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	 Mobile laser scanning (MLS) systems with light detection and ranging (LiDAR) sensors, 
global navigation satellite system (GNSS) receivers, and inertial measurement unit (IMU) 
sensors have been widely used in applications such as smart city facility censuses and high-
definition mapping. However, because of the complexity of urban environments, there are often 
decimeter-to-meter-level position deviations between multiple scanning data of the same area. 
To solve this problem, we propose a trajectory correction model for registering city-scale MLS 
point cloud data. First, the proposed model segments the trajectory in terms of the data accuracy 
and then segments the data with segmented subtrajectories while maintaining the relationship of 
matching pairs in overlapping areas. Second, the proposed model transforms the matching pairs 
based on multiple metrics registration, which uses the poles and planar feature points extracted 
from the point cloud data using local geometric features. Finally, the global pose optimization 
method is used to improve the consistency of the MLS point clouds. In data registration 
experiments on different urban scenes, the proposed method performed well with high 
robustness and decreased the position deviations by 70%.

1.	 Introduction

	 Mobile laser scanning (MLS) is an accurate and efficient tool for acquiring 3D data of cities, 
and has been increasingly used in various urban applications, such as urban road inspection, 3D 
digital city modeling, and urban environment monitoring.(1) MLS systems are usually equipped 
with global navigation satellite system (GNSS) receivers and inertial measurement unit (IMU) 
sensors to provide the information on position and orientation required for georeferencing point 
cloud data from light detection and ranging (LiDAR) sensors. However, GNSS-IMU integrated 
solutions do not perform consistently in complex urban areas owing to the influence of GNSS 
multipath effects next to tall buildings, the loss of signal in GNSS-denied environments (e.g., 
tunnels), and the accumulation of positioning error.(2) 
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	 Current methods for improving MLS data accuracy can be categorized into two groups: data-
driven approaches and model-driven approaches.(3,4) In recent years, model-driven approaches 
have been widely applied in MLS data registration because of the advantage of not needing 
control points. For example, a variant iterative closest point (ICP) algorithm was used to register 
point clouds, and the least squares method under the condition of absolute position and 
registration constraint was used to improve trajectory accuracy.(5,6) A time-variant reference 
transformation model that combines calibration points was used to adjust the systematic bias 
resulting from the positional and orientation errors.(7) An error time-variant model combined 
with a two-step ICP algorithm was used to correct the trajectory error. In this combined model, 
the point clouds were segmented evenly along the time dimension.(8) A coarse-to-fine point 
cloud registration process was adopted by using semantic feature points at different scales.(9) A 
set of joining loops for global optimization was constructed to produce a globally consistent and 
accurate point cloud.(10) A marker-free correction method that combines feature-descriptor-
based local point cloud registration and two-stage global optimization was used to reduce the 
inconsistency of point clouds.(11)

	 However, model-driven approaches still face enormous challenges in the application of 
complex scene mapping at a city scale. On the one hand, existing approaches based on point 
cloud registration or the time-variant model with the same time intervals are unable to reduce 
errors in complex scenes, and their robustness has rarely been evaluated at a city scale. On the 
other hand, few studies have prioritized the optimization process in data registration, which is an 
important step for improving the registration accuracy at a city scale. 
	 In this study, we developed a trajectory correction model for city-scale MLS data registration 
and experimentally validated its effectiveness and robustness. To achieve this, we used an 
adaptive trajectory segmentation strategy that segments the point cloud by taking the error 
distribution and overlapping rate into consideration, and we developed a pairwise point cloud 
transformation method using multiple metrics. Finally, the global pose optimization method 
combining six-degrees-of-freedom translation and rotation was used to improve the overall point 
cloud consistency.

2.	 Materials and Methods

	 The proposed trajectory correction model includes three key steps (Fig. 1): adaptive 
segmentation and matching, pairwise point cloud transformation using multiple metrics, and  
global trajectory optimization. Each step is detailed in the following sections.

2.1	 Adaptive segmentation and matching

	 In this study, we assumed that point cloud deformation does not exist within a segment, and 
we corrected the nonrigid transformation between segments. Therefore, an adaptive trajectory 
segmentation strategy that considers the error distribution and overlap rate of MLS data was 
used to segment point cloud data. To achieve this, we first segmented the MLS trajectory 
following a distance-based method.(5) However, this method may lead to multiple consecutive 
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and short trajectory segments when a car turns at an intersection, where the number of features 
is limited. Therefore, a segment-merging process was implemented on continuous trajectory 
segments of less than 20 m. 
	 Using the segmented trajectory, we calculated the bounding box of each segment and checked 
whether the bounding box of one segment intersected with that of its previous segment along the 
time dimension. If they intersected, we calculated the length of the overlapped trajectory and 
treated the two segments as an initial matching pair of segments if the length exceeded 25 m. 
Moreover, because a matched segment cannot be treated as rigid if its length is excessive, we 
divided a segment with a length of over 40 m into multiple matching pairs. Additionally, we 
calculated the distance between the two segments of each matching pair in all repeated matching 
pairs and retained the pairs with the smallest distance to eliminate redundant matches. The point 
cloud was segmented on the basis of the time stamp of the trajectory segments.

2.2	 Pairwise transformation using multiple metrics

	 The ICP algorithm is the most commonly applied method for point cloud data registration. 
Under the hypothesis of an approximately accurate initial transformation, the ICP algorithm 
considers the closest source and target points as the corresponding points and iteratively solves 
the point-to-point distance to optimize the rigid transformation until convergence is reached.(3) 
However, the efficiency of the ICP algorithm is low because of the high point density of MLS 
data. Additionally, the algorithm may fail owing to the large number of moving objects in urban 
scenes. Therefore, given the large number of poles and planar objects in a city, we introduced a 
feature-based point cloud registration method using multiple error metrics. 

(a) (b) (c)

Fig. 1.	 (Color online) (a) Adaptive segmentation, (b) pairwise transformation, and (c) global optimization.
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2.2.1	 Local geometric features

	 For each point, its neighborhood points within a radius are searched for. Principal component 
analysis is used to obtain three eigenvalues (λ1, λ2, λ3) and their eigenvectors (v1, v2, v3), where 
the eigenvalues are in descending order. Then, four geometric features (linearity, planarity, 
scattering, and verticality) are used to describe the local geometric features of the point, as given 
in Eq. (1). At the same time, the normal direction and the principal direction are retained for 
eigenvectors v3 and v1, respectively.(12)
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	 Geometric features are computed in the radius range of rmin to rmax. The neighborhood radius 
Rj for the feature calculation of each point Pj is selected to minimize the Shannon entropy Ej.(13)
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	 If ,L P S
j j jD D D  and V V

j polesD D> , the dimensional label of point jP  is 1, which means that 
the point is a pole-like point with verticality more than threshold V

polesD .
	 If ,P L S

j j jD D D  and V V
j facadesD D> , the dimensional label of point jP  is 2, which means 

that the point is a facade-like point with verticality more than threshold V
facadesD . 

	 If ,P L S
j j jD D D  and V V

j groundD D< , the dimensional label of point jP  is 3, which means 
that the point is a ground-like point with verticality less than threshold V

groundD .
	 The expression ,L P S

j j jD D D  above means that L
jD  is ten times larger than P

jD  and S
jD .

2.2.2	 Multiple error metrics

	 Multiple error metrics exist during the registration process, including point-to-point, point-
to-line, and point-to-plane errors. The point-to-point distance error metric ( )2 ,i jdP P P P  can be 
computed using Eq. (4), where ,i jP P  are corresponding points in the source and target point 
clouds, respectively.

	 ( ) ( )22 ,i j i jdP P P P P P= − 	 (4)

	 The point-to-line distance error metric ( )2 ,i jdP Line P L  can be computed as
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	 The point-to-plane distance error metric ( )2 ,i jdP Plane P P  can be computed using Eq.  (6), 
where n

jP  is the normal direction of jP .

	 ( )2 , ( ) n
i j i j jdP Plane P P P P P= − ⋅ 	 (6)

	 The angle distance dθ(Li, Lj) of two line segments is defined by Eq. (7), where sin(θ(Li, Lj)) is 
the sine value of the angle between the directions of the two lines.(14)

	 ( ) ( ) ( )( )  , min , sin ,i j i j i jd L L L L L Lθθ = −    	 (7)

	 Since the extracted pairs of lines are not exactly parallel, it is necessary to quantify the effect 
of the angle. Finally, the line-to-line distance error metric ( )2 ,i jdLine Line L L  is defined by

	 ( ) ( )( ) ( )( )2 2
2 , , 2 ,i j i j i jdLine Line L L d L L dP Line P Lθ= + .	 (8)

	 Similarly, the plane-to-plane distance error metric ( )2 ,i jdPlane Plane P P  is defined by

	 ( ) ( )( ) ( )( )2 2
2 , , 2 ,n n

i j i j i jdPlane Plane P P d P P dP Plane P Pθ= + .	 (9)

	 The registration units selected in this paper are pole-like points and plane-like points. 
Therefore, we simultaneously use the line-to-line and plane-to-plane error metrics to minimize 
the residual equation and iteratively obtain the rigid transformation matrix. 

2.2.3	 Pairwise registration 

	 The ICP algorithm includes three parts: calculation of the initial transformation matrix, 
search for corresponding points, and iterative minimization of the multiple error metrics defined 
in the previous section. 
	 In fact, the deviations of MLS point cloud data are mainly in the positions and small angles. 
Therefore, we use the position offset of the center point of the trajectory pair as the initial 
translation value and the angle between the oriented bounding box main axes of the trajectory 
pair in the XY coordinate system as the initial heading rotation angle. Then we obtain the initial 
transformation matrix. 
	 The corresponding point pair is obtained by using a k-dimensional (k-d) tree to search the 
nearest point of the same-dimensional label in the source and target point clouds with a distance 
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less than 1 m. Finally, the algorithm is applied to each pair to obtain the rigid transformation 
matrix and the root mean square error (RMSE) ermse of the distance between the corresponding 
points after registration. ermse is computed using Eq. (10), where N is the number of corresponding 
points. 

	 ( ) ( )2 2
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rmse i i
i

e dLine Line dPlane Plane
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2.3	 Global trajectory optimization

	 The relative constraint relationship between each pair of overlapping areas was obtained by 
the previous steps. The next step aims to improve the accuracy of the point cloud using global 
optimization. 
	 The global pose graph ( ),G x c  defined as Eq. (11) is composed of the variable node x to be 

solved and the constraint relationship c between the nodes, where ( )1 , ,
TT T

n�=   is a series of 
pose nodes in the trajectory, Ωij is the weight matrix of the constraint relationship between the 
ith and jth poses, and cij is their relative pose. If the ith and jth poses are continuous pose nodes, 
then cij is the relative pose obtained from the initial trajectory. If these pose nodes are a pair of 
matching pose nodes in the overlapping area, then cij is the relative pose obtained from local 
registration. e(xi, xj, ci,j) is the error function used to measure the difference between the 
optimized and observed values. Finally, the global pose graph optimization can be regarded as 
the nonlinear least squares problem in Eq. (12).(15)
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	 The weight matrix Ωij is determined by the variance of the observed values of the node pose. 
Position and attitude errors are small in open areas and large in streets with dense trees or areas 
with high buildings. These errors can be obtained from the trajectory postprocessing software. 
Thus, Ωij is defined as

	 ( )2/ij pose ijI eσ ⋅Ω = ,	 (13)

where I is the identify matrix; eij is 1.0 or ermse in Eq. (10). 2
poseσ  is the variance of the positional 

and rotational errors. Finally, we use the Ceres Solver(16) library to solve this large-scale 
nonlinear least squares problem, obtain the optimized pose of each node, and regenerate the 
point cloud data based on the optimized trajectory.
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	 The pose node xk is the vector defined as Eq. (14), where ( )0 0 0 0 0 0 0, , , , ,k k k k k k kx X Y Z R P H= .

	 0k k kx x= + ∆ 	 (14)

	 The error Δk is the vector defined as 

	 ( ), , , , , ,, , , , ,k x k y k z k r k p k h kT T T R R R∆ = ∆ ∆ ∆ ∆ ∆ ∆ ,	 (15)

	

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

, 1, 1, 0

, 2, 2, 0

, 3, 3, 0

, 4, 4, 0

, 5, 5, 0

, 6, 6, 0

x k k k

y k k k

z k k k

r k k k

p k k k

h k k k

T t a b t t

T t a b t t

T t a b t t

R t a b t t

R t a b t t

R t a b t t

∆ = + −

∆ = + −

∆ = + −

∆ = + −
∆ = + −
∆ = + −

,	 (16)

where k is the index of a pose point. 1, 2, 3, 4, 5, 6,, , , , ,k k k k k ka a a a a a  and 1, 2, 3, 4, 5, 6,, , , , ,k k k k k kb b b b b b  
are the error function coefficients obtained by the optimization procedure. � , ,x k y k z kT T T�  
are the translation errors in Δt in the X, Y, and Z directions, respectively. , , ,, ,r k p k h kR R R∆ ∆ ∆  are 
the rotation angle errors in Δt around the roll, pitch, and heading directions, respectively.

2.4	 Datasets and experiment

	 The data used in this study were acquired with a Greenvalley MLS system called LiMobile. 
The parameters of LiMobile are shown in Table 1. 
	 A GNSS base station was set up at the same control point to eliminate the absolute position 
error of multiple scans. Therefore, the data registration method between multiple scans was the 
same as that of a single scan. The dataset covers a range of 42.64 km2 with a trajectory length of 
228.86 km. The acquired data contains 409.8 GB of point clouds. 

Table 1
Parameters of the MLS system.
Parameter Value
Name LiMobile
Laser sensor Riegl VUX-1HA
Data acquisition frequency 300 kHz
Measurement range 1.2–1420 m
Range accuracy 5 mm
Angle measurement resolution 0.001°
GNSS GPS, GLONASS, GALILEO, BD
IMU Novatel SPAN CPT
IMU measurement rate 100 Hz
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	 The top view of the point cloud data in the study area is shown in Fig. 2. Four common 
representative urban scenes (a high-traffic area marked as A, a street with dense trees marked as 
B, a highway area marked as C, and an area with multiple scans marked as D) were selected to 
evaluate the registration results in this study. The registration accuracy was evaluated using the 
RMSE before and after registration. 

3.	 Results and Discussion

3.1	 Trajectory segmentation result 
	
	 The results of the trajectory adaptive segmentation and matching are shown in Fig. 3, where 
different colors represent different matching pairs. The length of the longest segment was 40 m, 
and the length of the shortest segment was 20 m. All matching pairs overlapped by more than 
60%. It can be seen from the figure that the matching pairs have a high overlap rate, which 
provides a basis for proving the robustness of the pairwise point cloud registration method. 

Fig. 2.	 (Color online) Top view of the point cloud data in this study.

Fig. 3.	 (Color online) Matching pairs of trajectory segments.
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3.2	 Local registration result

	 The registration range of matching pairs is shown in Table 2. The registration method 
significantly decreased the misalignment of all the matching pairs. The deviations of the MLS 
point cloud data were mainly manifested in the vertical direction and pitch angle. The maximum 
misalignment of the data in the Z direction was 2.375 m, which was caused by the elevation 
spikes in the GNSS position in the street with dense trees.

3.3	 Global correction result

	 The misalignment of the original data and the RMSE before and after registration are shown 
in Table 3. Extremely small values of Max XY offset and Max Z offset were ignored.
	 Figure 4 shows the high-traffic area, the street with dense trees, the highway area, and the 
area with high-frequency scanning (six scans). Figure 4(a) shows that there were sufficient 
heterogeneous targets in the round-trip scanning of the heavy-traffic area, and the multiple 
metric registration method eliminated the 0.437 m misalignment in the Z direction. The cross 
section of the streets with dense trees with a length of 145.67 m is shown in Fig. 4(b). The Z 
offsets in this area were larger (>1 m) than in the other areas. The influence of point cloud 
deformation was nonrigid, and the maximum offset in the Z direction was 1.978 m. Compared 
with urban roads, there are more moving objects and fewer facades or trunk points for 
registration in the highway area [Fig. 4(c)]. We registered the point clouds using the limited 
number of lamp posts and ground points and decreased the RMSE by 70%. In overlapping areas 
with multiple projects or multiple scans [Fig. 4(d)], only static targets such as pole-like and 
plane-like points could be used to register matching pairs. A pose graph optimization method 
was then used to improve the consistency among the multiple scans. The results suggested that 
the proposed correction model was effective and robust.
	 Improving the accuracy of MLS data is a very complex problem because various and 
dynamic factors are involved. The technique proposed in this paper was successfully 

Table 2
Registration range of matching pairs.

Rotation (deg) Translation (m)
∆α ∆β ∆γ ∆X ∆Y ∆Z

Min −0.740 −0.765 −0.310 −0.617 −0.468 −2.375
Max 0.758 0.810 0.248 0.314 0.352 0.80

Table 3
Correction results of four representative scenes.

Max XY offset (m) Max Z offset (m) RMSE before correction (m) RMSE after correction (m)
A – 0.437 0.440 0.152
B 0.294 1.978 0.778 0.150
C – 0.395 0.456 0.136
D – 0.300 0.410 0.148
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Fig. 4.	 (Color online) Results for various areas. (a) High-traffic area, (b) street with dense trees, (c) highway area, 
and (d) area scanned six times.
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demonstrated using diverse and large scenarios at the city scale with different amounts of 
occlusion. The registration results of partially occluded and completely occluded streets with 
dense trees are shown in Fig. 5. The maximum misalignment in the Z direction of the partially 
occluded area was 1.978 m. The RMSE after registration was decreased by 80.7% compared 
with the original data. The maximum misalignment in the Z direction of the completely occluded 
area was 1.241 m. The RMSE after registration was decreased by 71.1% compared with the 
original data. In comparison, matching pairs of same length in the completely occluded area 
exhibited greater deformation. Therefore, we suggest that matching pairs of different lengths 
should be attempted in future studies to perform hierarchical registration and further improve 
the nonrigid deformation.

4.	 Conclusions

	 In this study, we proposed a trajectory correction model to decrease the position deviations of 
repeated scans for registering city-scale MLS point clouds. We collected experimental data in 
four types of representative urban scene using the LiMobile MLS system, which consists of a 
LiDAR sensor, a GNSS receiver, and an IMU sensor. A quantitative assessment using RMSE 
demonstrated that the model performed well with high robustness and decreased the position 
deviations of point clouds by 70%. The registration based on poles and planar feature points 
demonstrated that the model was robust in various scenes. The global optimization improved the 
accuracy of the final point clouds. Finally, we suggest that hierarchical registration methods and 
other data sources (control points, image data) should be introduced in the future to increase data 
quality for city-scale mapping.

Fig. 5.	 (Color online) Results for (a) partially occluded area and (b) completely occluded area.
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