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 Precise assessment of forest inventory can help optimize timber value and industrial forest-
management planning. Light detection and ranging (LiDAR) technology has been recently 
introduced in forestry to effectively and precisely estimate and monitor forest inventories. In this 
study, we investigated the opportunities and limitations of integrated mobile laser scanning 
(MLS) and airborne laser scanning (ALS) LiDAR applications for estimating individual tree 
diameter at breast height (DBH) and tree height. Three circular fitting algorithms (integrated 
RANSAC and circle fitting, minimum enclosing circle, and least-squares ellipse fitting) were 
used to estimate DBH. Height was calculated using the crown height model (CHM). DBH was 
most accurately estimated by the ellipse-fitting algorithm. Integrated MLS and ALS performed 
better than previous circular fitting applications in estimating DBH values. Lastly, the tree 
height estimated using the CHM was compared with the ground truth, and R2 and the root mean 
square error (RMSE) of the height were 0.60 and 2.0 m, respectively. In addition, the trend of 
low accuracy for suppressed trees was identified from point cloud data (PCD) extraction because 
of overlapped PCD among the surrounding dominant trees. This result indicated that the 
segmentation of the top of suppressed trees was limited by overlap issues in high-density forests.

1. Introduction

 Accurate forest inventory assessment is crucial in the forest industry. The composition, 
structure, and estimated volume of forests are essential information in the forest industry for 
optimizing timber value and for effective forest-management planning.(1) Forest inventory 
assessment through the collection of the diameter at breast height (DBH), tree height, and tree 
location data requires field-based methods. However, traditional forest inventory assessment 
methods have key limitations, such as high labor costs, excessive time consumption, and 
suboptimal data continuity. Additionally, access to dangerous areas, including remote areas and 
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steep terrain, is limited.(2) To overcome these limitations, several groups have investigated 
efficient ways to obtain forest inventory data using remote sensing techniques.(3)

 Remotely sensed data, satellite images, sensor-collected data, and light detection and ranging 
(LiDAR) applications are widely used for assessing forest inventory. LiDAR applications have 
recently been introduced as an effective tool for precisely estimating and monitoring forest 
inventories.(3) Several studies have been conducted using LiDAR sensors in forestry, including 
those for forest biomass estimation, forest canopy height assessment, and tree volume estimation.
(4–6) Various types of forest data have been estimated using LiDAR systems. However, tree 
diameter measurement is the most common use of LiDAR systems. In LiDAR systems for forest 
applications, three types of scanning systems—airborne laser scanning (ALS), terrestrial laser 
scanning (TLS), and mobile laser scanning (MLS) systems—are commonly used for 3D 
mapping. ALS is commonly used in large areas. However, the capture of under-canopy point 
data is limited. TLS is the most accurate method for collecting 3D point clouds in forestry, but 
there are still barriers to capturing surrounding point data in the forest area. To overcome the 
limitations of ALS and TLS, MLS is used as an alternative tool for rapidly assessing and 
monitoring forest inventory. MLS helps prevent an increase in the rates of occlusion and missing 
data in high-density forests.(7) Liu et al. estimated the height and DBH of individual trees using 
MLS point cloud data (PCD) and obtained a root mean square error (RMSE) of 3.17 cm for DBH 
in a natural forest plot.(8) Woo et al. also investigated individual tree diameters using four 
circular fitting algorithms. They found that the least-squares circle and minimum-enclosing 
circle algorithms were the most accurate for estimating tree diameter in Pinus densiflora and 
Pinus koraiensis forest stands.(9) Recently, unmanned aerial vehicles (UAVs) equipped with 
LiDAR systems for ALS have been widely adopted in large-scale forests. ALS allows scanning 
over a large area and is increasingly being used to determine forest canopy structures.(10) 
However, ALS has limitations in collecting under-canopy PCD data compared with MLS.(7) To 
overcome the limitations of MLS and ALS, several attempts have been made to merge MLS and 
ALS PCD to improve the accuracy of under-canopy PCD. Currently, the potential of combining 
the MLS and ALS systems for directly measuring forest structure parameters in forest inventory 
assessment remains underexplored.(11) 
 Unfortunately, the application of LiDAR sensors remains limited in forestry, a small-scale 
industry, in South Korea, because of the high cost of sensors and lack of information on LiDAR 
applications in forestry.(9) Hence, we investigated the opportunities and limitations of using the 
LiDAR technology to estimate the DBH and height of individual trees in South Korean forests.

2. Materials and Methods

 The overall research process is illustrated in Fig. 1. PCD was collected using ALS and MLS. 
The collected PCD was boresighted and georeferenced using a post-processed kinematic (PPK) 
method. Three circular fitting algorithms were applied to the processed LiDAR PCD to estimate 
tree DBH. In addition, tree heights were calculated using the crown height model (CHM) with a 
5 cm resolution. The CHM was generated on the basis of differences between the digital surface 
model (DSM) and the digital terrain model (DTM). Finally, the results of DBH and tree height 
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estimations were validated by comparison with field-based ground truth data. The research 
process is described in detail in Fig. 1.

2.1 Site description

 The study was conducted within the research forest of Kangwon National University, 
Hongcheon-gun, South Korea (Fig. 2). The research plot was a planted area dominated by Pinus 
koraiensis. The research plot was characterized by an even-aged plantation forest, and Pinus 
koraiensis was selected as the research target species. Fixed-radius plots were used for field data 
collection. In the sampling plot, an 11.3 m radius was measured from the center of the plot to the 
surrounding trees.

2.2 Field survey for DBH and tree height

 Tree DBH (measured 1.2 m above ground level) was measured at the research site to validate 
the LiDAR DBH estimation. DBH of individual trees was measured using DBH tape. The mean 
value of the measured DBH was estimated as a representative value to validate the LiDAR DBH 
estimations. Tree height was measured using a Vertex 5 hypsometer and the height of each target 
tree was measured multiple times until the measured values were fixed. The total number of 
trees in each plot is 25. The average DBH in the field survey was 27.7 cm and the average tree 
height was 21.0 m. 

Fig. 1. Flowchart of overall research for estimating tree height and DBH.
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2.3 Point data collection using MLS

 Mobile LiDAR data were collected on June 22, 2021 using a GeoSLAM Horizon laser 
scanning system (GeoSLAM Ltd., Nottinghamshire, UK) equipped with an inertial measurement 
unit (IMU) (Fig. 3). This system included a VLP-16 LiDAR sensor (Velodyne LiDAR, San Jose, 
CA, USA) equipped with a rotating motor to extend the field of view (FOV). The VLP-16 sensor 
generates a 903 nm wavelength, the angular step size is 0.1 to 0.4, and it has a beam divergence 
of 3 mrad. Various sensors and computer systems are attached to the GeoSLAM Horizon 
system, including the IMU, data storage, and power supply.(12) The collected LiDAR data were 
post-processed using the GeoSLAM HUB software to convert the PCD. The PCD was 
georeferenced in the Korea 2000 Korea Central Belt 2010 coordinate system using 
LiGeoreference 1.3.0 software (GreenValley International, Beijing, China).

2.4 Point data collection using ALS

 ALS data were collected on June 22, 2021, using a DJI Matrice M300 RTK UAV (Da-Jiang 
Innovations Science and Technology Co. Ltd., China). This UAV, shown in Fig. 3, has a mass of 
6.3 kg and four rotary wings, and can be operated at altitudes of up to 5000 m.(13) However, the 
allowed maximum altitude is set to 500 m in South Korea. The maximum flight time was 
limited to 55 min and the machine was equipped with an anticollision system. In this research, 
the GeoSLAM Horizon LiDAR system was mounted on the UAV to collect aerial LiDAR PCD. 
ALS LiDAR data were collected during a 20 min flight at an altitude of 50 m with a flight speed 
of 3 m/s.(11) The collected LiDAR PCD are based on a PPK flight trajectory produced using the 
Trimble r12i (Trimble, USA) GNSS base station.(14)

Fig. 2. (Color online) Research location and top view of the study area.
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2.5 Merging MLS and ALS point cloud data

 The iterative closest point (ICP) algorithm was adopted to reduce the errors between the two 
sets of PCD. Errors occurred from autonomous matching using a statistical procedure or manual 
PCD matching process.(15) The ICP algorithm is expressed as

 ( ) ( ) 2

,
, min   i iiR t

E R t a Rq t− + −= ∑ , (1)

where    ip P∈  is a point from the 3D reference PCD, and   iq Q∈  is a point from the target PCD.

2.6 DBH and tree height estimation

 Individual tree PCD were segmented on the basis of a field-survey map. The locations of 
individual trees were recorded during the field survey and a map of individual tree locations was 
used to segment the PCD of individual trees. The PCD of the DBH were automatically extracted 
at the breast height (1.2 m) using a digital elevation model (DEM). Extracted point clouds were 
used to estimate the DBH using circular fitting algorithms. The three circular fitting algorithms 
applied were integrated RANSAC and circle fitting (RCF), minimum enclosing circle (MEC), 
and least-squares ellipse fitting (EF).(16,17) The estimated DBHs were analyzed in Python 3.8.8, 
using NumPy and Matplotlib libraries [Fig. 4(a)]. In previous studies, the number of iterations 
used in the RANSAC algorithm to estimate the DBH of individual trees was set to 50, 200, and 
1000.(16–18) However, the optimal number of iterations for investigating tree DBH has not been 
previously presented. We derived the optimal number of iterations by increasing the number of 
iterations at intervals of 10 from 10 to 90.

Fig. 3. (Color online) GeoSLAM sensor mounted on a backpack and M300 RTK. (a) MLS. (b) ALS.

(a) (b)
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 To measure tree height, individual trees were divided into three categories based on the 
characteristics of PCD distribution patterns (Table 1). Tree height was estimated using the CHM 
with 5 cm resolution, where the CHM was based on the differences between the DSM and DTM 
[Fig. 4(b)].(19)

 The estimated DBH and tree heights were validated using RMSE and bias. The coefficient of 
determination (R2) and RMSE equations are defined as
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where n is the number of estimates, iy  is the estimated diameter at the ith tree, and yi is the field-
measured ground truth data.

3. Results and Discussion

3.1 Point cloud data from LiDAR systems

 A detailed description of the post-processed PCD is provided in Table 2. In total, 418813312 
points were obtained from the study area. A permanent forest road was used to match two 
different PCD datasets (ALS and MLS). The numbers of forest road PCD captured by MLS and 
ALS were 30717544 and 764318, respectively. In the merging of the PCD, 7.5% of the MLS PCD 

(a) (b)

Fig. 4. (Color online) Examples of circular fitting outputs and tree height estimation. (a) Estimation of DBH. (b) 
Estimation of height.
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were used to apply the ICP algorithm. The RMSE of the ICP results was calculated to be 0.25 m. 
Statistical outlier removal (SOR) filtering was adopted in the noise removal process, and 2114823 
points were removed. Finally, 30510634 PCD (7.2%) were used to estimate the individual tree 

Table 1
(Color online) Three defined PCD categories of the scanning results.
Types A B C

Images

Definitions Type A: grows straight, 
unaffected by surrounding trees

Type B: can be affected by 
surrounding trees when 

measuring height owing to tilt

Type C: difficult to measure 
height using CHM as tree is 

suppressed

Table 2
Detailed information on post-processed PCD.
Step Process Platform Number of points

0 RAW MLS 341101169
ALS 77712143

1 Manual ICP matching MLS 30717544
ALS 764318

2 PCD after outlier removal MLS 32625457
ALS 544007

3 PCD after noise filtering MLS 30005680
ALS 504954

4 Merged PCD ALL types 30510634
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DBH and height (Fig. 5). Paris et al. and Dai et al. investigated LiDAR applications using 
merged MLS and ALS data.(20, 21) In this study, the merged PCD were obtained using both MLS 
and ALS. However, for high-density forests, only under-canopy PCD can be captured using ALS 
because of low light penetration to the ground surface. The results of this study show that 
integrated ALS and MLS overcame the problem of low light penetration in high-density forests. 

3.2 Results of individual DBH estimation

 Before estimating DBH, we evaluated the accuracy of the RANSAC algorithm as a function 
of the number of iterations. The estimated average RMSE of DBH was calculated as 1.14 cm for 
10 iterations and monotonically decreased to 0.8 cm after 50 iterations. In addition, the RMSE 
decreased monotonically from 1.4 after 10 iterations to 0.8 cm after 40 iterations. Above 40 
iterations, the fluctuation of average RMSE gradually decreased to below 0.1 cm. This means 
that increasing the number of iterations does not increase the accuracy of the RANSAC 
algorithm. On the basis of this result, the number of iterations used for DBH estimation was set 
to 50 when applying the circular fitting algorithms (Fig. 6). 
 The ground truth and DBH estimation algorithms, RCF, MEC, and EF, were compared to 
validate the LiDAR estimation. We used R2, RMSE, t-test, and ANOVA to evaluate the accuracy 
of DBH estimation. The EF algorithm exhibited the lowest RMSE value and the highest R2 value 
among the three DBH estimation algorithms. The RMSE values estimated from the three 
algorithms were compared to determine the most suitable DBH estimation algorithm (Table 3, 
Fig. 7). The estimated R2 values of RCF, MEC, and EF were 0.99, 0.98, and 0.99, respectively. 
The largest gap between the estimated results and the ground truth data was found for MEC. 

Fig. 5. (Color online) Merged PCD based on MLS and ALS PCD.
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Fig. 6. (Color online) Box plot of RMSE distribution with different numbers of iterations.

Table 3
Results of DBH estimation using LiDAR and ground truth value (unit: cm).

Tree No. Ground truth Result of estimation Bias
RCF MEC EF RCF MEC EF

1 30 29.2 34.6 29.9 −0.8 4.6 −0.1
2 21.3 20.9 26.3 21.4 −0.4 5 0.1
3 28.5 27.8 34.5 29 −0.7 6 0.5
4 12.2 10.8 15.8 11.3 −1.4 3.6 −0.9
5 31.2 30.1 34 29.5 −1.1 2.8 −1.7
6 41 40.1 45.8 40.3 −0.9 4.8 −0.7
7 26.5 27.4 33 26.9 0.9 6.5 0.4
8 22.3 22.3 27.1 21.9 0 4.8 −0.4
9 29.5 28.7 34.5 29.3 −0.8 5 −0.2

10 35.8 36.1 42.1 35.4 0.3 6.3 −0.4
11 27.8 28.9 34.9 27.8 1.1 7.1 0
12 38.5 37.7 43.7 37.5 −0.8 5.2 −1
13 34 32 40 32.8 −2 6 −1.2
14 23 21.7 29.1 22.5 −1.3 6.1 −0.5
15 24.1 23.1 28.6 23.4 −1 4.5 −0.7
16 29.5 28.8 34.7 29 −0.7 5.2 −0.5
17 31.5 30.9 37.1 31.3 −0.6 5.6 −0.2
18 27 26.2 31.9 26.2 −0.8 4.9 −0.8
19 21.8 21.9 26.7 21.1 0.1 4.9 −0.7
20 21 21.1 25.6 20.2 0.1 4.6 −0.8
21 20.4 19.4 25.4 20 −1 5 −0.4
22 34.5 34.9 41.6 34.9 0.4 7.1 0.4
23 28.8 28.2 33.4 28 −0.6 4.6 −0.8
24 48 46.9 53.1 47.4 −1.1 5.1 −0.6
25 19.6 18.6 24.5 19 −1 4.9 −0.6
Mean 28.3 27.7 33.5 27.8
SD 7.7 7.7 8.0 7.7
RMSE — 0.90 5.29 0.69
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However, MEC overestimated DBH compared with the ground truth data. Among the circular 
fitting algorithms, EF exhibited the lowest error (Fig. 8). According to the t-test, the ground truth 
and DBH estimation algorithms gave significantly different results. However, the result of 
ANOVA for DBH estimation using LiDAR was not significantly different among the ground 
truth, RCF, and EF fitting. However, the MEC fitting algorithm showed a significant difference 
compared with the other methods (p > 0.05) (Table 4).
 In a previous study by Woo et al., the minimum ellipse circle fitting algorithm showed the 
most accurate DBH estimation. In addition, the RMSE of the minimum ellipse circle showed the 
lowest volume estimation among four circular fitting algorithms.(9) Additionally, Bienert et al. 
investigated tree DBH using integrated MLS and TLS LiDAR systems. The results of their 
research indicated that the least-squares cylinder-fitting algorithm was the most accurate with an 
RMSE of 3.7 cm.(22) In the previous studies of comparing circular fitting applications for tree 

Fig. 7. (Color online) Results of estimated individual tree DBH.
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DBH, different accuracies were obtained. Measurement accuracy may depend on the species or 
shape of the tree, as well as the method of data collection. In particular, our research indicated 
that the density of the PCD affects the estimated tree DBH because of overestimation. On the 
basis of this result, we have revealed that various circular fitting algorithms are required to 
accurately estimate the different shapes of individual trees. 

3.3 Results of individual tree height estimations

 The results indicated that the number of trees with PCD tree shapes of type A was 12 and 
type B was 10. However, only three trees were identified to be type C. In field measurements, 
the average tree height was measured to be 21.0 m and SD was estimated to be 2.7 m. However, 
the average tree height estimated using the CHM was 20.3 m with SD of 1.0 m (Table 5).
 Tree height measurements using the CHM showed that types A and B were underestimated 
compared with the ground truth values. However, the tree height was overestimated using the 
CHM for type C. Additionally, the estimated RMSE was approximately 2.0 m for all types; the 
estimated RMSE values were calculated to be 1.9, 2.0, and 2.2 m for types A, B, and C, 
respectively. The most accurate tree height estimation was for type A trees. The t-test between 
the estimated height and the field-measured height showed no significant difference between the 
heights (p > 0.05). The height was estimated less accurately for suppressed trees than for 
dominant trees (Fig. 9). This trend of less accuracy for suppressed trees was identified in the 
point extraction in the treetop detection from the overlapped PCD among the point clouds of 
surrounding dominant trees. Ullah et al. estimated tree height using the CHM based on ALS 
PCD(23) and estimated the overall RMSE to be 1.93 m. In addition, Peng et al. calculated the 

(a) (b) (c)

Fig. 8. (Color online) Scatter plots of DBH estimation (cm) from ground truth against estimation algorithm for (a) 
RCF, (b) MEC, and (c) EF.

Table 4
Statistical correlation based on ANOVA for DBH.
Algorithm df F p-value F critical value
Ground truth, RANSAC + circle fitting, EF 2 0.0388 0.9620 3.1239
Ground truth, RANSAC + circle fitting, EF, MEC 3 3.1922 0.0270 2.6994
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RMSE of the estimated tree height to be 3.4 m.(24) The results of this study indicate that the 
integrated ALS and MLS PCD led to better performance in estimating tree height than that in 
previous studies on tree height estimation. The average tree height was estimated to be 21 m, 
with the height of trees having less than average height generally being underestimated and the 
height of trees with greater than average height generally being overestimated (Fig. 9). This 

Table 5
Results of tree height estimation using LiDAR and ground truth values (unit: m).
Type Tree No. Ground truth Result of estimation Bias

A

1 22.4 20.2 −2.2
2 17.9 19.1 1.2

12 22.7 20.4 −2.3
13 23.4 20.2 −3.2
14 18.0 18.8 0.8
15 20.9 20.3 −0.6
16 23.0 20.6 −2.4
17 23.7 21.1 −2.6
18 21.5 20.6 −0.9
20 18.5 20.2 1.7
22 21.4 20.9 −0.5
23 19.7 20.1 0.4

Mean 21.1 20.5

—SD 2.1 1.1
R2 — 0.579

RMSE — 1.9

B

4 19.5 19.4 −0.1
5 21.9 21.5 −0.4
6 23.9 21.7 −2.2
7 19.6 18.9 −0.7
8 21.8 20.8 −1.0
9 23.6 22.2 −1.4

10 23.5 20.1 −3.4
11 22.8 20.2 −2.6
21 18.3 19.0 0.7
24 24.8 21.0 −3.8

Mean 22.0 20.1

—SD 2.2 0.7
R2 — 0.596

RMSE — 2.0

C

3 15.9 20.6 4.7
19 16.3 20.6 4.3
25 13.1 17.8 4.7

Mean 17.7 19.7

—SD 2.7 1.6
R2 — 0.990

RMSE — 2.2

Total

Mean 21.0 20.3

—SD 2.7 1.0
R2 — 0.598

RMSE — 2.0
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result indicates that there are limitations in the effectiveness of segmenting the top portion of 
tree PCD for suppressed trees owing to overlap of dominant trees in a high-density forest 
structure. In addition, ALS is of limited use in capturing ground points of dominant trees owing 
to the dense forest structure. Because of the high density of forest structures, the application of 
LiDAR resulted in both the underestimation and overestimation of the tree height.(19,24,25)

4. Conclusions

 We investigated the applicability and limitations of using LiDAR applications to estimate 
individual tree DBH and height. We performed field measurements on 25 trees to validate the 
LiDAR estimation. The DBH estimation was the most accurate for EF, and the least-squares 
cylinder-fitting algorithm was the most accurate among the adopted circular fitting algorithms. 
Compared with previous circular fitting applications, integrated ALS and MLS performed better 
in estimating tree DBH. In addition, most circular fitting algorithms show different accuracies 
of DBH estimation depending on the data collection method and the shape of individual trees. 
Our research indicates that the PCD density impacts tree DBH estimation.
 The tree height estimated using the CHM was compared with the ground truth, and R2 and 
RMSE of the height were 0.60 and 2.0 m, respectively. In this study, we established the 
applicability and limitations of using LiDAR systems to conduct forest inventory assessments. 
In addition, the trend of lower accuracy for suppressed trees was identified in PCD extraction for 
the detection of treetops from the overlapped PCD among the surrounding dominant trees. This 
result indicated that the case of suppressed trees is limited in the estimation of tree height using 
PCD owing to overlap by dominant trees in high-density forest structures. In addition, in a 
dominant trees plot with a high-density forest structure, it is difficult to capture ground points 

(a) (b)

Fig. 9. (Color online) Scatter plots of ground truth height (m) and height estimated using LiDAR data. (a) Linear 
relationship between LiDAR estimation and ground truth data. (b) Bias variance against ground truth tree height.
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owing to the high density of forest crowns. Because of the highly dense forest structure, LiDAR 
sometimes underestimates or overestimates tree heights. 
 There are many efforts to estimate forest structure using LiDAR systems. However, to be 
able to apply LiDAR to the forest industry in the future, it is necessary to set the tree position 
within the LiDAR data without reference data. Meanwhile, research is being conducted to set 
tree locations using various analysis tools, such as segmentation and cluster analysis.(8,26) 
Linking the results of such studies and the present study will be valuable in the application of 
LiDAR in the forest industry.
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