) classification of 
indoor structures based on geometric and semantic information on segmented planes and (2) 
classification of indoor objects by machine learning or deep learning.(31,32)

3.1.1	 Classification of indoor structures based on geometric and semantic information on 
segmented planes

	 The point clouds of indoor structural elements (e.g., floors, ceilings, and walls) are smooth 
and interconnected, so the direction of normal vectors is consistent. The common algorithms for 
extracting structural elements are region growing, random sample consensus (RANSAC),(33) 
and Hough transform.(34) These algorithms cluster point clouds with similar geometric 
characteristics into plane elements or fit them into line elements. The differences between 
indoor structures can be better expressed through geometric features (e.g., normal vector, point 
number, shape, angle deviation) or using semantic information planes or lines.
	 For instance, Sanchez and Zakhor(35) divided point clouds into four categories (i.e., floor, 
ceiling, wall, and other objects) according to normal vectors and adjacency of planes. Previtali et 
al.(36) proposed using the ray tracing method to detect openings and classify openings into 
windows and doors by regularization. Díaz-Vilariño et al.(37) proposed combining orthoimages 
and laser point clouds to extract doors. In their approach, the boundary of the candidate doors 
was extracted using the image. The doors and other objects were then classified according to the 
size and shape of the extracted boundaries and the geometric information from the point cloud.

3.1.2	 Classification of indoor objects based on machine learning and deep learning

	 Many studies have classified point clouds using traditional machine learning or increasingly 
popular deep learning techniques. The statistics of features in the sample data are calculated 
according to the neighborhood information from the point clouds. On the basis of these features, 
classifiers are established to support semantic information extraction and feature classification 
of point clouds, which provide classification labels for each point or voxel in the indoor scene. 
	 Descriptions of features by point clouds are mainly based on two methods: point cloud 
geometric constraint features and deep network learning. Such descriptions provide a 
morphological structure and serve as the basis of point cloud segmentation and classification. 
The feature vectors of point cloud geometric constraints include descriptors of the values of 
features,(38) fast point feature histograms,(39) rotation projection statistical feature description,(40) 
and binary shape context.(41) The feature vectors of the point cloud depend primarily on prior 
knowledge, are trained using the original point cloud samples, and are classified point by point. 
Common classifiers include the random forest,(42,43) support vector machine,(44) JoinBoost,(45) 
Expectation Maximum,(46) conditional random field,(47) neural oscillator network,(48) deep 
learning,(49) and adaptive boosting (AdaBoost).(50) Random forests(43,51,52) and JoinBoost(45) are 
also often used for feature selection.
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	 For instance, Armeni et al.(53) proposed a semantic classification method in which a 
logarithmic, linear model is established to realize the classification of indoor elements by 
maximizing the energy function. The weight of the energy function is determined by learning 
from a structured support vector machine.(54) Rottmann et al.(55) proposed a supervised learning 
method to perform semantic classification for objects in different positions. This method first 
integrates image and laser data to extract features, then applies the AdaBoost algorithm(56) to 
form a strong classifier; finally, an implicit Markov model is used to improve the final 
classification accuracy. 
	 Parameter design for machine learning depends primarily on prior knowledge, which is not 
suitable for complex environments. With the development of deep learning, feature expression 
can automatically be learned from a large amount of training data, and many parameters can be 
used to express scene features, thereby improving classification accuracy and algorithm 
adaptability.(57) Deep learning technology provides new possibilities for point cloud 
classification.
	 Deep learning models can be classified into three categories: voxel-based, multi-view-based, 
and irregular-point-based. 1) Voxel-based model. VoxNet(58) divides space into regular 3D voxels 
and then uses a 3D convolutional neural network to obtain descriptions of features of the point 
cloud. 2) Multi-view-based model. This method mainly projects 3D data from different 
perspectives to obtain 2D rendered images and uses an image convolution network to learn 
features of 3D data.(59) However, the results of this model depend on the method and perspective 
of the rendering. 3) Irregular-point-based model. PointNet(60) directly processes point cloud data 
using depth learning for the first time and uses multi-layer perception (MLP) to obtain point-by-
point features. The largest feature pooling method is adopted to achieve invariance in order to 
replace and describe the global features of the point set, generating better results for the 
expression of features. PointNet++(61) adds multi-level information and uses PointNet for local 
feature learning to achieve the fusion of global and local features. The biggest bottleneck for 
deep learning is the need for a large amount of training sample data and the generalization 
ability of the learning network.(62–64) Compared with deep learning of 2D images, owing to the 
large amount of data and complex features, deep learning for 3D point clouds still requires 
substantial improvements to overcome the limitations in training efficiency and network 
architecture design.

3.2	 Indoor room segmentation

3.2.1	 Room segmentation based on TLS point clouds

	 Room segmentation based on TLS point clouds uses the point clouds collected by each 
station as initial information. Oesau et al.(65) first proposed using a binary graph cut algorithm to 
segment space; however, the method only distinguishes the indoor and outdoor areas, and a 
single room could not be semantically divided. Ochmann et al.(66) proposed a class-conditional 
probability iterative clustering method for room segmentation. This method usually had over-
segmentation in a long space, which required manual interaction to merge the over-segmented 



Sensors and Materials, Vol. 35, No. 1 (2023)	 257

space. Mura et al.(67) constructed a diffusion map to spread the similarity between plane units 
and completed space division by iteratively clustering 2D units. Ikehata et al.(11) used k-medoids 
clustering, which involves combining the regions whose distance from neighboring cluster 
centers is less than a certain threshold to complete room segmentation, and in which the distance 
measure of clustering depends on the binary visual vector of the scanning center. In general, 
room segmentation algorithms using point clouds obtained by TLS have fewer iterations and 
high time efficiency, but due to limited TLS data, this method is not convenient for large scenes. 

3.2.2	 Room segmentation based on MLS point clouds

	 Turner et al.(68,69) proposed an approach in which the triangle with the larger circumscribed 
circle is selected as the seed point for room estimation in the plane of the building model. A dual 
graph of all triangles in the plane is then formed, and the minimum cut method is used to 
segment the rooms. However, knowing the number of rooms is a precondition for seed point 
clustering, which limits the practicability of the algorithm. Wang et al.(70) proposed using the 
morphological clustering method to segment rooms, which was similar to Mura et al.(67) in that it 
built diffusion maps to cluster units in the same room. Díaz-Vilariño et al.(71) used timestamp 
information in determining the point clouds of each trajectory point and built the minimization 
energy function for global space optimization to complete the segmentation of a single room. 
Ochmann et al.(72) proposed a fully automatic room segmentation, which used ray tracing for 
visibility analysis of point patches in planes and thereby constructed visibility graphs. Then 
Markov clustering was used to cluster the nodes of the graph to complete the room segmentation. 
Bormann et al.(73) introduced morphological and distance transformation-based segmentation 
methods. Morphological segmentation converts the entire point cloud into a binary image, 
carries out morphological corrosion transformation, and determines the divided space through 
connectivity analysis. If the divided space is between the minimum and maximum area 
thresholds, marked as a room label, the process is repeated until the labels of all 2D pixels are 
determined. The room segmentation based on distance transformation converts the binary graph 
of the indoor scene into different regions. The local maximum of the distance transformation is 
always at the center of the room. Therefore, if the distance transformation result is properly 
thresholding, the center of the room can be obtained. The key principle of the algorithm is to 
cycle all possible thresholds in descending order to determine the center label of the room. The 
wavefront propagation strategy is then used on the unlabeled space to complete the room 
segmentation. This method is similar to morphological segmentation, which is prone to over-
segmentation or under-segmentation. For example, Li et al.(74) proposed a comprehensive 
segmentation method created using morphological erosion and connectivity analysis methods on 
floor space, which can overcome over-segmentation in long corridors. Zhao et al.(75) proposed an 
iterative Gaussian mapping-based segmentation strategy that has been discussed in this article, 
which goes from a rough segmentation to a refined one iteratively to decompose the indoor 
scene into detectable point cloud clusters layer by layer. The method retains sharp structures and 
details of the indoor scene.
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	 The classification and extraction of indoor objects give semantic information on unordered 
point clouds. However, the target point clouds are highly redundant and contain large amounts of 
data. They do not have topological relationships and spatial structure information, so they are 
not convenient for 3D adaptive expression, spatial analysis, and location services. Therefore, it is 
necessary to build 3D vector models with topological relationships and spatial structures based 
on the extracted geometric primitives. Owing to the complex structure of buildings, serious 
occlusion of objects, and large noise, automatic reconstruction of high-quality 3D models is a 
challenging task.

4.	 Research Status of 3D Indoor Model Reconstruction

	 Developments in science and technology, coupled with the increasing demands for social 
services and natural resources, have promoted the growth in the construction of 3D real scenes 
in China. The 3D reconstruction of real scenes can be divided into terrain level, city level, and 
component level according to the content and level of expression. Indoor model reconstruction is 
one of the main tasks of component-level construction. 
	 Unlike digital surface models that have redundant mesh grid reconstruction, the key to a 
reconstructed structural model is accurately extracting the building’s structural elements and 
converting them into line, surface, and volume vector models with topological connections. The 
reconstruction of 3D models from point clouds can be classified into three types: data-
driven,(76,77) model-driven,(78–80) and hybrid-driven.(81,82) Model-driven methods fit the building 
point clouds to the most appropriate models from a pre-defined model library. However, this 
method is limited by the primitive types in the model library and cannot reconstruct complex 
structures. Data-driven methods can reconstruct building models with multi-levels but are 
sensitive to data quality and depend mainly on the accuracy of extracted geometric primitives. 
Therefore, high-precision models are usually constructed using hybrid-driven methods that 
combine the advantages of data-driven and model-driven approaches. 
	 On the basis of the types of vector, reconstruction methods for indoor spaces can be divided 
in terms of three strategies: line-based, plane-based, and volume-based. Different types of 
vector data represent models with different levels of detail. Models reconstructed based on line 
features mainly represent scene details with high modeling accuracy. Plane-based reconstruction 
primarily expresses the main contour information of a scene. Models based on volume element 
reconstruction typically represent the real 3D shape of scenes and the structural components of 
the buildings. This approach is commonly used to visualize 3D solid models and is applied to 
spatial analysis and other applications. 
	 At present, to promote research on indoor modeling methods and the evaluation of 
reconstructed models for accuracy, the International Society of Photogrammetry and Remote 
Sensing (ISPRS) had released the WG IV/5 “3D indoor modeling” dataset.(83) Owing to the 
complex structure of indoor scenes, serious occlusion between objects, and the considerable 
noise associated with local point clouds, automatic reconstruction of high-precision 3D models 
remains a challenging problem.
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4.1	 Line-based reconstruction

	 The extraction of line elements can be divided into 2D image-based extraction and 3D laser 
point cloud extraction according to the different types of data involved. The traditional Hough 
transform (84) maps each data point to a discrete parameter space and selects the parameter space 
with the largest vote to fit the lines. Similar methods include the Roberts Cross, Sobel, or Canny 
edge detectors.(85) These methods have considerable limitations, producing many erroneous 
detections in high-density texture regions and resulting in line segments with abnormal 
directions. In addition, the algorithm is not robust, because it sets a fixed threshold to extract the 
whole line segment.
	 Burns et al.(86) proposed a method of clustering image gradient orientations in extracting line 
elements, ignoring boundary points and gradient levels. The extracted features are not regular 
lines but detailed, textured features and local objects. Matas et al.(87) proposed the progressive 
probabilistic Hough transform (PPHT) to extract the lines, which accelerated the computational 
efficiency of randomly selected edge points, the effect of which was to significantly improve 
results compared with those from with the standard Hough model. While PPHT has many 
advantages over the standard HT in many circumstances, the method only detects the entire line 
and does not retain scene details. Desolneux et al.(88,89) proposed determining abnormal lines by 
calculating the number of points in the gradient direction and using the non-structural inverse 
model, which controls the false extraction of line segments and solves the threshold problem of 
line extraction parameters. Combining the standard line segment test from Desolneux et al. and 
the improved Burns algorithm, Rafael et al.(90) proposed the line segment detector (LSD) 
algorithm, which can automatically and accurately detect line segments from images without 
requiring manual adjustment of the parameters. On the basis of the previous line segment 
extraction algorithm, Bauchet and Lafarge(91) proposed a kinetic approach that constructs 
polygonal contours to express the detailed geometric structure of a 2D image. The core idea of 
the algorithm is to extend the pre-detected line segments until they intersect the neighboring line 
segments to better express the geometric information in the image with fewer polygons. Liu et 
al.(92) proposed a novel deep neural architecture, FloorNet, to process data using three neural 
network branches. PointNet has been adopted to process 3D point cloud data, and the CNN 
frame can be used in processing 2D point density images to enhance local spatial reasoning. The 
CNN model then processes the RGB image with full image information, and the neural 
architecture reconstructs a high-precision vector-graphics floorplan based on low-cost RGBD 
video data. 
	 The uneven density and high noise in 3D laser point clouds generate considerable challenges 
for 3D line extraction. In recent years, numerous studies have explored the extraction of line 
segments using 3D laser point clouds. The general method was first to segment surfaces from 
point clouds. In it, the intersection area of adjacent planes is fitted to 3D lines.(93) However, the 
extracted line elements are completely independent, without topological relationships and spatial 
connections. Xia and Wang(94) developed a similar approach. Others have suggested 
reconstructing topological 3D models based on extracted 3D lines. Jung et al.(95) proposed 
implicit regularization for reconstructing 3D building models. The building point clouds are first 
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clustered into planes, and the outer boundaries, intersection lines, and step lines are extracted on 
the basis of the planes. The binary space partitioning (BSP) technique is then used to build the 
space topology, and the building rooftop model is regularized using an implicit regularization 
process. Sui et al.(96) proposed an approach that automatically recovers the geometry of urban 
buildings. The dominant floorplans are extracted by correcting the normal vector and position of 
the edge points, and each floorplan is then propagated to similar floors. Wang et al.(62) developed 
a novel semantic line framework-based modeling approach using point clouds. The detected line 
structures are optimized by constructing a conditional generative adversarial net (cGAN) deep 
learning model. 
	 The 3D indoor model reconstruction based on lines can express indoor scene details but lacks 
semantic information and spatial relationships. Reconstructed indoor models based on plane and 
volume features have spatial topology and adjacency, making up for the shortcomings of line-
based reconstructions. This approach can generate 3D visualizations and perform spatial 
analysis and location services.

4.2	 Plane-based reconstruction

	 The main problem of plane-based reconstruction is how to extract high-precision planes to 
robustly describe indoor scene geometry. The traditional RANSAC algorithm(33) extracts planes 
by repeatedly selecting random data subsets. Three points are randomly sampled from the point 
clouds as seed points to fit the initial plane. Under the conditions of fixed interior points and 
fitting thresholds, it requires abundant samples, from which it selects the largest point set as the 
best model. The process is continued repeatedly until all point clouds are clustered into 
respective planes. Although the traditional RANSAC algorithm has a good segmentation effect, 
several modified approaches have been introduced to improve the segmentation algorithm, such 
as the efficient RANSAC,(97) the new weighted RANSAC algorithm,(98) and the enhanced 
RANSAC algorithms.(99) However, these segmentation algorithms still have some shortcomings. 
For instance, they depend heavily on parameter selection and are considerably affected by point 
cloud quality. Different point cloud features (e.g., point density, quality, and point spacing) also 
determine the selection of parameters, and the order of surface detection affects the segmentation 
results. If the first surface extracted is inaccurate, the subsequent extractions may be seriously 
affected.
	 Many research algorithms have focused on the intersection of planar primitives to find 
appropriate combinations to express building models, which break through the traditional 
geometric primitive extraction. For example, Monszpart et al.(100) developed an effective 
approach to extract regular arrangements of planes (RAP) from unstructured point clouds in 
rebuilding anthropogenic scenes. However, the method requires long computing times for the 
reconstruction of large scenes. Hu et al.(101) designed and built a multi-label graph cut model to 
extract building roof planes. The initial candidate plane set is obtained using superpixel over-
segmentation and random sampling technology, and then the best candidate plane set is 
optimized by combining it with the scene constraint relationship. Finally, the hypervoxel and 
candidate planes are globally optimized to achieve high-precision plane extraction. Lin et al.(102) 
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proposed a method based on energy minimization to reconstruct the planes consistent with the 
constraint model. The method implicitly establishes the relationship between planes with the 
least prior knowledge, which is efficient in plane extraction. Because the extracted high-
precision planes have no topological relationship and are only used for visualization, the vector 
model with topology has to be reconstructed on the basis of the extracted planes and would be 
visualized using either a regular grid, an irregular triangular network (TIN), or the hybrid 
model.
	 Many scholars have studied various methods of reconstructing 3D models. In the common 
method,(103,104) the roof surface topological relationship is first generated, and the building’s 3D 
model is reconstructed by combining intersection lines and contour lines of surface primitives 
based on the topological relationship. Lafarge and Alliez(105) proposed to restore the detailed 
structure of a scene by a hybrid modeling method using surfaces and planes. The final surface 
model is reconstructed by solving a graph-cut formulated on the 3D Delaunay triangulation of 
the structured point set in which the tetrahedra are labeled as inside or outside cells. The 
reconstructed model has rich sharp features, while the number of surface triangles is reduced. 
Boulch et al.(106) provided a method for constructing piecewise planes to reconstruct a 3D model. 
This method expressed the visible area of the indoor scene with a water-tight polygon mesh, 
which was conducive to the reconstruction of the indoor occluded area. Chauve et al.(107) 
proposed an approach that employs the adaptive decomposition of 3D space produced from 
planar primitives. The algorithm uses an optimized water-tight polygon mesh grid to replace the 
redundant point cloud data, which retains local details, simplifies redundant mesh grids, and is 
not affected by point cloud noise. Huang et al.(108) proposed a new method that inferred the 
vertical walls directly from the data. With the planar segments of both roofs and walls in place, 
the faces of the building are hypothesized, and the final model is obtained using an extended 
hypothesis-and-selection-based polygonal plane reconstruction framework. Bauchet and 
Lafarge(109) proposed a shape assembling mechanism that was designed from a kinetic data 
structure for partitioning the space into convex polyhedra. The method can reconstruct a variety 
of objects and scenes in terms of complexity, size, and acquisition characteristics. While the 3D 
mesh model provides spatial, semantic, and geometric information, it lacks topological 
connections for adjacent spaces. The IndoorGML standard model defines a building framework 
as a solid geometric model expressed by 3D cell elements with rich geometric attributes, 
topological structure, and semantic information. The reconstruction models are used to express, 
store, and exchange indoor space information, which is convenient for space analysis, model 
management, and applications.

4.3	 Volume-based reconstruction

	 Volumetric reconstruction of indoor environments divides a scene into 3D voxels using 
extracted planes and splits and merges volumetric primitives based on predefined rules. Oesau et 
al.(65) proposed for the first time to reconstruct the indoor model using volume elements. The 
final model is reconstructed from 3D cell decomposition by categorizing the cells as either 
empty or solid spaces using a graph-cut algorithm. However, the method can only build inside 
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and outside partitions, not single rooms. Nan et al.(112) and Li et al.(113) proposed similar 
modeling methods. Their methods break through the extraction of traditional geometric 
primitives, focusing on the intersection of plane primitives to form 3D volume elements to find 
suitable combinations to express the structural model of a building. In the past five years, many 
researchers have expanded volumetric reconstruction approaches. Xiao and Furukawa(114) 
proposed the inverse constructive solid geometry (CSG) method, which uses volume elements to 
construct geometric solids, adopts regularization constraints to complete structure 
regularization, and finally completes the reconstruction of large-scale museum models. Ikehata 
et al.(11) proposed constructing indoor structured models guided by structure diagrams in which 
the nodes are represented as structural elements (e.g., rooms, walls, and objects) and edges 
represent geometric relationships. This method relies on local geometric relationships and is 
limited by the assumption of the Manhattan world. Ochmann et al.(72) developed an approach 
that uses RANSAC to extract pieces of planar surfaces; the scanning point cloud of each TLS 
station is regarded as the room’s initial label. Global optimization by multi-label graph cuts is 
then utilized to reconstruct multi-room indoor model. Given that this method relies on the 
semantic knowledge of scanning stations, over-segmentation occurs in long corridors. In 
addition, owing to occlusion and noise, automatic reconstruction is difficult for high-precision 
indoor models, and manual interaction is still required. Similar to Ochmann’s method, Mura et 
al.(115) proposed an effective technique that extracts planes, dividing a scene into 3D polyhedral 
cells and establishing a BSP tree. The polyhedral cells are then split and merged according to 
attribute information in the visible point cloud. The final 3D indoor model is reconstructed, 
overcoming the Manhattan assumption.(11,65,72,113,114) Cui et al.(116) developed a method using 
high-precision line elements and segmented individual rooms as semantic constraints. Global 
optimization is then carried out to obtain  the planar  model, and the reconstructed model is 
generated using the 3D geometric information of the surface elements. This approach can be 
used to build a complete vector model without local point clouds while ensuring accuracy and 
model efficiency. Ochmann et al.(117) extracted walls and formulated the optimization method to 
arrange wall entities in reconstructing the structural model, adding manual interactions to 
improve model accuracy. This model can meet the requirements of BIM, although its main 
limitations include slanted walls, ceilings, and floors. Li and Wu(118) developed a robust method 
that embeds multiple relationships into procedural modeling for reconstructing 3D CityCML 
building models. The hybrid tree of constructive solid geometry and boundary representation 
(CSG-BRep) was built to divide a building into polyhedral cells based on geometric constraints. 
The shapes of buildings were selected on the basis of topological-relation constraints. The 
building models were built using a reconstructing CSG-BRep tree. The specific surfaces of 
building models are converted into the CityGML format. Chen et al.(119) provided a novel 
framework that reconstructed urban models by exploiting a learned implicit representation as an 
occupancy indicator for the extraction of an explicit geometry. This report is the first work in 
which an implicit field is explored for building reconstruction. 
	 Because point clouds are easily affected by many factors, it is still difficult to reconstruct 
high-precision 3D models automatically. At present, the 3D reconstruction of complex buildings 
requires manual editing; thus, 3D modeling research has been geared towards reducing human 
interactions to enable full automation.
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5.	 Discussion

	 In this paper, we provide a comprehensive literature review of the state-of-the-art techniques 
for the 3D reconstruction of indoor environments based on laser point clouds. While most of the 
algorithms generate high model accuracy, several issues still need to be addressed.
(1)	Adaptive filtering for indoor point clouds
	 For complex indoor environments, the existing methods(72–76,116,117) filtered out the clutter of 
indoor objects using the geometric constraints of point clouds. However, outdoor trees and 
ground-cluttered points are often included when collecting indoor point cloud data. Relying 
solely on geometric constraints does not filter out all the noise and still requires manual editing. 
Therefore, the adaptive point cloud filtering algorithm must be improved to increase point cloud 
accuracy.
(2)	Real 3D model reconstruction
	 While state-of-the-art techniques can automatically reconstruct regular indoor models, they 
are not always suitable for the complex structures of indoor environments.  For example, the 
modeling algorithms(110–117) can only express ridge roof structures and cured surfaces with 
horizontal planes. Future research may involve reconstructing real 3D models using arbitrary 
geometric shapes (e.g., curved surfaces, planes).
	 Previous work has primarily focused on reconstructing the vector structure model without 
texture information. Extracting structural features from images and automatically matching 
them with vector models should be explored in subsequent studies to improve the creation of real 
3D indoor scenes and aid in the construction of realistic 3D China. The various reconstruction 
algorithms and approaches should be applied and tested in more indoor locations, such as 
commercial booths, large airports, shopping malls, and subway stations.
(3)	Indoor model reconstruction with multi-level details
	 The major limitation in existing reconstruction methods is that they only reconstruct indoor 
main frame models (e.g., floors, ceilings, windows, and doors) and lack 3D models for indoor 
furniture (e.g., tables, chairs, and cupboards). To perform better in indoor location applications, 
indoor main frame and furniture models with multi-level details should be reconstructed on the 
basis of point cloud semantic classification results. 

6.	 Conclusions

	 With developments in sensor technology, various types of laser scanning and optical imaging 
instruments may now be used for data collection of indoor scenes. The main instrument types 
are RGBD sensors, TLS, and MLS. Easy-to-use, low-cost MLS equipment has been widely used 
for data acquisition for large indoor scenes. Therefore, many researchers work on object 
extraction and 3D model reconstruction based on collected point clouds to carry out urban 
spatial analysis and other applications. In this paper, we comprehensively analyzed and 
summarized the current literature on indoor model reconstruction based on point clouds. We 
first described the indoor modeling standard, which is the foundation of modeling; we introduced 
the MLS measurement system and discussed the characteristics of collected data. In the second 
part of the paper, we discussed the classification and extraction of indoor scenes to give 
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unordered point clouds semantic information, which are used to build 3D vector models with 
topological relationships and spatial structures. We also comprehensively summarized the 
existing literature on 3D indoor model reconstruction, which can be divided into line-based, 
plane-based, and volume-based methods. Line-based reconstruction can express the local details 
of indoor scenes; however, it lacks semantic information and spatial relationships. Plane-based 
reconstruction can describe the geometric structure with a redundant 3D mesh grid. Volume-
based reconstruction expresses geometric shapes using 3D water-tight volumetric primitives and 
establishes topological relationships between entities with geometric, semantic, and structural 
information; however, most existing methods focus on reconstructing main architectural 
structures, which may be unsuitable for complex indoor scenes. 
	 The last part of the paper presented the issues and trends in indoor model reconstruction. For 
example, adaptive filtering for indoor point clouds can improve the accuracy of point clouds. 
Real 3D model reconstruction can be applied to all indoor complex structures and provides 
texture information. The reconstruction of indoor main frame and furniture models with multi-
level details were discussed and summarized. 
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