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 Simultaneous localization and mapping (SLAM) is the key technology for achieving 
autonomous navigation and stable walking for robots. For addressing a dynamic and special 
environment indoors and outdoors, there are still some limitations in using a single sensor to 
estimate and locate a robot’s position and orientation. To further improve the accuracy of SLAM 
positioning in real time, in this study, we combine the advantages of the RGB-depth map 
(RGB-D) and light detection and ranging (LiDAR) and propose a model of a two-stage deep 
fusion framework named convolutional neural network (CNN)–LiDAR vision inertial 
measurement unit (CNN–LVI) for real-time pose estimation by a geometric method. Unlike 
existing methods that use either a two-stage framework or multistage pipelines, the proposed 
framework fuses image and raw 3D point cloud data after multisensor joint calibration, and then 
uses 3D point clouds as spatial anchors to predict the pose between two sequence frames. By 
using a CNN algorithm to identify and extract a 3D bounding box, the target object projection of 
an RGB image is tracked to obtain the target minimum bounding rectangle (MBR). Finally, the 
rotation angle and translation distance are calculated by a geometric method using the centroid 
of the target MBR, so as to combine an inertial measurement unit to perform joint optimization, 
achieve the pose estimation of a robot, and further improve the model’s location accuracy. 
Experiments show that the proposed model achieves significant performance improvement 
compared with many other methods in the car class and achieves the best trade-off between 
state-of-the-art performance and accuracy on the benchmark with the KITTI dataset.
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1. Introduction

 Simultaneous localization and mapping (SLAM) provides environment map data for the 
autonomous navigation of robots, making it possible for robots to perceive the environment 
using sensors and perform autonomous movement.(1) Although light detection and ranging 
(LiDAR) technology is relatively mature and can obtain good depth information, the vertical 
resolution of LiDAR is still low, only a sparse point cloud can be obtained, and the features 
provided are limited. However, LiDAR also has strong robustness to environmental changes and 
is widely used in various indoor navigation scenes. Even so, when a robot is placed in a dynamic 
environment with high peripheral similarity, the ability of LiDAR to perceive the environment 
and identify objects declines, which may prevent the robot from walking normally and cause 
robot navigation to fail. In contrast, with vision, LiDAR can provide robust and accurate depth 
information regardless of lighting and texture conditions. This is directly related to LiDAR’s 
stable and reliable 3D scene data acquisition technology, which makes it the preferred device for 
SLAM. Therefore, many mature laser SLAM systems such as LOAM(2) and Lego LOAM(3) can 
obtain intensive and accurate maps and show stable performance despite environmental changes. 
At present, LiDAR with high spatial resolution is expensive, whereas low-cost LiDAR often has 
a low spatial resolution and high noise, making it difficult to find stable features, because the 
information content is less rich than that of images. Therefore, it is difficult to extract advanced 
semantic features using LiDAR, which makes it difficult to relocate to an accurate location when 
tracking is lost. In addition, LiDAR lacks loop detection ability, and it is difficult to eliminate 
accumulated error. The reason is that vision has strong scene recognition ability, and it contains 
a massive amount of texture information, and thus, the visual SLAM is easily affected when 
light or texture is lost. In particular, rapid motion will cause image blur, resulting in tracking 
failure. In terms of image processing, map construction based on nonlinear optimization is very 
complex and time-consuming. Even so, although the system framework of laser SLAM is 
mature, many engineering application problems remain unsolved. Many scholars have proposed 
the use of multisensor fusion or even deep learning to improve the positioning accuracy of laser 
SLAM.(4) So far, laser SLAM based on graph optimization is the mainstream technology. In 
view of the above reasons, we propose a SLAM solution fusing a multisensor, which combines 
different detection results at the post-fusion phase. The proposed solution is simpler and more 
effective than the previous fusion and does not require additional transformation of the original 
data. At present, achieving accurate and real-time 3D object detection is still a great challenge. 
Most existing works such as the conversion of the 3D point cloud to images by projection(4,5) or 
to volumetric grids by quantization(5–7) and the application of some neural networks(8) have been 
presented. In fact, from the perspective of computing performance, many scholars have proposed 
to process point clouds directly without converting them to other formats,(9) such as PointNets,(10) 
which has resulted in better performance and efficiency in the understanding of several 3D 
tasks, including object classification and semantic segmentation. Because of the computational 
complexity in 3D, we take advantage of mature 3D object detectors to extract the bounding 
target box, and project onto the 2D images. In contrast to previous works that address LiDAR 
data using convolutional neural networks (CNNs), our objective is to obtain a bounding box 
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regardless of the 3D projection or 2D extraction. Our method achieves the best trade-off between 
performance and accuracy on the KITTI benchmark. The contributions of this work can be 
summarized as below:
(1) A CNN–LiDAR vision inertial measurement unit (CNNL–LVI) framework with the graph 

optimization method was proposed, which is a two-stage deep fusion model to solve the 
problem of real-time pose estimation. 

(2) A target minimum bounding rectangle (MBR) calculation by using a geometric method is 
presented after fusing 3D point clouds and RGB-depth (RGB-D) images, using a Canny 
operator to obtain a 2D bounding box by tracking the target object projection, so as to 
calculate the robot’s position and pose.

(3) Our method for pose estimation was verified using the results of experiments in real 
scenarios to show that the method is feasible and that the best trade-off between the state-of-
the-art performance and accuracy is achieved.

2. Related Works

 Since the stochastic solution to probabilistic SLAM was first proposed,(11) scholars have 
proposed Bayesian filtering, graph optimization, and Gauss Newton optimization methods to 
build a global 2D laser SLAM. After that, the extended Kalman filter (EKF) was used to solve 
the SLAM problem. Owing to the use of probability statistics, there exist large computational 
resources, poor algorithm stability, and the established feature map, which cannot be directly 
used for the autonomous navigation of robots. Later, to decompose the problem of a robot’s pose 
estimation with respect to SLAM, the Monte Carlo method, which contains a particle filter and a 
Kalman filter, was used(12) and improved versions of fast SLAM, gmapping(13,14) and 
CoreSLAM,(15) were proposed. However, the SLAM algorithm based on the Kalman filter or 
particle filter cannot achieve ideal results when constructing a large-scale map because of the 
absence of loop detection. In the process of achieving accurate positioning and real-time map 
construction, methods of graph optimization(16,17) have been presented one after another. 
Combined with the characteristics of radar, vision, and other sensors, starting from the aspect of 
efficiency and accuracy, researchers have proposed various solutions to the problem of SLAM. 
More attention is being paid to the fusion of LiDAR point clouds and images. Li et al.(18) 
proposed the fusion of 2D LiDAR and a depth camera so as to improve the antijamming ability, 
detection range, and mapping accuracy of the sensor. However, achieving accurate and real-time 
3D object detection is the precondition for successful autonomous navigation and stable walking 
of robots. Hence, in many research studies, such as those on MV3D(19) and AVOD,(20) the two-
stage framework was adopted to detect 3D objects based on point cloud and RGB images to 
improve the efficiency and accuracy of SLAM. Compared with the time-consuming two-stage 
3D detection model, some groups(21,22) utilized the one-stage framework to detect 3D objects. 
However, the one-stage framework yields a worse accuracy than the two-stage methods. After 
analysis, if we take raw point cloud and RGB images as inputs, convert point clouds into 2D 
bird’s-eye-view (BEV) images, and fuse the 2D images from the camera to improve the 
accuracy, the computational complexity will be slightly reduced. 
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Fig. 1. (Color online) Framework of CNN-LVI upon graphic optimization method.

 In this study, we build a complementary system scheme based on LiDAR, supplemented by a 
multisensor such as depth camera RGB-D and IMU. Our system can improve the acquisition of 
front-end data. Meanwhile, we let the system carry out tight coupling depth fusion at the back 
end and constantly correct the robot’s pose. Finally, the accumulated error is eliminated by loop 
detection, so as to realize the first environmental exploration by a robot walking steadily and 
realize accurate positioning for rapid SLAM construction. 

3. Framework of CNN-LVI upon Graphic Optimization Method

 For the purpose of fusing the multisensor data to improve the computational efficiency and 
real-time robot free walking, we propose a framework for tightly coupled LiDAR-Visual-Inertial 
odometry upon graphic optimization method based on LVI-SLAM,(23) which is described in 
detail in Fig. 1. We can see that the camera and LiDAR contain three parallel processes. Even if 
one of the parts fails, the system can still work effectively. We can further improve the system 
accuracy and robustness by combining the camera and LiDAR and by using the method for pose 
estimation with joint optimization. To guarantee a real-time response and decrease the volume 
of feature point cloud processing, an algorithm for CNN-based edge detection for targets was 
applied. After data fusion, we track the feature points in the front and back frames to estimate 
the camera pose. Then, we combine the IMU pose estimation and carry out the loop closure 
detection to perform joint optimization and further improve the accuracy of pose estimation. 
Therefore, to be exact, our framework is a graph-optimized tightly coupled SLAM system with a 
multisensor.

3.1 Multisensor joint calibration

 Usually, before fusing LiDAR and camera data, the coordinate reference system must be 
initialized for each sensor. However, we need to build a multiparty coordinated robot system 
with multiple sensors. The relationship between the camera and the robot is not only a problem 
of coordinate transformation, but also a problem of intrinsic parameter calibration. 
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Fig. 2. (Color online) Flow chart of coordinate transformation.

 Because LiDAR and the camera use two different coordinate reference systems, it is 
necessary to define a world coordinate system to realize the synchronization of sensor data. To 
simplify the calculation, we assume that the reference frame of the mobile robot is the same as 
that of the LiDAR. A flow chart of coordinate transformation is shown in Fig. 2.
 LiDAR and the camera detect the ground object in different data forms. As shown in Fig. 3, 
point P represents the particle of the ground object. Under the coordinate system (OL, XL, YL, 
ZL), the laser radar coordinate is (xL, yL, zL), under the coordinate system (OC, XC, YC, ZC), the 
Kinect camera coordinate is (xc, yc, zc), and the projection coordinate of point P in the image 
plane coordinate system (XP, OP, YP) is P'(u, v). However, the target data of point P collected by 
LiDAR is not the coordinates (XL, YL, ZL), but the distance r and angle α. The object data of point 
P collected by the Kinect camera is not the coordinates (xc, yc, zc), but the projection coordinates 
(u, v) and the corresponding depth information (Zc). The detailed relationships of image 
coordinates between LiDAR and the camera are shown in Fig. 3.
 From the geometric relationship between the LiDAR coordinate system (OL, XL, YL, ZL) and 
the Kinect camera coordinate system (OC, XC, YC, ZC), we can obtain the transformation 
relationship of the ground object P in different coordinate systems.
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Fig. 3. (Color online) LiDAR and camera coordinate systems.

In Eq. (2), fx and fy are the equivalent focal lengths in pixels on the x- and y-axes, respectively.  cx 
and cy are the reference points on the x- and y-axes, respectively. All of them belong to the 
intrinsic parameter of the camera. According to Eqs. (1) and (2), we can convert the ground 
object information collected by the Kinect camera into the coordinate under the LiDAR 
coordinate system. Here, we need to maintain the coordinate origin on the y-axis between  
LiDAR and the camera and let the vertical height difference be h; then, we have
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 After determining the camera parameters of fx, fy, cx, and cy, we take multiple pairs of Kinect 
data u, v, and z and LiDAR data r and α and apply them to Eq. (3) by solving the linear equations 
to obtain the matrixes R and T. Then, we determine the rotation and translation relationship 
between the Kinect camera and the LiDAR coordinate system to complete the joint calibration.

3.2 RGB and LiDAR data fusion

 LiDAR can be used to measure the shape and contour of objects. Therefore, to track a target 
and obtain accurate pose estimation, we first fuse the image and point cloud data, obtain the 
target polygon through a 2D image edge detection algorithm, and then select several groups of 
feature points in the polygon to calculate the pose. This can considerably reduce the amount of 
calculation for feature point data and improve the computational efficiency.
 For LiDAR point cloud data, how the data are fused in different spatial dimensions is very 
important. Considering that data fusion contains the data in the early stage and the results in the 
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later stage, the main idea in the early stage is to project the 3D LiDAR point clouds onto the 2D 
plane(24) and to check whether the point clouds belong to the 2D bounding box. On the other 
hand, postfusion refers to fusing the results of independent detection, including projecting the 
2D bounding box of the image onto the 3D bounding box, then fusing these bounding boxes 
during the LiDAR detection process. 
 According to the literature,(25,26) the 3D radar point cloud and RGB image are used as input 
data. In fact, BEV and RGB-D images can be obtained easily. After multisensor joint calibration 
and coordinate transformation, the height information of a 3D radar point cloud will be projected 
onto the RGB image plane with its depth information. Therefore, for BEV, the image plane is 
sliced on the basis of the point cloud, and then the attributes of pixel points (x, y, z) are identified 
by calculating the density features and height features. For the RGB-D image, only the height 
information of point cloud projection needs to be embedded into the original RGB image. The 
whole process is divided into three steps. 
 First, the point cloud (X, Y, Z) is mapped onto the original image (W × H) plane as
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Here, (u, v) is the image coordinate, Proj is a project matrix, cam
veloR  is the rotation matrix from 

LiDAR to the camera, cam
velot  is a translation vector, and M is the homogeneous transformation 

matrix from LiDAR to the camera.
 Second, the points {(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z} located in the W × H image size are kept. 
Meanwhile, the LiDAR points are projected to the camera coordinates and denoted as (xc, yc, zc).

 ( ) ( )1T T
c c cx z zy x y= ⋅M  (5)

 Finally, zc is mapped between 0 and 255 and then assigned to the corresponding image 
coordinate (u, v).

3.3 MBR generation

 Generally, the robot’s pose estimation involved registering the point clouds of adjacent 
frames to obtain the relative transformation relationship of the target, so as to achieve  
positioning in the environment. One method is to achieve positioning through 2D target 
detection by RGB-D image, and then use its corresponding point cloud data to track features on 
the basis of the detection results.(27) The other method is to use the PointNet 3D target edge 
detection method to complete target tracking to achieve the mobile robot’s pose estimation. The 
former requires a large amount of calculation. Therefore, to reduce the computational cost and 
improve efficiency, we plan to use the second method to implement the edge detection of the 
object in the fused image, obtain the MBR, and further estimate the position and the robot’s pose 
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Fig. 4. (Color online) Detected object in green bounding box and MBR for the vehicle. (a) Green bounding box for 
the vehicle. (b) MBR for the vehicle.

by calculating the coordinates of the centroid of the ground object in the previous and last two 
frames of images.
 The edge detection of objects in 2D images is an important base in the field of image 
segmentation, object recognition, and region extraction. Because image noise is sensitive to the 
noise of edge detection operators, the current edge detection algorithm incorporates improved 
templates such as a neural network(28) and heuristic algorithm,(29) requiring a large number of 
training samples to establish models. In fact, the cost of the above algorithms is high and the 
efficiency is low. In comparison, the Canny operator(30) is the most principled edge detection 
operator, and it has become the standard for evaluating other edge detection methods. Therefore, 
in this research, we will use an improved Canny operator with a stronger search ability to 
achieve target detection for fusing the image and point cloud data, and ultimately, to build the 
MBR. Figure 4 shows the detection result of the bounding box obtained using CNN and the 
MBR obtained using the Canny operator for the vehicle.
 To solve the problem of the target box often being larger than the real target object, image 
segmentation could be made more accurately by matching the projection points and pixels. In 
this study, we adopt the former method of fusing tracks, which requires intersection of union 
(IoU) matching metrics in the time domain. When tracking the position of the 3D bounding box, 
IoU is generally used as a metric for data association. Of course, the depth convolution feature 
can also be used to further ensure consistency for the targets.

3.4 Posture calculation and optimization

 The least square optimization function of the pose estimation can be constructed between 
multiple groups of barycenter points matched with the target edges of adjacent frames in the 
world coordinate system. The optimization method is used to iteratively solve the optimal 
solution of the least square optimization function, and the optimal solution is taken as the final 
state quantity of the pose estimation. Moreover, if the pose estimation returns to the previous 

(a) (b)
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Fig. 5. (Color online) Vehicle travel direction for posture calculation.

position within the current period, the frame data of the RGB-D camera at the current time and 
the previous position are used as constraints to globally optimize the pose estimation state 
variables within the current period; then globally consistent pose estimation state variables will 
be obtained.

3.4.1 Posture calculation

 The calculation of the robot’s pose requires its rotation angle and translation distance in each 
axis. As shown in Fig. 5, we take the direction of the vehicle as the x-axis, which is the maximum 
length of the MBR, and the barycenter point C indicates the initial position of the vehicle. When 
a vehicle travels from the initial location C to C' in the direction from x to x', the x-axis  rotates θ 
and translates a distance d to x'. If we know the coordinate in advance, the values of the corner 
coordinate and θ can be easily calculated.

3.4.2 Posture optimization

 Perspective-n-point (PnP) is the problem of pose estimation with a calibrated camera given a 
set of n 3D points in the world and their corresponding 2D projections in the image.(31) At 
present, there are many methods to solve PnP problems, including direct linear transformation 
(DLT), P3P, EPnP, UPnP, and nonlinear optimization methods. However, in SLAM, P3P or 
EPnP(32) and other methods are often used as the first step in estimating the robot’s pose, then to 
build the least squares optimization problem and further complete the bundle adjustment (BA). 
Therefore, we can construct the PnP problem as a nonlinear least squares problem defined on 
Lie algebra to solve the optimal solution of camera pose. The residual error (predicted value − 
observed value) or reprojection error is now defined as 
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 ( ) ( )exp .ˆr K P uδ δ= −  (6)

 The least squares problem is shown by Eq. (7). Usually we solve the least squares problem 
using the Jacobi function as
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 The error function determines the direction of the next optimal iterative estimation of the 
position and attitude increment for the Jacobian matrix of the position and attitude. According to 
the above process of pose transformation, we can use the following chain rule of Eq. (8) to 
express J.
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 From the above calculation, it can be seen that the Jacobian matrixes with the direct method 
and the characteristic point method are only different in the parameter J0. For the specific 
derivation steps, see the error function for the Jacobian matrix of the pose when SLAM is 
optimized, which is ignored here. The result is shown as
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4. Evaluation Metrics for IoU

 The output result of the target detection model is unstructured, and the parameters such as 
number, location, and size cannot be known in advance, so the evaluation algorithm of target 
detection is slightly more complex. For a specified target, we can measure the quality of 
detection from the degree of overlap between the prediction box and the ground truth box. 
Generally, IoU is used to quantify the degree of overlap.(33) In target detection, IoU mainly refers 
to the difference between the bounding box and the ground truth predicted using the model.
 As shown in Fig. 6, the corresponding 3D point cloud of an image bounding box is obtained 
by finding all points in the scene that can be projected onto the box. However, the spatial location 
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Fig. 6. (Color online) 2D IoU metric between ground truth box (red) and predicted box (green) in BEV with 
central point.

of the 3D points is highly correlated with the 2D box location. We crop the 2D box as a region of 
interest (ROI) to calculate the IoU, which describes the degree of coincidence between the 
adjacent frames for correcting the edge of the object to ensure that the two objectives are the 
same. We use the IoU to evaluate the overlap region of a detected polygon (sdp) and a ground 
truth polygon (sgp) divided by the union area (sdp) and (sgp). The metric of IoU is shown as
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 When the IoU between the detected polygon and a ground truth is larger than 0.5, we can 
regard the polygon to be the same as the object. In fact, the matching principle of IoU in the time 
domain is similar to that in the space domain. If the bounding boxes of the target objects in the 
first and second frames coincide, it means that the two targets are the same.(34) Once the object is 
ensured, the centroid of the polygon can be calculated for the objects. Using the centroid 
coordinates, we can calculate the values of rotation and transformation for the objects to realize 
the preliminary step of pose estimation. The data values can be further optimized by solving 
multiple groups of target objects.
 To further verify the accuracy of the predicted value of the tracking target in the rotation and 
translation directions, the MBR obtained by dividing the 2D bounding box and RGB image 
projected by the 3D box on the plane is optimized by calculating the IoU value. Compared with 
3D box prediction, the algorithm performance is significantly improved because the computation 
of the intersection area between two rotated 3D bounding boxes is much more complex than that 
of their 2D counterparts without rotation. By referring to the former two-stage methods, we 
utilize IoU guided supervision to generate more reliable confidence predictions in an end-to-end 
pipeline to directly predict pixel-level object categories and bounding boxes.

5. Experiments and Discussion

 To validate the performance of the proposed model, several experiments were performed in 
both outdoor and indoor environments. The sensor consists of a Velodyne VLP-64 LiDAR and a 
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monochrome global-shutter Blackfly BFLYPGE-23S6M (RGB-D) camera. The model is trained 
and evaluated on the KITTI dataset.(35) Each frame is composed of a point cloud, RGB-D 
images, and calibration data. Considering that the KITTI object dataset possesses a massive 
frameset of the dataset for training, we extract the character from 2D images by using ResNet 
and the global and local characters of every point by using PointNet.  The KITTI dataset usually 
includes the three categories of vehicles, pedestrians, and bicycles related to the environment of 
an autonomous vehicle. For simplicity of the experiments, we herein focus the shape and centroid 
of the object on the ground truth to estimate the pose for the car category, where our goal is the 
pose calculation to obtain the parameter rotation R and transformation T. For evaluation, we 
compare the proposed LIC-Fusion against the state-of-the-art visual-inertial and LiDAR 
odometry methods, including the proposed implementation of the standard MSCKF-based 
VIO(36) and the open-sourced implementation of LOAM LiDAR odometry.(2) The experimental 
results are shown in Table 1. 
 In all experiments, a fair comparison of the results under the same environment is needed. In 
the field of multimodal 3D object detection, as the pioneer, and MV3D was employed in other 
subsequent articles, have received certain effects. In addition, there is no one-stage method that 
publicly provides results for the pedestrian/cyclist classes for 3D object detection using LiDAR 
and RGB images. Hence, the comparison is only for the car class. In accordance with the 
bounding box scale, truncation levels, and occlusion classes of objects, we use the frames in the 
same scenario to perform the evaluation. Inspired by 3D object detection, KITTI’s object 
detection metric is defined as an 11-point average precision. IoU is the generic evaluation 
criterion for 2D and 3D detections and is at a threshold of 0.7 for car class detection. Before that, 
the RGB camera images must be cropped to a uniform size to be used as a training dataset by 
ResNet or for the raw 3D point cloud by PointNet.(37) Thus, a computer with a TensorFlow 
framework, which fixed NVIDIA 1080 Ti GPU with a batch size of 1, is needed for our 
experiments. 
 For a fair comparison, we only compare the computational efficiency with the recent state-of-
the-art methods that use the LiDAR point cloud and images as input data. In our model, 2D 
detection is more important than 3D detection. Therefore, we only focus on the comparison of 
the runtime in the first stage of the detection methods. While the end-to-end one-stage method is 
much more elegant and effective than the two-stage method, because our model has two stages, 
the average absolute trajectory error (ATE) is a good metric that can be calculated in the same 
runtime environment. In comparison, it is imperative to improve the single-stage detector for a 
better trade-off between performance and accuracy. Table 2 shows that the 2D ATE of mAP is 
lower than BEV among the methods published in recent years. Although some of the methods 
use CNN or deep learning to improve their accuracy regardless of the number of stages to be 
used, we can see that our proposed method achieves better performance in 2D and BEV. We still 

Table 1
Experimental results: Average absolute trajectory errors (ATEs) and their standard deviation/variability.

MSCKF LIC-Fusion LOAM Proposed (ours)
Average ATEs (m) 10.75 4.06 23.08 8.76
1 Sigma (m) 3.56 3.42 2.63 2.75
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Table 2
Experimental results: ATE calculation.
Method Publication year Stage (s) Runtime (ms) 2D (%) mAP BEV (%) mAP
MV3D 2017 Two 360 63.51 80.44
PC-CNN 2018 Two 500 53.59 76.86
AVOD 2018 Two 83 74.99 —
MCF3D 2019 Three 160 77.84 84.75
Point-GNN 2020 Two 133 86.73 82.1
LiDAR-RCNN 2021 Two 107 83.50 89.30
VoTr-TSD 2021 Two 97 86.30 —
BtcDet 2022 Two 116 87.10 —
VoxelNet 2018 Single 123 75.60 88.20
PointPillar 2019 Single 107 81.53 87.10
3DSSD 2020 Single 129 78.42 —
SE-SSD 2021 Single 106 79.05 —
Proposed (ours) — Two 93 79.53 83.16

Fig. 7. (Color online) 3D detection results of fusing RGB and point clouds for car class between two sequential 
frames. (a) 3D detection results of fusing RGB and point clouds for cars between two sequential frames. (b) IoU 
metric of coverage for ground truth and predictions on point clouds.

achieve the best trade-off in terms of performance and accuracy. 
 Figure 7(a) shows the detection and localization upon fusing RGB and point clouds for cars 
between the two sequence frames on the KITTI dataset. Figure 7(b) shows the IoU metric of coverage 
for ground truth and predictions on point cloud data. Experiments show that our proposed 
method is suitable for detection and prediction.
 With our proposed model, the car class of the precision–recall curve is as shown in Fig. 8. 

(a)

(b)
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Fig. 8. (Color online) Precision–recall curves for car class obtained by different methods.

The curves of 2D, BEV, and our proposed method denote the relationship between precision and 
recall of the car class detections. We can see that the proposed method still achieves a comparable 
speed by taking the precision–recall curve into account.

6. Conclusions

 We proposed a two-stage deep fusion framework named CNN-LVI to solve real-time pose 
estimation using a geometric method, which can be used with the data from sensors of LiDAR 
point clouds and RGB images. First, on the basis of multisensor joint calibration, we use raw 3D 
point clouds and images as input data to predict the pose by referencing the CNN algorithm to 
extract the 3D bounding box and by tracking the projection of the target object to obtain a target 
MBR. Then, we calculate the pose estimation using the centroid of the target MBR. In addition, 
we adopt PnP to build the least squares optimization problem to adjust the BA and joint 
optimization to further improve the accuracy of pose estimation. The proposed methods without 
any regional proposed pipeline belong to end-to-end training and could ensure real-time 
response in the reasoning process. Our system is evaluated using the official KITTI benchmark 
tests for different IoU thresholds and recommended best operation point to achieve the trade-off 
effects between real-time performance and the best accuracy is determined. Our future work 
includes combining the 2D detector and the PointFusion network into a single end-to-end 3D 
detector, as well as extending our model with deep learning to perform simultaneous detection 
and tracking after fusing point clouds and RGB images.
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