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 The automated mapping of forest burn severity using remote sensing imagery has been 
popular over the last decade. However, there is a lack of studies examining the performance of a 
range of classifiers for forest burn severity mapping for different burn severity classes. In this 
study, the performance of three supervised classifiers, maximum likelihood (ML), spectral angle 
mapper (SAM), and deep learning (U-Net), was evaluated for mapping forest burn severity 
under different burn severity class settings (two-level burn severity classes: burned and 
unburned; four-level burn severity classes: crown fire, heat-damaged, ground fire, and 
unburned). Multispectral unmanned aerial vehicle (UAV) images and light detection and ranging 
(LiDAR) points obtained from forest fire areas of Andong in South Korea were used to evaluate 
burn severity. The results show that all classifiers were capable of mapping the two-level burn 
severity with high overall accuracy (OA) (SAM: OA = 92.05%, kappa coefficient (K) = 0.84; 
U-Net: OA = 91.83%, K = 0.83; ML: OA = 90.92%, K = 0.82). For four-level burn severity 
mapping, U-Net (OA = 79.23%, K = 0.64) outperformed the conventional classifiers of SAM 
(OA = 50.61%, K = 0.38) and ML (OA = 46.85%, K = 0.34). Regarding class separability, SAM 
and U-Net showed good performance in detecting the severe burn severity class (crown fire 
areas), whereas a high rate of misclassification occurred in identifying the moderate burn 
severity classes (heat-damaged, ground fire) for all classifiers. In particular, ML and SAM 
showed a low capability in identifying unburned areas, while U-Net showed the lowest capability 
in mapping heat-damaged and ground fire areas. Overall, our study demonstrated that the 
reliable mapping of burn severity for Korea’s forest fires largely depends on the number of levels 
of burn severity classes as well as the classifier’s capability in discriminating moderate burn 
severity classes.
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1. Introduction

 Widespread and recurrent severe wildfires have been a severe problem around the world, 
ranging from western North America and Europe to the Amazon and most recently in eastern 
Australia.(1) Wildfires cause severe and chronic damage to ecosystems and human properties. 
For example, wildfires are a major driver of greenhouse gas emissions, causing changes in 
terrestrial carbon stocks and altering ecological processes.(2–4) The property damage and 
economic loss from forest fires have also greatly increased over the past decades. The 
identification of burn areas and burn severity via burn severity mapping is thus important to 
investigate the impacts of fire on forests and to implement timely restoration and mitigation 
activities.(5–7)

 To assist broad-scale burn severity estimation, remote sensing techniques such as satellite 
and unmanned aerial vehicle (UAV) platforms have been widely used to map the extent and 
variability of burned areas through the use of different spectral bands or derived reflectance 
indices.(8–10) The remote sensing-based identification and mapping of burn severity is based on 
unique spectral variations of vegetation and burn residuals caused by fires. Once vegetation is 
burned, the decreases in the chlorophyll and moisture contents of plant species lead to decreases 
in visible and near-infrared (NIR) reflectances and increases in mid-infrared (SWIR) 
reflectance.(11,12) In this manner, the degree of burn severity can be captured as a variation in the 
spectral index of a remote-based optical sensor. The widely used spectral indices are the 
normalized difference vegetation index (NDVI), normalized burn ratio (NBR), and burned area 
index (BAI) since NIR and SWIR bands are sensitive to forest fire damage.(13–19)

 Supervised classification algorithms have been widely used to map burn severity.(20,21) In 
supervised classification, the algorithm is trained using ground-sampled data to predict the 
defined burn severity classes such as high burned, low burned, and unburned. For example, 
Amos et al. used the spectral angle mapper (SAM) classifier to assess burn severity levels using 
a collection of spectra from selected regions of interest using a Sentinel-2A image.(13) Anggraeni 
and Lin used the SAM and support vector machine (SVM) algorithms for burned area mapping 
from a Landsat TM image and obtained accuracies of 83 and 97% for the classifiers, 
respectively.(22) Since various supervised classification methods identify image pixels and 
classify them in categories or classes according to their spectral information, several burn 
severity classes are comprehensively required to represent the variations of the images. However, 
the large variations of classification across supervised classification methods and levels of burn 
severity classes result in inconsistent classification accuracies of burn severity mapping.(23) It is 
thus important to find an appropriate classifier for a more accurate burn severity mapping to 
prevent further misclassification of areas or blind spots for post-fire forest restoration and 
mitigation practices. 
 Furthermore, while the classical supervised classifiers provide a reasonable accuracy, it is 
still difficult to characterize subtle levels of burn severity owing to spectral similarities between 
burn severity classes.(24–26) For example, Woo et al. and Shin et al. observed limited 
discrimination between slightly burned and unburned vegetation in burn severity mapping with 
the maximum likelihood (ML) and SAM classifiers.(27,28) Gibson et al. found a relatively low 
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accuracy in identifying a moderate burn severity class compared with unburned and extreme 
burn severity classes using a random forest classifier.(21) Therefore, it is important to extend our 
understanding to a more advanced approach, such as a deep learning classifier (i.e., U-Net), and 
to identify the feasibility, capability, and accuracy of a deep learning classifier compared with 
conventional supervised classifiers for mapping burn severity levels.(29)

 In Korea, there have been few studies examining the performance of a deep learning 
approach to map burn severity in comparison with conventional supervised classifiers. The 
majority of burn severity studies were limited to classical supervised classifiers, such as ML and 
SAM, without the consideration of the effect of the number of burn severity classes on 
classification accuracy.(27,28) Therefore, it is necessary to broaden our understanding and identify 
a better combination of the classifier and burn severity level for a more reliable mapping of burn 
severity in Korea’s forest fires. 
 To address this issue, the main objective of this study was to compare the capability of the 
conventional (i.e., ML and SAM) and deep learning (i.e., U-Net) classifiers for mapping burn 
severity. We also examined the effect of different burn severity classes on the performance of 
each classifier by testing two different burn severity class settings: 1) two-level burn severity 
classes (burned and unburned) and 2) four-level burn severity classes (crown fire, heat-damaged, 
ground fire, and unburned). To implement the above-mentioned tasks, we collected field-based 
data for each burn severity class combined with LiDAR-derived canopy boundary data to extract 
more pure training data within the forest fire areas of Andong in Korea, trained the classifiers 
with data from unmanned aerial vehicle (UAV) imagery, and evaluated the performance of the 
classifiers through accuracy assessments.

2. Materials and Methods

2.1 Study area
 We investigated a forest fire that occurred in Namhu-myeon near the city of Andong in South 
Korea. The fire broke out on April 24, 2020 and damaged 2,025 ha out of the 3,797 ha forest in 
three days, which was the biggest forest fire since 2010 in South Korea (Fig. 1). The study area is 
located in the temperate forest zone (Lat: 36.31–36.33 ,̊ Lon: 128.32–128.39˚). The forest 
vegetation in the study area mainly consisted of coniferous (92%), mixed conifer (5%), and 
deciduous (1%) trees. The dominant species was Pinus densiflora, occupying 74% of the area. 
The main classes of tree age were the fourth class (46%), third class (45%), fifth class (6%), and 
second class (2%). The average annual rainfall in this area was 101 mm and the average 
temperature was 12.6 ℃ in 2020.

2.2 Data

2.2.1 Multispectral UAV image

 The image of forest fires was collected on April 28, 2020 with a NIFos-2 UAV, which has a 
mounted multispectral sensor consisting of five bands (Blue, Green, Red, Red Edge, and NIR). 
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The acquired images consisted of 300–400 scenes for each band with 80% frontal overlap and 
60% side overlap. The acquired UAV images were converted into orthographic images using 
Pix4D software (Pix4 S.A., Prilly, Switzerland). Atmospheric and radiating corrections were 
applied to the images using ENVI 5.5.3.(30) Figure 1 presents the RedEdge multispectral UAV 
images of the burned area in Andong. The specifications of the NIFos-2 UAV are an overall 
width of 1 m, a total length of 1 m, and a total height of 0.7 m. The spatial resolution is 30 cm at 
an altitude of 500 m. The maximum take-off weight, flight time, speed, and altitude are 10 kg, 
30 min, 15 m/s, and 1000 m, respectively.

2.2.2	 Forest	fire	reference	data	

 The ground reference map of forest fires was provided by the National Institute of Forest 
Science (NIFS). The reference map was produced by the combination of four spectral indices 
obtained from UAV images and a field survey. Since there was no comprehensive forest fire 
information available, NIFS utilized the mean threshold values of four spectral indices, NDVI, 
RedEdge (RE) NDVI, visible-band difference vegetation index (VDVI), and modified 
chlorophyll absorption in reflectance index (MCARI), obtained from past forest fires in Korea 
to classify the burn severity of the forest fire area in Andong. Burn severity maps were then 
updated by matching the degree of burn severity through a field survey.

2.3	 Definition	of	burn	severity	class

 Burn severity is defined as the impact of fire on vegetation and soil, and it is usually 
expressed as low, medium, and high.(31) In Korea, burn severity is defined with five levels of 

Fig. 1. (Color online) RedEdge multispectral UAV image and picture of area burned by forest fire in Namhu-
myeon near the city of Andong in Korea. The brown line in the UAV image is the perimeter of the burned area and 
ground reference sites are presented with orange (site 1), red (site 2), and yellow (site 3) boundaries.
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burn severity according to the Korean composite burn index (KCBI): unburned, low, moderate, 
high, and extreme. Since there are ambiguous definitions among KCBI’s burn severity classes, 
in this study, two different levels of burn severity classes were defined with the consideration of 
KCBI and field surveys. As shown in Fig. 2, two-level burn severity classes were categorized as 
unburned and burned, which were expanded to four-level burn severity classes, unburned, 
ground fire, heat-damaged, and crown fire, to represent changes in surface reflectance following 
the fire.

2.4 Spectral analysis

 The main goal of this study was to evaluate and compare the performance characteristics of 
three classifiers, ML, SAM, and U-Net, for different burn severity levels. The workflow to 
analyze forest burn severity using UAV images comprised three main steps: input data 
preparation (pre-processing), burn severity mapping, and burn severity assessment (Fig. 3). In 
the first step, geometric, radiometric, and atmospheric corrections were applied to the UAV 
images of forest-burned areas using ENVI 5.5.3.(30) The three reference sites marked with 
orange, red, and yellow boundaries were then combined with a LiDAR-derived crown boundary 
to generate the training data (labeled images) using FUSION software.(32) In the second step, the 
burn severity classification was implemented by applying the ML, SAM, and U-Net classifiers 
under two different burn severity levels. The labeled images generated from the three reference 
sites of the burned area were converted to the corresponding burn severity classes and used to 
train classifiers. In the last step, an accuracy assessment was conducted to evaluate the 
performance of the three classifiers in terms of overall accuracy (OA), kappa coefficient (K), 
producer accuracy (PA), and user accuracy (UA) based on an error matrix.  

Fig. 2. (Color online) Definition of two different levels of burn severity classes used in this study. The photograph 
is a UAV image giving examples of the burn severity classes in the ground reference site (site 2).
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2.4.1	 Preparation	of	training	data

 In supervised classification, training samples are required for each burn severity class to 
classify the UAV image of a forest fire. In this study, the training data were prepared by 
combining the field survey data with LiDAR-derived crown boundary data. The field survey 
was conducted to collect the burn severity of individual trees within the circular sample plots in 
three reference sites (Fig. 1). The random sampling method was used to select the locations of 
the circular plots. The circular plot size was 0.01 ha with a radius of 5.65 m. The degrees of burn 
severity of 264, 169, and 79 individual trees were investigated from the 23, 20, and 12 circular 
plots located in reference sites 1, 2, and 3, respectively (Fig. 3). Next, the LiDAR-derived crown 
boundary was obtained to match the field-based burn severity class with individual trees. To 
extract the crown boundary of individual trees, first, high-density point cloud data (average 
point densities of 1231.98, 414.66, and 1123.98 pts/m2 from sites 1, 2, and 3, respectively) were 
obtained by UAV-based LiDAR from July to August 2020. From the LiDAR point clouds, a 
digital terrain model (DTM) and a digital surface model (DSM) with a spatial resolution of 30 

Fig. 3. (Color online) Overall flowchart of forest burn severity analysis.
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cm were produced by the GridSurfaceCreate algorithm in FUSION software.(32) The height of 
the canopy was then derived by a canopy height model (CHM), estimated as the difference 
between the top canopy surface (DSM) and the underlying ground topography (DTM). The 
canopy boundary was finally obtained by detecting treetops using local maxima and delineating 
individual tree crowns with the watershed algorithm scheme.(33,34)

 For the ML and SAM classifications, a group of labeled regions of interest (ROIs), referring 
to the burn severity samples for each class, were obtained for the corresponding burn severity 
classes by matching the LiDAR-derived canopy boundary with the field survey data of 
individual trees. When different burn severity classes were located within a single canopy 
boundary, the severity data were excluded from the training data to obtain the most representative 
ROIs for each burn severity class (Fig. 4). The numbers of ROIs used for the two-level burn 
severity classification were 197 (26656 pixels) and 84 (11218 pixels) for the burned and unburned 
classes, respectively. For the four-level burn severity, 56 (6154 pixels), 141 (20502 pixels), 68 
(9038 pixels), and 16 (2180 pixels) ROIs were used for the crown fire, heat-damaged, ground fire, 
and unburned classes, respectively.  
 For the deep learning (U-Net), 30 training samples were derived for each burn severity class 
using a group of ROIs used for the ML and SAM classifiers. Since the U-Net classifier requires 
at least 30 training samples for each burn severity class to train the model, 30 labeled images of 
10 m circles were generated for the respective burn severity classes from the UAV images of 
each reference site through the visual assessment of burn severity intensity based on field 
surveys and were converted into the burn severity training raster.

Fig. 4. (Color online) Process of generating the training data (ROIs) for burn severity classes (unburned, ground 
fire, heat-damaged, and crown fire) by combining the field survey data from reference sites with LiDAR-derived 
crown boundary data: (a) placing the boundary of a circular sampling plot on the UAV image, (b) extracting the 
LiDAR-derived canopy boundaries within the boundary of the circular sampling plot, and (c) generating ROI data 
for each burn severity class by matching the ground sampling data with LiDAR-derived crown boundaries.
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2.4.2	 Burn	severity	classification

 The ML, SAM, and U-Net classifiers are supervised classification techniques based on the 
pixel-based classification algorithm. Descriptions of the ML, SAM, and U-Net algorithms are 
given in the next section.  

2.4.2.1	 Maximum	likelihood	classifier

 The ML classifier assumes that the statistics for each class in each band are represented by 
the normal probability distribution and allocates each pixel to a specific class according to the 
probability (i.e., ML). The probability of each pixel is analyzed by considering the normal 
density function from the mean, variance, and covariance of training samples. Once the 
signatures of each class are estimated using the available training data (ROIs), the class with the 
highest probability is allocated for each pixel by comparing the class probabilities.(35)

 In this study, ENVI software was used to calculate the ML for each pixel using the following 
equation:

 ( ) ( ) ( ) ( )11 11 12 2i i i
T

ii ig x np n x m x mω −= − Σ − − Σ − , (1)

where i is the class, x is the n-dimensional data, n is the number of bands, p(wi) is the probability 
that class wi occurs in the image and is assumed the same for all classes, |Σi| is the determinant of 
the covariance matrix of the data in class wi, Σi

−1 is its inverse matrix, and mi is the mean vector 
of each training class.(30)  

2.4.2.2	 SAM	classifier

 The SAM is a physically based spectral classification that utilizes the n-dimensional angle 
from the reference spectra to allocate each pixel.(36) The algorithm determines the spectral 
similarity by calculating the spectral angle between each pixel and the reference spectra in an 
n-dimensional space, where n is the number of bands. A pixel is assigned to a specific class 
according to the smallest spectral angle that represents a closer match to the reference class. 
 In this study, the mean of each burn severity class was considered as the reference spectra, 
estimated from the spectral reflectance values of the training data (ROIs) from the UAV images. 
The SAM function in ENVI software was used to estimate the cosine similarity for every pixel 
in each image relative to the reference spectra using the following equation:
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where n is the number of multispectral bands, ti is the unknown measurement vector, ri is the 
reference spectrum vector, and α is an angle between vectors r and t. 
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2.4.2.3	 Deep	learning	(U-Net)	classifier

 U-Net is convolutional network architecture that uses a semantic segmentation algorithm to 
classify each pixel of an image as belonging to a particular class. The U-Net semantic 
segmentation is accomplished using an improved fully convolutional network (FCN) structure, 
which is characterized by the encoder–decoder network structure. The encoder network extracts 
potential features from hierarchically given labeled input data through the processes of 
convolutional max-pooling, cropping, and concatenate operations, while the decoding network 
predicts a probability map at the pixel level by an upsampling operation.(37,38) 
 In this study, the U-Net classifier was operated using the ENVINet5 deep learning model in 
ENVI software, which adopts a TensorFlow model to perform deep learning tasks.(30) The 
TensorFlow model is an open-source library defined by an underlying set of convolutional neural 
network (CNN) parameters.(39) To predict the burn severity class for each pixel, the TensorFlow 
model is trained for specific burn severity features using a set of training label rasters, which are 
samples with different types of burn severity [e.g., two-level: 0 (unburned), 1 (burned); four-
level: 0 (unburned), 1 (ground fire), 2 (heat-damaged), 3 (crown fire)], by providing a sliding-
window patch around the pixel. Model training is performed to expose the training raster to the 
model repeatedly. As the training progresses, the model learns to convert the spatial and spectral 
information in the training raster into a class activation map, and it classifies the target burn 
severity in a pixel-by-pixel manner by looking for a similar match with a trained model. 
 ENVINet5 uses the binary cross-entropy loss function and adjusts the internal parameters or 
weights of the model to fit a U-Net model.(38) In this work, the U-Net model was trained using 
small patches of imagery from three reference sites of forest fires and then was used to predict 
the burn severity in the whole study area. The training dataset included three images, each with 
five channels (i.e., five bands), and the corresponding labels of objects. The patch size was set to 
464 by 464 pixels. The numbers of epochs and patches per epoch were set to 30 and 4, 
respectively. The other parameters were the default values in ENVINet5. 

2.4.3 Accuracy assessment

 The accuracy of the three classifiers was evaluated using a confusion matrix (called an error 
matrix). The error matrix compares the relationship between the reference data (ground truth) 
and the corresponding results of a classification in terms of descriptive and statistical metrics, 
such as OA, K, PA, and UA.(40–42) In this study, error matrices were produced by assessing the 
correspondence between the reference data and the burn severity classification maps derived by 
the three classifiers. OA was calculated from the error matrices using the following equation and 
represents the total proportion of correctly mapped pixels among the reference data: 

 1
k
i iixOA
N
=Σ

= , (3)
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where N is the total number of reference pixels and xii is the number of correctly classified 
pixels.
 K was obtained using the following equation and used to evaluate the viability of the 
classification:

 
( )

( )
1 1
2

1
 

r r
i ii i i j

r
i i j

N x x x
K

N x x
= = + +

= + +

Σ −Σ ×
=

−Σ ×
, (4)

where N is the number of pixels in the error matrix, r is the number of rows and columns in the 
error matrix, xii is the major diagonal element for class i, xi+ is the total number of pixels in row 
i, and x+j is the total number of pixels in column j.
 PA (i.e., the error of omission) was obtained as the proportion of the reference data correctly 
classified for a certain burn severity class, while UA (i.e., the error of commission) was derived 
as the proportion of pixels assigned to an incorrect burn severity class.

3. Results and Discussion

3.1	 Characteristics	of	spectral	reflectance	variation

 The spectral reflectance curves of the training samples are presented for the two-level and 
four-level burn severity classes in Fig. 5. For the two-level burn severity classes, unburned 
showed a lower reflectance than burned, but both curves showed an increasing reflectance in the 
order of the Blue, Green, Red, RedEdge, and NIR bands. The large difference in reflectance 
between unburned and burned in the Green, Red, RedEdge, and NIR bands can be attributed to 
the high accuracy of discrimination of the two-level burn severity classes. For the four-level burn 
severity classes, unburned showed the highest reflectance in the Green, Red, RedEdge, and NIR 
bands, while ground fire had the lowest reflectance in the Blue, Green, and Red bands. In 
particular, the NIR band showed an increasing reflectance in the order of crown fire, heat-
damaged, ground fire, and unburned classes. This can be attributed to the loss of chlorophyll 
content of the tree species in burned areas. Moreover, the largest spread of spectral reflectance 
among the burn severity classes was in the NIR band, suggesting that the NIR band is the most 
useful spectral wavelength for discriminating burn severity classes. This pattern is consistent 
with the findings of other studies that demonstrated the suitability of the NIR band for mapping 
burn severity.(43,44)

3.2	 Comparison	of	burn	severity	classification	performance	characteristics

 The performance of the three classifiers (ML, SAM, and U-Net) was examined by mapping 
burn severity under different burn severity class settings (two-level and four-level). Figure 6 
displays the spatial distribution of burn severity class outputs. Compared with the ground truth 
label image, the three classifiers performed well in mapping the overall pattern of two-level burn 
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severity. However, it was found that all classifiers showed similar patterns of minor 
misclassification along the boundary of burned areas as well as at the boundary between forest 
and urban areas, where the ML classifier produced the highest rate of misclassification. It was 
also notable that U-Net produced the clearest and most seamless boundary of burned areas. This 

Fig. 5. (Color online) Mean spectral reflectance curves for burn severity classes: (a) reflectance curves for two-
level burn severity classes and (b) reflectance curves for four-level burn severity classes.

Fig. 6. (Color online) Burn severity maps produced by ML, SAM, and U-Net classifiers.
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result shows that deep learning-based boundary semantic segmentation could be more effective 
than the conventional classifiers for extracting the irregular pattern of burned areas.(37,45)

 Regarding the four-level burn severity classification, U-Net showed a higher performance 
than ML and SAM. However, the overall patterns of four-level burn severity mapping showed a 
poor match with the ground truth image. Among the four-level burn severity classes, all 
classifiers produced a relatively accurate mapping for the high-severity class (i.e., crown fire), 
but there was poor discrimination between the low burn severity (i.e., ground fire) and unburned 
classes by all classifiers. In particular, ML and SAM misclassified most of the unburned areas as 
ground fire areas, while U-Net showed poor performance in matching ground fire areas, 
resulting in the over-prediction of the unburned areas. The high rates of misclassification of 
unburned areas with ML and SAM may be due to the low proportion of unburned training 
samples compared with other burn severity classes, which were insufficient to provide a full and 
representative distribution of the unburned class. For heat-damaged areas, ML and SAM showed 
a higher performance than U-Net where U-Net identified most of the heat-damaged areas as 
unclassified areas. This may be due to a particular type of texture or color of heat-damaged 
training samples being confused in U-Net owing to its low occurrence within the fire areas.
 Overall, this result suggests the difficulty in discriminating the moderate and low burn 
severity classes from the other severity classes. This finding corresponds to that of Collins et 
al.(46) In particular, the higher rate of misclassification between the low burn severity (i.e., 
ground fire) and unburned classes likely reflects the necessity of improving the training datasets 
for these classes. Since the UAV multispectral image of a ground fire class appears as a mixture 
of green, yellow, or light black in the tree canopies, which may be mixed with unburned areas, 
there is a need for more representative training data that cover the diverse range of ground fire 
conditions. This would improve the quality of the training data, resulting in reduced errors in the 
algorithms of ML and SAM as well as strengthening the deep learning algorithm in U-Net. 
Moreover, an increased volume of training data for the unburned class could enhance the 
accuracy of ML and SAM. Similarly, learning with sufficient training data for the heat-damaged 
class could prevent unclassified pixels in the U-Net classification. 

3.3	 Comparison	of	burn	severity	classification	accuracies

 In the evaluation of the mapping accuracy of the three classifiers, confusion matrices were 
used to assess OA, K, PA, and UA for each classifier (Fig. 7 and Tables S1 and S2). Regarding 
the two-level burn severity mapping, all classifiers had OA of more than 90%, with SAM 
appearing to be the most accurate (OA = 92.05% and K = 0.84), followed by U-Net (OA = 91.83% 
and K = 0.83) and ML (OA = 90.92% and K = 0.82) [Fig. 7(a)]. This result implies that all 
classifiers are capable of mapping the binary burn severity classes.  
 For the four-level burn severity mapping, U-Net (OA = 79.23% and K = 0.64) outperformed 
SAM (OA = 50.61% and K = 0.38) and ML (OA = 46.85% and K = 0.34) [Fig. 7(a)]. In particular, 
U-Net showed the highest accuracy in matching crown fire (PA = 99.19% and UA = 88.26%) and 
unburned (PA = 97.71% and UA = 76.32%) but extremely poor performance in identifying both 
heat-damaged (PA = 3.96% and UA = 61.85%) and ground fire (PA = 5.3% and UA = 32.54%). 
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SAM also showed a high accuracy in identifying crown fire (PA = 97.65% and UA = 94.73%) but 
often misclassified heat-damaged (PA = 53.72% and UA = 78.56%) and unburned (PA = 11.62% 
and UA = 41.60%). ML showed poor performance across all burn severity classes, with PA 
values of less than 71%. In particular, the false negative mapping (omission error) for unburned 
was 82.26% [Figs. 7(b) and 7(c)]. The low classification accuracies of individual burn severity 
classes with SAM and ML are mainly due to their close spectral similarity in the UAV imagery. 
This indicates that the conventional pixel-based algorithms that only use spectral information of 
individual pixels without considering the correlation between adjacent pixels are insufficient for 
complex burn severity mapping. 
 Overall, the results of the accuracy assessment indicate that the accuracy of binary burn 
severity mapping is not significantly affected by the type of classifier used, whereas for a higher 
level of burn severity mapping, U-Net demonstrates the potential to overcome the limitation of 
conventional pixel-based approaches (ML and SAM) based on OA values. This finding indicates 
that U-Net, which uses a deep learning-based (CNN) semantic segmentation algorithm, is more 
capable of identifying complex patterns of burn severity classes than other classifiers. However, 
note that the U-Net’s OA could be misleading as it is dominated by the false negative detection 
of heat-damaged and ground fire areas. This indicates that more reliable labeled data of heat-
damaged and ground fire classes should be provided to enhance the performance of U-Net since 
the quality and authenticity of data are critical factors affecting the performance of deep 
learning-based classification.(47) Furthermore, note that all classifiers showed limited 

Fig. 7. (Color online) Comparison of burn severity classification accuracies for ML, SAM, and U-Net classifiers: 
(a) OA and K, (b) PA, and (c) UA for the two- and four-level burn severity classifications. 
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performance in discriminating the moderate and low burn severity areas, in which the texture 
has very little contrast. This suggests that additional representative training data for these classes 
will improve the accuracy of all classifiers.

4. Conclusions

 We examined the performance and accuracy of the ML, SAM, and U-Net classifiers for 
forest burn severity mapping using multispectral UAV imagery. The accuracy of burn severity 
mapping varied across the three classifiers as well as across the burn severity classes. ML 
showed the worst performance in terms of OA regardless of the burn severity level, while U-Net 
outperformed ML and SAM for high-level burn severity mapping. Concerning class separability, 
the high burn severity class (crown fire) attained a higher accuracy than the low burn severity 
classes (heat-damaged, ground fire) regardless of the classifier. Overall, our study revealed that 
the stability of burn severity mapping for Korea’s forest fires is dependent on the level of burn 
severity classes as well as the classifier’s capability in discriminating the moderate burn severity 
classes.
 To further improve the accuracy of high-level burn severity mapping, it is recommended to 
provide more representative training data covering a diverse range of burn severity conditions to 
fit each classifier and reduce misclassification errors. Adopting longer wavelengths such as 
SWIR for UAV sensors could also enhance the accuracy of extracting complex burn severity 
classes by providing more diverse spectral information.
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