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 Fires in urban areas lead to enormous financial and human losses because cities have high 
densities of people and buildings. Although a recent advanced IoT technology improves early 
fire detection, it is crucial to predict fire risk to manage and prevent urban fires. We propose a 
method of predicting urban fires using extreme gradient boosting (XGBoost), which is based on 
grid-based data, to consider the characteristics of urban fires occurring in local areas. Before 
model training, we conducted a correlation analysis and variance inflation factor (VIF) analysis 
to remove variables with a strong correlation between independent variables. Furthermore, 
oversampling and feature selection techniques were applied to improve the model’s performance. 
Experimental results revealed that the overall accuracy of XGBoost was 81.25%, the F1-score 
was 86.43%, and the area under the curve (AUC) was 84.59%. XGBoost performed better than 
baseline models, such as the support vector machine (SVM) and logistic regression. The results 
of this study show that it can be used for local area management and the prevention of urban 
fires.

1. Introduction

 A high density of people and buildings can result in significant financial losses and many 
casualties in the event of a fire in a city. According to the International Association of Fire and 
Rescue Services (CTIF), the world’s largest fire organization, 3082565 fires in 34 CITF member 
nations and 32 cities led to 87404 casualties in 2019.(1) In particular, fire-type data from 24 
countries revealed that 812140 building and 344788 vehicle fires mainly occurred in urban areas, 
which account for 45% of the total 2572171 fires. Therefore, most fires occur at city centers, 
leading to the development of early IoT fire detection systems worldwide.
 In the Republic of Korea, 47.4 million people reside in urban areas (about 91.8% of the total 
population as of 2021).(2) The total number of buildings in cities with more than 500000 people 
increased from 973297 in 2010 to 1,329,012 in 2021, an increase of approximately 36.54%.(3) As 
most of the population resides in urban areas and the number of buildings continues to increase, 
fire can cause significant damage to people and property at the city center. The Republic of 
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Korea’s Ministry of Interior and Safety (MOIS) reported in the 2020 Disaster Yearbook that in 
2019 and 2020, there were respectively 10 and 7 cases of large-scale fires in multipurpose 
facilities, one of the types of social disasters.(4) Such a disaster is the most prevalent among the 
28 types of social disasters defined by the MOIS. As a result, 79 people were injured, the second 
highest number of casualties among the various types of social disasters, and property damage 
was the third highest at 72.2 billion won. Therefore, it is necessary to prepare management 
strategies to address urban fires to move towards sustainable urban development. 
 Risk prediction studies for disaster preparation and prevention have been conducted in 
various fields, such as forest fire prediction(5–8) and crime prediction.(9,10) In urban fire 
prediction, Wang et al.(11) performed a grid-scale spatiotemporal prediction using the combining 
gate recurrent unit and conditional random field (GRU-CRF) model to predict fire risk in the 
Zhengzhou area. In this study, the relationships between urban data, such as education, medical 
care, and public facilities, were identified through correlation analysis. The CityGuard system, a 
web service for predicting urban fire risk, was implemented using the GRU-CRF model. 
However, in the case of correlation analysis, only the relationship with the dependent variable 
was analyzed. However, the correlation between independent variables was not analyzed, and 
fire-vulnerable building data that could lead to large fires were not used. Dang et al.(12) proposed 
a fire risk prediction model using publicly available data in the UK. Several types of fire-related 
data have been used for fire risk prediction, such as commercial property data in the Humberside 
area, fire reports, and safety status evaluation data. The experimental results revealed that 
among several machine learning algorithms, the AdaBoost algorithm was the most suitable fire 
risk prediction model. However, Dang et al. did not solve the problem of the class balance of fire 
categories in the fire data nor did they use granular data on buildings that were most closely 
related to financial damage in the event of a fire.
 Currently, in the Republic of Korea, a spatial information system related to disasters, such as 
large-scale fires in multidensity facilities, is being built in administrative district units. Disaster 
management based on administrative district units can enable an easy evaluation of local 
governments or a quick compilation of statistics. However, because an area changes over time, it 
is not easy to compare the data on the same administrative district by dividing it by time. In 
addition, the analysis of patterns in nonuniform spaces is complex, and the analysis and statistics 
compilation of local areas are impossible. In particular, urban fires occur in local areas, not in 
administrative districts, so precise management and prevention are impossible at the 
administrative district level. Therefore, in this study, we present a grid-based fire occurrence 
prediction method for Suwon-si, Gyeonggi-do, Republic of Korea, that is similar to that in the 
study by Wang et al.(11) Furthermore, previous studies did not subdivide the fire-related building 
data, whereas we subdivided buildings into vulnerable buildings in the case of an urban fire in 
order to conduct urban fire risk prediction.
 The remainder of this study is organized as follows. In Sect. 1, we discuss the importance of 
urban fire management and prevention using world statistics related to urban fires and the 
current situation in Korea. In Sect. 2, the data description and preprocessing for grid-based 
urban fire prediction are comprehensively explained. Section 3 contains an explanation of the 
extreme gradient boosting (XGBoost) and baseline models, and a description of how to evaluate 
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these models. The results of the preanalysis and model evaluation for grid-based urban fire 
prediction are presented in Sect. 4. In Sect. 5, we present an overall summary and the limitations 
of this study.

2. Data

 Various types of data can provide helpful information for urban fire prediction. However, 
these generally have different formats. We utilized a grid to integrate the data. Below, we 
describe the data and preprocessing process.

2.1 Study area

 The target area of this study was Suwon-si, located in Gyeonggi-do, Republic of Korea (Fig. 
1). Suwon-si is the 20th smallest out of 31 cities and counties in Gyeonggi-do. However, it has 
the largest population in Gyeonggi-do. Furthermore, because it has the highest percentage of 
residential facilities, food service businesses, and sales facilities in terms of buildings older than 
30 years, it is more likely to be at a high risk of fire.(13) According to the 2017 fire statistics 
survey, 133 fires occurred in residential facilities belonging to high-risk groups in Seongnam 
City.(13) Suwon-si was considered suitable for this study because it corresponds to an area that is 
vulnerable to urban fires.

2.2 Data description

 We collected nine datasets related to urban fires from Suwon-si in 2020 to predict urban 
fires. The National Fire Agency, the Ministry of Land, Infrastructure, and Transport, the 

Fig. 1. (Color online) Suwon-si, located in Gyeonggi-do, Republic of Korea.
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National Disaster Management Information System, and local governments collaborated to 
collect the data. A description of each data point is presented in Table 1. The number of building 
fires and population data were allocated to grids 500 m × 500 m in size. The entire area of the 
grids is consistent with that of Suwon-si, as shown in Fig. 1. The other data correspond to 
polygon data of buildings located in Suwon-si, which are building attributes.

2.2 Data preprocessing

 In this study, a grid was used as the basic unit of fire prediction. The spatial information 
should be converted into a grid. For example, the point data can be calculated by overlapping the 
number of points belonging to the grid. Polygon data must be divided using QGIS, a spatial 
information software program, in accordance with each grid size because they exist across the 
boundary of the grid, as shown in Fig. 2(a). QGIS can detect the intersection area between the 
polygon and the grid, as shown by the blue area in Fig. 2(b). Each area of the divided polygon 
data was then calculated and summed. The total area of the divided polygon data is then assigned 
to each grid.
 The data used in this study had different units and ranges. Different data scales can be biased 
toward variables with large values because of the different distributions of the data, resulting in 
poor performance, and convergence can be hindered when using methodologies such as gradient 
descent. One strategy to solve this problem is normalization. Here, we utilized the commonly 
used normalization method, min-max normalization. Min-max normalization is a method of 
compressing or increasing data between 0 and 1, as shown by

 min
norm

max min

x xx
x x

−
=

−
, (1)

Table 1
Description of data
Name Description Data type
Number	of	fires Number	of	fires	per	grid Grid
Population Number of people per grid Grid

Fire-vulnerable area

An	area	that	the	Fire	Service	deems	necessary	to	designate	as	a	fire	boundary	
zone: 1. market; 2. dense factories/warehouses; 3. dense wooden buildings; 

4. dangerous material storage and treatment facilities; 5. petrochemical 
complex;	6.	industrial	complexes;	7.	fire	boundary	areas,	designated	by	the	Fire	
Department,	without	fire-fighting	facility/water	facility	or	fire-fighting	route.

Polygon

High-rise building A	building	with	more	than	30	floors Polygon
Old building A multidensity facility more than 30 years since completion (1990) as of 2020 Polygon

Multiuse facility
An	area	of	a	building	that	is	used	by	an	unspecified	number	of	people	and	is	

likely to cause large-scale damage to human life and property in the event of an 
accident

Polygon

Fire-preventing area A	designated	area	between	urban	planning	areas	to	reduce	the	risk	of	fire	or	
other disasters in dense urban areas of the city center. Polygon

Gas storage facility A	facility	handling	flammable	materials,	such	as	CNG	filling,	LPG	filling,	and	
gas stations Polygon

Dryvit A building whose exterior walls are constructed with dryvit Polygon
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where xnorm is the normalized data, x is the original data, xmin is the minimum value of the data, 
and xmax is the maximum value of the data. Normalization was applied to all data except the 
number of fires in Table 1. Figure 3 shows an example of applying normalization to population 
grid data.
 The data was divided for model training and evaluation. If a fire occurred in the grid, the 
value one was assigned to the grid and zero was assigned to the grid where no fire occurred. 
These values (i.e., 1 or 0) play the role of a dependent variable for predicting fire occurrence. We 
randomly assigned about 75% of data as training data and about 25% as evaluation data. Details 
are given in Table 2.

Fig. 2. (Color online) Polygon data preprocessing: (a) before and (b) after.

(a) (b)

Fig. 3. (Color online) Visualization of the population grid in Suwon-si.



4884 Sensors and Materials, Vol. 34, No. 12 (2022)

3. Methods

3.1 Models 

 We utilized XGBoost for fire prediction. XGBoost is a library implemented to support 
parallel learning with a gradient-boosting algorithm(14) using a combination of decision trees.(15) 
The advantage of existing tree-based learning is that the optimal split point can be determined 
by calculating the gradient for all cases of input data. However, analysis cannot be performed if 
all data are not loaded into memory. In addition, because gradients for all cases must be 
calculated, processing in a distributed environment is impossible, resulting in a low learning 
rate.
 To solve the above problem, XGBoost uses an approximate algorithm. The approximate 
algorithm sorts the learning data for variable k, determines the percentiles in accordance with 
the distribution, and divides them by a certain number. The partitioned regions are called 
buckets, and the gradient for each bucket is calculated. Here, each bucket is grouped as either 
global or local, and epsilon is applied to each bucket. This approach reduces gradient 
computation while enabling parallel computation, leading to a faster and more accurate model 
training than with existing algorithms. Sparsity-aware split finding, column blocks for parallel 
learning, cache-aware access, block compression, and block sharding are also used to improve 
data processing and learning speed.
 In this study, we also compare the performance of XGBoost with those of state-of-the-art 
alternative methods (i.e., support vector machines and logistic regression) for benchmarking. A 
support vector machine (SVM) is a supervised machine learning model. Classification and 
regression analysis are performed by constructing a hyperplane that maximizes the margin 
width between two categories in a high-dimensional space.(16,17) Here, the margin is the distance 
between the decision boundary separating the two categories and the support vector, which is the 
closest point. The optimal boundary is determined using the support vector, and the margin 
corresponds to the hyperplane. In an SVM, data that are difficult to separate into two dimensions 
are separated by mapping the low-dimensional space to the high-dimensional space using the 
kernel trick technique.
 Logistic regression (LR) is a representative statistical technique used to predict the probability 
of the occurrence of a dependent variable using a linear combination of independent variables.(18) 
Unlike linear regression, LR is a classification technique in which the dependent variable targets 
categorical data. When input data are provided, the results are divided into specific categories.

Table 2
Data separation
Data Records Non-fire	grids Fire grids %
Train 447 332 115 74.24
Test 112 83 29 25.76
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3.2 Model evaluation

 In this study, we used the overall accuracy (OA), F1-score, and area under the curve (AUC) to 
evaluate the urban fire prediction model.(19,20) The corresponding evaluation index was 
calculated using the confusion matrix presented in Table 3, and each index was calculated using 
Eqs. (2)–(5).

 TP TNOA
TP FN TN FP

+
=

+ + +
 (2)

 TPRecall
FN TP

=
+

 (3)

 TPPrecision
FP TP

=
+

 (4)

 1 2 precision recallF score
precision recall

×
− = ×

+
 (5)

 AUC is the value of the area under the receiver operating characteristic (ROC) curve, and the 
model performance can be quantitatively evaluated from the ROC curve. The abscissa of the 
ROC curve is false positive rate (FPR) = FP/(FP + TN) and the ordinate is true positive rate 
(TPR) = TP/(TP + FN).

4. Results

 Here, we present the results of correlation, the variance inflation factor (VIF), oversampling, 
and feature selection as the results of preliminary data analysis for precise model learning. 
Correlation analysis can discriminate variables that have a strong correlation with independent 
variables. VIF analysis can remove variables by identifying multicollinearity, which cannot be 
discriminated by correlation analysis. Furthermore, we use oversampling, which increases the 
amount of data when data are insufficient, thereby improving model accuracy. Finally, feature 
selection is applied to discriminate variables that are effective in model predictions among the 
oversampled data. The results of comparisons with the XGBoost model’s hyperparameter 
optimization and model performance are then presented.

Table 3
Confusion matrix.

Predicted	fire	grid Predicted	non-fire	grid
Real	fire	grid TP (true positive) FN (false negative)
Real	non-fire	grid FP (false positive) TN (true negative)
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4.1 Correlation analysis

 Correlation analysis is necessary to train the model correctly. It is a method of analyzing the 
correlation between variables, where the correlation coefficient indicates the degree of linearity 
of the relationship between two variables. When a variable with a significant correlation 
coefficient between independent variables exists in machine learning models such as linear 
models or neural networks, the model’s performance deteriorates or becomes unstable. 
Therefore, when there is a high correlation between independent variables, it is necessary to 
transform them into dimensions that are independent of each other or to remove one. We applied 
the Pearson correlation analysis. The experiment revealed no variables with strong correlation 
coefficients of 0.7 or more or −0.7 or less (Fig. 4).

4.2 VIF analysis

 VIF analysis was used to determine whether an independent variable had multicollinearity.(19) 
Although the correlation analysis reveals the correlation between variables, there is no clear 
standard for removing variables. Multicollinearity is a phenomenon in which a strong correlation 
appears between independent variables. In general, if the result of the VIF analysis exceeds 10, it 
is judged that there is multicollinearity, and if it exceeds 5, it is considered noteworthy. The 
experimental results showed no multicollinearity, as the value of each variable was less than 10. 
Therefore, it is possible to use all values for fire prediction (Table 4).

Fig. 4. (Color online) Results of Pearson correlation analysis.
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4.3 Oversampling

 The training data from 447 records used in this study were imbalanced data consisting of 332 
records of non-fire data and 115 records of fire data. If the model were trained using unbalanced 
data, it would be weighted to the category with the greater amount of data; therefore, training on 
the data of the category with less data may not be adequately performed.
 One solution to this balance problem is to adopt a sampling technique that solves the 
imbalanced problem by increasing the number of categories with a small number of records or 
reducing the number of categories with a large number of records to generate better virtual 
samples. Sampling can be broadly classified into down-sampling and oversampling methods. 
Down-sampling is a method of removing category data with a large number of records; this can 
reduce learning time and prevent overfitting problems. However, important information for 
learning can be lost because of the removal of the original data. Therefore, down-sampling is 
appropriate when the number of records is sufficiently large.
 The number of records of the training data in this study was minimal at 447, so it was 
inappropriate to apply down-sampling. Therefore, oversampling techniques such as the synthetic 
minority oversampling technique (SMOTE),(21) borderline-SMOTE (BLSMOTE),(22) density-
based SMOTE (DBSMOTE),(23) and adaptive synthetic sampling (ADASYN)(24) were adopted. 
These methods do not cause information loss because they generate new data based on 
information from existing data. SMOTE is a method of generating data from categories with 
small amounts of data using the k-nearest-neighbors (KNN) algorithm. BLSMOTE is an 
algorithm that applies SMOTE only to samples corresponding to the boundaries of the data, 
judging that the borderline data greatly affect the class balance problem. DBSMOTE is an 
algorithm that creates a cluster using DBSCAN and then applies SMOTE within the cluster. 
ADASYN is a more advanced SMOTE algorithm that determines the amount of data to be 
generated in accordance with the distribution through the calculation of r, which is the density 
distribution of the data.
 We applied the techniques mentioned above to XGBoost to select the optimal method. The 
accuracies obtained when using the various techniques are shown in Fig. 5. The use of original 
data resulted in an accuracy of 76.73%, SMOTE 79.54%, BLSMOTE 80.65%, DBSMOTE 
80.59%, and ADASYN 82.48%. The ADASYN method performed better than the other 
methods. Accordingly, we used this method to solve the imbalanced data problem. 

Table 4
VIF analysis results.

Name
Fire 

vulnerable 
area

High-rise 
building

Old 
building

Multiuse 
facility

Fire-
preventing 

area

Gas storage 
facility Population Dryvit

VIF 1.009297 1.074704 1.408019 1.285204 1.344133 1.014827 1.356660 1.036719

https://link.springer.com/article/10.1007/s10489-011-0287-y
https://link.springer.com/article/10.1007/s10489-011-0287-y
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4.4 Feature selection

 In addition to the correlation analysis between independent variables, it is essential to check 
which features are useful for prediction. We used recursive feature emission with cross-
validation (RFECV), a feature selection technique, to filter out features unrelated to fire 
prediction. 
 RFECV is a method of finding the optimal variable for learning by calculating the feature 
importance of all variables, removing them from low-importance variables, and then calculating 
the performance of the model with the remaining variables. Random forest (RF) was utilized as 
a model for REFCV. The essential features were selected by K-fold cross-validation. When K 
was 10, six variables (fire vulnerable area, high-rise building, fire-preventing area, gas storage 
facility, and population) were selected. Figure 6 shows that the highest accuracy was 82.18% 
when these six variables were selected. 

4.5 Model optimization

 The XGBoost model was optimized in this study. The values of the hyperparameters were 
determined using a grid search and K-fold cross-validation. The K value was set to 10, and the 
optimal values of hyperparameters were determined with a grid search. Table 5 shows the list of 
the final hyperparameters for fire prediction after model optimization.

4.6 Model performance

 The prediction performance characteristics of XGBoost, SVM, and LR are listed in Table 6. 
The OA of XGBoost is 81.25%, which is 6.25% higher than that of SVM and 5.36% higher than 
that of LR. Furthermore, the F1-score of XGBoost is 86.43%, which is 5.61% higher than that of 
SVM and 3.63% higher than that of LR. The AUC of XGBoost is 84.59%, which is 10.95% 

Fig. 5. (Color online) Performance of oversampling methods.
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higher than that of SVM and 8.65% higher than that of LR. Therefore, XGBoost exhibits the best 
performance among the models considered.

5. Discussion and Conclusions

 A precise analysis that considers various fire-related factors is required for the efficient 
management and prevention of urban fires. In this study, we predicted fires by transforming 
various types of data related to urban fires into a grid format. 
 Correlation and VIF analyses were performed before predicting fire to investigate whether 
there were strong correlations among independent variables. Oversampling and feature selection 
techniques were applied to improve the model’s performance. 
 The experimental results demonstrated that the OA of XGBoost was 81.25%, the F1-score 
was 86.43%, and the AUC was 84.59%. XGBoost outperformed alternative methods such as 
SVM and LR. The findings of this study can aid in preventing urban fires and managing fire-
vulnerable areas that are not identified in administrative district units. 

Fig. 6. (Color online) RFECV results

Table 5
Hyperparmeters.

Eta Iterations Max_depth Max_leaves Subsample Sampling method
0.1 245 5 120 0.88 Uniform

Colsample bytree Min child weight Gamma Lambda Alpha
0.96 8 0 4 2

Table 6
Performance	characteristics	of	different	models.
Model XGBoost (%) SVM (%) LR (%)
OA 81.25 75 75.89
F1-score 86.43 80.82 82.80
AUC 84.59 75.94 73.64
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 However, the changes over time were not reflected in the current study owing to the limited 
amount of data. Therefore, future research should focus on an analysis that reflects the temporal 
and spatial factors of urban fires. In addition, rapidly developing deep-learning techniques can 
be applied to conduct fire predictions considering space and time.
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