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	 Nighttime ship detection is challenging due to the complicated interference of the nighttime 
background and the weak characteristics of ship targets, and research in this area is relatively 
scarce. In this study, we proposed a network called Size Expansion Attention Fusion Faster 
R-CNN (SEAFF), which is based on the Faster R-CNN deep convolutional network integrated 
with size expansion (SE), the attention mechanism (AM), and the feature pyramid network 
(FPN). Firstly, SE is adopted to enhance the spatial features of nighttime ship targets. Secondly, 
the AM is embedded to extract the features of nighttime ship targets from their channel and 
spatial dimensions. Lastly, the FPN is combined to compensate for the lack of feature extraction 
at different levels. In the data preprocessing, we first choose images generated by a Luojia 1-01 
nighttime high-resolution sensor, then we adopt a modified cycle-consistent adversarial network 
(CycleGAN) to augment the dataset through a sample generation experiment. Our experiment 
on ship detection demonstrated that (1) the SE module improved the detection of weak and small 
ship targets; (2) the AM module plays an important role in reducing the impact of complex 
backgrounds; (3) the FPN module has a significant effect on suppressing the missed detection of 
nighttime ship targets. Moreover, compared with the mainstream object detection methods of a 
single-shot multibox detector, YOLOv5, and Faster R-CNN, the AP@0.50, AP@0.75, and 
AP@0.50:0.95 indicators of SEAFF were improved by 0.032, 0.048, and 0.029, respectively. The 
advantages of our network indicate its potential use in complex nighttime scenes.

1.	 Introduction

	 The variety of remote sensing images has grown with advances in remote sensing technology, 
with studies on nighttime remote sensing attracting increasing attention. Compared with regular 
daytime remote sensing images, nighttime remote sensing images can depict human activities 
more directly, because human-created nightlights are primary sources of nighttime remote 
sensing data. Thus, nighttime ship detection is of great value in combating illegal fishing,(1) 
detecting the invasion of military targets,(2) and evaluating port commerce activities.(3) Despite 
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the proposal of various ship detection methods, nighttime ship detection remains difficult due to 
the complexity of nighttime scenes.
	 At present, images for ship detection mainly consist of synthetic aperture radar (SAR) 
images, IR images, and optical remote sensing images.(4–6) SAR images are used to detect ships 
by analyzing the amplitude and phase information of affected objects to obtain ship information 
in grayscale. SAR images have the major advantages of anti-interference and detection range, 
but the color and texture information of ship targets cannot be detected, and multifeature 
information is lost during the training, which reduces the detection performance.(7) IR images 
are formed by obtaining the IR band radiation of the targets. Although they are suitable for 
detection in all types of weather, IR images also have several shortcomings, such as low pixel 
resolution, low signal-to-noise ratio, and blurred image edges, making this approach prone to 
misdetection, false detection, and other problems.(8) Optical remote sensing is greatly affected 
by the weather and depends on the sun as an external light source; thus, it cannot be used for 
target detection in nighttime scenes. Nighttime remote sensing can obtain near-IR 
electromagnetic wave information emitted from the earth’s surface under cloudless conditions. 
Much of this information is generated by human activities on the surface, with the most 
important being human nighttime lighting, fishing boats at sea, and forest fires. Compared with 
images from common remote sensing satellites, nighttime remote sensing images reflect human 
activities more directly.
	 Many sensors have the ability to detect the light reflected from the earth’s surface at night, 
including the Operational Linescan System (OLS) sensor carried by the Defense Meteorological 
Satellite Program (DMSP) US military weather satellite, the Visible IR Imaging Radiometer 
Suite (VIIRS) sensor carried by the Suomi NPP(c) satellite, and China’s Jilin-1 satellite. With the 
proliferation of multisource data, an increasing number of studies are focusing on ship detection 
in complex nighttime scenes. Ruiz et al. combined automatic identification system (AIS) and 
VIIRS data to monitor major global fisheries and discovered that the courses of fishing vessels 
were highly consistent in time and space, confirming the importance of remote sensing 
monitoring for fisheries.(9) Li et al. combined VIIRS nighttime remote sensing data to expand 
the AIS dataset and monitor fisheries in the north of the South China Sea.(10) These methods 
provide an important foundation for the oversight of fishery management systems.
	 Increasingly efficient detection algorithms, such as region proposal with convolution neural 
networks (R-CNNs),(11) spatial pyramid pooling networks (SSP-NETs),(12) and Faster R-CNN, 
have been proposed, which employ deep convolutional neural networks (CNNs)(13) in object 
detection. Faster R-CNN provides a region proposal network (RPN) and boosts detection 
efficiency while achieving end-to-end training. In contrast to the methods that depend on region 
proposals, You Only Look Once (YOLO)(14) and the single-shot multibox detector (SSD)(15) 
estimate the object region directly and enable true real-time detection. The above visual 
detection methods are also commonly utilized in ship detection via remote sensing. Zhang et 
al.(16) proposed a new ship detection method that combines a CNN with an enhanced saliency 
detection method. Liu et al.(17) proposed a framework for a sea-land segmentation-based 
convolutional neural network (SLS-CNN) for ship detection. The rotation dense feature pyramid 
networks (FPNs) proposed by Yang et al.(18) have achieved state-of-the-art performance. Liu et 
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al.(19) applied the method of light spot detection and tracking in ship detection and tracking and 
improved maritime surveillance efficiency. The difficulties of detecting nighttime ship targets 
are mainly related to the complex background with interference, including similar nighttime 
targets such as nearshore, island, and offshore oil and gas platforms. In addition, nighttime ship 
targets are extremely small, which makes their detection challenging.
	 In this paper, we first propose a modified cycle-consistent adversarial network (CycleGAN) 
to solve the checkerboard artifact of generated samples. We adopt the nearest neighbor sampling 
method to replace the deconvolution structure to improve the network of the generator, and we 
introduce a new perceptual loss function to improve the diversity of generated samples. Then, 
we propose a network called Size Expansion Attention Fusion Faster R-CNN (SEAFF), which is 
based on Faster R-CNN and combines size expansion (SE), the attention mechanism (AM), and 
the FPN. The SE module is used to enhance the spatial distribution of nighttime ship targets, the 
AM module is adopted to filter the effective features from the channel and spatial dimensions, 
and the FPN module is introduced to fuse extracted features at different levels to compensate for 
the missing features. Compared with mainstream object detection methods such as SSD, 
YOLOv5, and Faster R-CNN, our method is more suitable for ship detection and achieves higher 
detection accuracy.
	 The paper is organized as follows. In Sect. 2, we introduce details of data acquisition and 
preprocessing. Section 3 describes the workflow and details of our proposed network. In Sect. 4, 
we analyze our network using experimental results. Section 5 concludes the paper.

2.	 Data Preprocessing

2.1	 Region selection

	 As the region considered, we chose the navigable inshore area of the Beibu Gulf, China, 
which is an economically developed part of the country with trade links to more than 80 
countries. It is located in China’s well-known Beibu Gulf fishing ground, in which fishing often 
occurs at night, meeting the necessary conditions for the extraction of nighttime ship images.

2.2	 Data acquisition

	 In 2018, Wuhan University in China launched Luojia 1-01, a high-resolution nighttime remote 
sensing satellite capable of both nighttime remote sensing and navigation enhancement. It is 
designed for high-resolution imaging, compression, and storage integration and has a high 
spatial resolution, temporal resolution, radiation resolution, and signal-to-noise ratio, effectively 
solving the problem of the supersaturation effect in DMSP satellites.(20,21) The spatial resolution 
of Luojia 1-01 nighttime light data is greatly improved with on-board calibration, making it ideal 
for our requirements.
	 Note that the data generated by Luojia 1-01 (available at http://59.175.109.173:8888) is released 
with geometric and radiometric correction and is stretched exponentially to facilitate data 
storage. Thus, before labeling the data, it must be stretched reversely to its original radiance 
using the formula
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	 3/2 1010L DN −= ⋅ ,	 (1)

where L is the absolute radiance corrected for radiation and DN is the gray value of the image.

2.3	 Data augmentation

	 Deep learning methods require a large number of labeled samples for training, testing, and 
validation. Unfortunately, there are no public datasets of nighttime radiation sources of ship 
targets, making it necessary to manually establish a dataset for our requirements.
	 Techniques such as rotation, mirroring, and adding noise are widely used in computer vision 
for data augmentation. We adopted some of these techniques as shown in Fig. 1. These 
techniques also improve the generalization ability of our network.
	 Common data augmentation techniques are regular transformations based on the original 
images. To solve the problem of insufficient samples for training, Goodfellow et al. proposed a 
generative adversarial network (GAN),(22) inspired by a two-player zero-sum game. It aims to fit 
the distribution of samples then output highly qualified generated samples. Since then, many 
networks based on GAN have been proposed, such as DCGAN(23) and  StackGAN.(24) Among 
them, CycleGAN(25) can be trained without paired examples. The network is trained in an 

Fig. 1.	 Examples of common data augmentation techniques. (a) Original image, (b) rotation, (c) mirror vertically, 
(d) mirror horizontally, (e) addition of noise, and (f) affine transformation.

(a) (b) (c)

(d) (e) (f)



Sensors and Materials, Vol. 34, No. 12 (2022)	 4525

unsupervised manner using a collection of images from the source and target domains that need 
not be related in any way. In this paper, we adopted CycleGAN to further augment samples.
	 Deconvolution in the CycleGAN decoder is mainly used to amplify the feature map. 
However, because the kernel size and stride size are not divisible, there are pseudo pixels called 
checkerboard artifacts,(26) as shown in Fig. 2. In CycleGAN, deconvolution with a stride size of 2 
and a 3 × 3 convolution kernel is continuously used, resulting in checkerboard artifacts. 
	 To address this problem, we propose a modified structure of the generator as shown in Fig. 3. 
In this paper, the deconvolution layer is replaced by upsampling of nearest neighbor interpolation 
with the convolution layers. In this way, the structures of both the encoder and decoder are 
modified. The modified generator network structure is shown in Fig. 3.
	 The parameter setting for each layer of the modified generator network is shown in 
Table 1. The discriminator is used to judge whether samples generated by the generator are real 
or false. The discriminator adopts a fully convolutional network, as shown in Fig. 4.

Fig. 2.	 (Color online) Checkerboard artifacts.

Fig. 3.	 (Color online) Structure of modified generator network.
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	 The discriminator is composed of five convolutional layers. The parameter setting of each 
convolutional layer is shown in Table 2. The loss function of traditional CycleGAN includes the 
adversarial loss function and the cycle consistency loss function. In this paper, we propose a 
novel perceptual loss function for the feature-level consistency supervision of target networks, 
which increases the diversity of samples under the constraint of similar generative styles. First, 
x, the input image passes through two sets of adversarial networks to obtain the output c, then x 
and c are transferred to the encoder EX, the penultimate encoder feature is output, and the L1 
norm is used to constrain the two feature maps. As shown in Eq. (2), ϕi represents the feature 
parameter of the ith layer encoder. Generally, the perceptual loss function is activated after 30–
50 training cycles. This is because the encoder does not perform multicycle training in the early 
stage of feature encoding and cannot discriminate target features. Thus, when calculating the 
loss, the parameters of the encoder EX and EY remain unchanged.

	
( ) ( )( )( )( )( ) ( )

( )( )( )( )( ) ( )
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	 (2)

	 Adding up the above, the total loss function is finally defined as

	 ( ) ( ) ( ) ( ), , , , , , , ,GAN Y GAN X cyc per X YL G D X Y L F D Y X aL G F bL G G+ + + .	 (3)

	 We adopted the Frechet inception distance (FID), which is a commonly used assessment 
criterion in GANs, to measure the quality of images generated by the generator. The FID reflects 

Table 1
Specific parameters of modified generator network.

Instrument #Layers Operation Kernel #Channels Stride Padding Activation 
function

Batch 
normal-
ization

Encoder 1 Conv 7 × 7 32 1 2 ReLU Yes
2 Conv 3 × 3 64 2 1 ReLU Yes

Transformer 3 ResNet 3 × 3 128 1 1 ReLU Yes

Decoder 4 Conv 3 × 3 64 2 1 ReLU Yes
5 Conv 7 × 7 32 1 2 ReLU —

Fig. 4.	 (Color online) Structure of modified discriminator network.
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the distance between two data distributions; the smaller the value, the better the generated 
images. The FID is expressed as

	 ( )( )1/22 2r gFID Tr r g r gµ µ= − + ∑ + ∑ − ∑ ∑ ,	 (4)

where Tr is the sum of the diagonal elements of the matrix, μr is the mean of the real image 
features, μg is the mean of the features of the generated image, Σr is the vector covariance of the 
real image features, and Σg is the vector covariance of the features of the generated image.
	 Note that CycleGAN requires two different styles of samples to perform the experiment. In 
addition to samples generated by Luojia 1-01, we also chose IR images generated by the GM IR 
satellite. We used both CycleGAN and modified CycleGAN to perform the style transformation 
from IR ship targets to nighttime ship targets. The FIDs of images generated by both GAN 
networks are shown in Table 3 and the experimental results of sample generation are shown in 
Fig. 5. It can be observed that owing to the improved network structure and loss function, the 
quality of generated images is improved.

3.	 SEAFF Network Construction

	 In the SEAFF network, the SE module is adopted to enlarge the ship targets since nighttime 
ship targets are only a point light source with a size of 5–15 pixels and a brightness of 0.0025–
0.0175 W/(m2 ∙ sr ∙ μm). The AM module focuses on the most relevant information to the current 
task among the numerous input information and filters out irrelevant information, thus 
improving the efficiency and accuracy of detection. The FPN module uses both high-resolution, 
low-level features and high-level features with high semantic information to enhance the 
detection performance by fusing features of different layers.

3.1	 Size expansion

	 Bilinear interpolation is a method of 2D interpolation on a rectangle. Compared with nearest 
neighbor interpolation, bilinear interpolation requires more computation but the resulting image 
quality is higher, and the shortcoming of the nearest neighbor interpolation of discontinuous 
gray values is basically overcome. Bilinear interpolation is a weighted average of the values at 
the four corners of a rectangle. For a position (x, y) inside the rectangle, the weights are 
determined by the distance from the point to the four corners. Corners that are closer to the point 
are given a higher weighting.

Table 2
Parameters of modified discriminator network.

#Layers Kernel #Channels Stride Padding Activation 
function

Batch 
normalization

1 5 × 5 64 2 2 ELU Yes
2 3 × 3 128 1 1 ELU Yes
3 3 × 3 256 1 1 ELU Yes
4 3 × 3 512 1 1 ELU Yes
5 3 × 3 1 1 0 Sigmoid No
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	 As shown in Fig. 6, to calculate the extended coordinate point P, four adjacent points Q11, 
Q12, Q13, and Q14 with a pixel distance of one are selected to obtain the pixel values f(Q11), 
f(Q12), f(Q13), and f(Q14) of these coordinate points, respectively. The contribution of adjacent 
pixels to the pixel of coordinate point P is allocated according to the proportion of the distance 
between P and the adjacent coordinate points in the horizontal and vertical directions. In the 
horizontal direction, the computational equations are expressed as

	 ( ) ( ) ( )2 1
1 11 21

2 1 2 1
, x x x xf x y f Q f Q

x x x x
− −

≈ +
− − ,	 (5)

	 ( ) ( ) ( )2 1
2 12 22

2 1 2 1
, x x x xf x y f Q f Q

x x x x
− −

≈ +
− − ,	 (6)

where f(x, y1) and f(x, y2) represent the pixel values of R1 and R2, respectively, as shown in Fig. 6.

(a) (b) (c)

Fig. 5.	 (Color online) Results of sample generation experiment. (a) Original IR images, (b) images generated by 
CycleGAN, and (c) images generated by modified CycleGAN.

Table 3
FIDs of images for the sample generation experiment.
Method FID (%)
CycleGAN 66.5
Modified CycleGAN 64.7
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	 In the vertical direction, the computational equation is expressed as

	 ( ) ( ) ( )2 1
1 2

2 1 2 1
, , ,y y y yf x y f x y f x y

y y y y
− −

≈ +
− −

,	 (7)

where f(x, y) is the pixel value of the desired point P.

3.2	 Attention mechanism

	 For complex nighttime backgrounds, we must exclude factors such as coastal lights and 
seawater reflection lights, which could affect the accuracy of detection. The essence of the AM 
module is to locate the information of interest and suppress redundant information. The results 
are usually presented in the form of a probability graph or probability feature vector. In principle, 
attention modules can be divided into three types: a spatial attention module, a channel attention 
module, and a spatial and channel combined attention module.
	 The convolutional block attention module (CBAM)(27) is an attention module for CNNs that 
combines both channel and spatial modules. Its structure is shown in Fig. 7.
	 The channel attention module can filter the features suitable for object discrimination in the 
channel dimension. After feature extraction of the backbone network, different channels of the 
feature map have multidimensional feature information of the object. Thus, enhancing the 
important channels of ship features can improve the identification of ships. As shown in Fig. 8, 
the feature map F passes through a max-pooling layer fm and an average-pooling layer fa in the 
spatial dimension, which denote max-pooled features and average-pooled features, respectively. 
Then, after feature transformation by the multilayer perceptron, the channel weight vector of 
feature F is obtained by σ (the sigmoid activation function). The channel weight vector is 
multiplied by the feature map F along the channel dimension to complete the feature map F 
weighted by the channel, as expressed by

	 ( )( )( ) ( )( )( )( )1 0 1 0c a mF W W f F W W f Fσ= + ,	 (8)

where C H WF × ×∈ , ( )/
0

C r CW ×∈ , and 1

CC
rW

×
∈ . z



 represents a real number field and z 

Fig. 6.	 (Color online) Bilinear interpolation.
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denotes the range of ℝ. W0, W1 are the weight vectors of the multilayer perceptron, C is the 
feature channel dimension, H and W represent the height and width of the feature, respectively, 
and r represents the decay rate.
	 The spatial AM utilizes spatial relations to generate a spatial attention feature map, which 
enhances the key features of objects in the spatial dimension and improves the semantic 
information of nighttime ship object mining. As shown in Fig. 9, the feature map F passes 
through the max-pooling layer fm and average-pooling layer fa in the channel dimension. By 
splicing the average-pooled features and max-pooled features, the pooling feature map is 
obtained, which represents the response degree of object features in different regions in the 
spatial dimension. Then, by using a 7 × 7-dimensional convolutional kernel, a convolution 
feature map is obtained. The spatial weight vector of feature F is obtained by σ. Finally, the 
weighted spatial feature map is obtained by weighting the spatial weight vector of feature F with 
Fc along the spatial dimension using

	 ( ) ( )( )( )7 7 ;s a c m cF f f F f Fσ ×  =   ,	 (9)

where 1 H W
sF × ×∈  and f 7×7 is the convolutional operation with a 7 × 7-dimensional 

convolutional kernel.

Fig. 7.	 (Color online) Structure of CBAM.

Fig. 8.	 (Color online) Channel AM module.
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3.3	 Feature pyramid network

	 An FPN is a feature extractor that takes a single-scale image as the input and outputs 
proportionally sized feature maps at multiple levels in a fully convolutional fashion. This process 
is independent of the backbone convolutional architecture. It therefore acts as a generic solution 
for building feature pyramids inside deep convolutional networks to be used in tasks such as 
object detection. Here, we adopt an FPN to improve the utilization of features of nighttime ship 
targets by the neural network.
	 As shown in Fig. 10, since ship targets are small and Faster R-CNN significantly reduces or 
even omits information of targets in the compression of feature information at the spatial scale, 
the FPN is introduced to deepen the semantic feature association of different layers and retain 
the features of small targets.

3.4	 SEAFF

	 As described above, the SEAFF network mainly consists of three parts. (1) An SE is used to 
increase the feature size of ship targets. (2) An AM module, which enhances the features of 
nighttime ship targets, is introduced to extract feature maps from different convolution blocks. 
(3) An FPN is adopted to fuse the extracted semantic feature maps at different levels to improve 
the utilization of nighttime ship features. The overall structure of the SEAFF network is shown 
in Fig. 11. The input image is expanded to 1.5 times its original image by the SE operation. 
Feature maps are extracted from convolution blocks Conv1–5 in the trunk network, and each 
convolution block is integrated with the AM module to enhance ship features. Each integrated 
convolution block is used to obtain the feature maps, then feature maps M4, M3, and M2 are 
fused by high-semantic feature maps and the adjacent low-semantic feature maps through 
the 1 × 1 convolutional adjustment channel of feature maps. Then, the fused feature maps M4, 
M3, and M2 are extracted by the 3 × 3 convolutional kernel to obtain multiscale feature maps 
P2, P3, P4, and P5. An RPN uses feature map M5 to mine positive and negative candidate anchor 
boxes and calculate anchor boxes corresponding to P2, P3, P4, and P5. ROI Align is used for 
feature sampling on feature maps M2, M3, M4, and M5 to obtain feature vectors of ship targets 

Fig. 9.	 (Color online) Spatial AM module.
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of different scales. Through the fully connected (FC) neural network, the object features of 
different scales are supervised for object classification and bounding box regression. The 
candidate boxes with high confidence values are selected and the object detection anchor boxes 
are obtained by non-maximum suppression (NMS).

4.	 Experiments and Analysis

4.1	 Dataset construction

	 Figure 12 shows the flow of the dataset construction. We first downloaded 25 raw nighttime 
remote sensing images generated by Luojia 1-01 (http://59.175.109.173:8888/), then stretched 
them reversely to their original radiance as discussed earlier. The average scale of these images 
was about 2900 × 2300, making them unsuitable for training; thus, we clipped them to a size of  
416 × 416. After eliminating small images that only contained land or had no visible ship targets, 

Fig. 10.	 (Color online) Structure of FPN.

Fig. 11.	 (Color online) Structure of SEAFF network.
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we obtained 300 clipped images. Since the pixel values of these clipped images can reach 104, 
we also normalized them to make them suitable for our experiments. Then, we adopted the 
common techniques introduced above for data augmentation and obtained 2700 images by 
combining the clipped images with images generated by CycleGAN to give a total of 3000 
images. To study the influence of different image sizes on nighttime ship target detection, we 
expanded the 416 × 416 images to 624 × 624 and 832 × 832 and divided every dataset into 
training, test, and validation sets with the ratio of 8:1:1. Finally, we constructed the three datasets 
in COCO format.

4.2	 Setup and training details

	 In the experiments, we used an Intel Corei9-9900k@3.60 GHz CPU with an NVIDIA 
GeForce RTX 2080Ti 11 GB CPU and 64 GB RAM. We used a PyTorch deep learning 
framework to carry out the experiments. Table 4 shows the details of the training.

4.3	 Assessment metrics

	 Commonly used metrics for object detection are the precision–recall (PR) curve and average 
precision (AP). A drawback of the P–R curve is that it can be affected by the proportion of 
positive and negative samples; thus, we adopted AP to assess experimental results. By plotting 
the recall rate as the abscissa and precision rate as the ordinate, AP is calculated as the area 
under the curve. Precision P and recall R are calculated as

	 100%TPP
TP FP

= ×
+

,	 (10)

	 100%TPR
TP FN

= ×
+

,	 (11)

Fig. 12.	 Flow of dataset construction.
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where TP is the number of positive samples correctly classified, FP is the number of samples 
incorrectly classified as positive, and FN is the number of samples incorrectly classified as 
negative.
	 In our experiments, we adopted Intersection over Union (IOU) as the threshold for defining 
positive and negative samples of nighttime ship targets. IOU is defined as

	
 

 

pred gt

pred gt

A A
IOU

A A
∩

=
∪

,	 (12)

where Apred and Agt are the areas of the predicted bounding box and ground-truth bounding box, 
respectively.
	 AP@0.50 and AP@0.75 denote the AP values when IOU is set to 0.5 and 0.75, respectively, 
and AP@0.50:0.95 indicates the average value of 10 AP values obtained with IOU increased 
from 0.5 to 0.95 in steps of 0.05.

4.4	 SE experiment

	 To study the effect of expanding the image on nighttime ship target detection, we expanded 
the original images from 416 × 416 to 624 × 624 and 832 × 832, then used the SEAFF network to 
train the three datasets. Table 5 shows the experimental results for the three indicators for 
different image sizes. The best results were obtained when the images were expanded to 624 × 
624. We believe that excessive image expansion is not conductive to separating targets from the 
background and causes the original features of ship targets to be lost, resulting in reduced 
detection performance.

4.5	 Ablation experiment

	 To observe how each module affects the experimental results, we also conducted ablation 
experiments. Table 6 shows the values of the three indicators obtained in the ablation 
experiments. Table 6 shows that when the network lacks the SE module, AP@0.50, AP@0.75, 
and AP@0.50:0.95 decrease by 0.026, 0.024, and 0.034, respectively, and the accuracy of the 
network decreases significantly. When the network lacks the FPN module, the three indicators 

Table 4
Details of training in experiments.
Experiment Learning rate Momentum Weight decay Batch size
SE experiment 0.0025

0.9

0.0001 16
Ablation experiment 0.0025 0.0001 16

Network contrast 
experiment

SSD 0.00002 0.0005 64
YOLOv3 0.0001 0.0005 64
Faster R-CNN 0.0025 0.0001 16
SEAFF 0.0025 0.0001 16



Sensors and Materials, Vol. 34, No. 12 (2022)	 4535

decrease by 0.011, 0.013, and 0.019. Although the average decrease of the three indicators is 
about 0.014, the FPN module greatly improves the detection performance of nighttime ship 
targets at multiple scales. When the network lacks the AM module, the three indicators decrease 
by 0.028, 0.029, and 0.046. In complex nighttime backgrounds, the AM module helps filter out 
complex light sources such as coastal light and the light reflected by seawater, thus greatly 
increasing the accuracy.
	 We selected images that were affected by light reflected from seawater to study the 
performance of each component as shown in Fig. 13. Weak and small nighttime ship targets were 
often missed without the SE module. The FPN module improved the accuracy of our network at 
multiple scales. Meanwhile, the AM module made our network less susceptible to complex 
backgrounds. With the AM module, the nighttime ship targets surrounded by light reflected 
from the seawater could also be detected. Nevertheless, some targets were missed by our 
network, as can be seen by comparison with the ground truth of the result of the SEAFF 
experiment.

4.6	 Comparison experiment

	 To further verify the performance of the SEAFF network, we conducted experiments with 
the mainstream SSD, YOLOv3, and Faster R-CNN networks. It can be seen from Table 7 that 
SEAFF had the highest values of AP@0.50, AP@0.75, and AP@0.50:0.95, which were 0.032, 
0.048, and 0.029 higher than those for Faster R-CNN, respectively. Figure 14 shows results of 
150 iterations for the different networks. AP@0.50 stabilized after 15 rounds of iteration for all 
networks. Both AP@0.75 and AP@0.50:0.95 converged most slowly for SEAFF. This is 
considered to be because of the characteristic of the SEAFF network: it first performs an 
approximate detection of ship targets, then focuses on fine detection with the aim of improving 
the accuracy. Overall, the SEAFF network strengthens the structure of the network to enhance 
the learning of ship features, improves the detection performance of nighttime ship targets, and 
improves the detection accuracy.

Table 5
Values of three indicators in SE experiments.
Image size AP@0.50 AP@0.75 AP@0.50:0.95
416 × 416 0.913 0.330 0.432
624 × 624 0.939 0.354 0.466
832 × 832 0.901 0.327 0.425

Table 6
Values of three indicators in ablation experiments.

SE FPN AM AP@0.50 AP@0.75 AP@0.50:0.95
A × √ √ 0.913 0.330 0.432
B √ × √ 0.928 0.341 0.447
C √ √ × 0.911 0.325 0.420
SEAFF √ √ √ 0.939 0.354 0.466
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Table 7
Values of three indicators in comparative experiments.
Network AP@0.50 AP@0.75 AP@0.50:0.95
SSD 0.832 0.175 0.343
YOLOv3 0.904 0.272 0.436
Faster R-CNN 0.907 0.306 0.437
SEAFF 0.939 0.354 0.466

Fig. 13.	 (Color online) Comparison of ablation experiments. (a) Ground truth, (b) result of experiment A, (c) result 
of experiment B, (d) result of experiment C, and (e) result of SEAFF experiment.

Fig. 14.	 (Color online) Results of 150. (a) Results for AP@0.5, (b) Results for AP@0.75, and (c) Results for 
AP@0.5:0.95. 

	 Figure 15 shows a comparison of the results for different networks for nighttime ship targets. 
By comparison with the ground truth, it was found that all four networks can detect nighttime 
ship targets. Among them, SSD has many false detections, with most light sources identified as 
ship targets. YOLOv5, Faster R-CNN, and SEAFF have much fewer false detections but still fail 
to detect ship targets, especially when the density of nighttime ship targets is high. Overall, the 
SEAFF network strengthens the learning of features of nighttime ship targets and improves the 
detection accuracy of nighttime ship targets.

4.7	 Discussion

	 Through the results of SE, ablation, and comparison experiments, we concluded the 
following: (1) When there are many weak and small nighttime ship targets, the SE module 
enlarges the pixel size of ship targets to make them easier to detect. (2) The FPN module 

(a) (b) (c) (d) (e)

(a) (b) (c)
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markedly improves the detection performance of nighttime ship targets at multiple scales. (3) 
The AM is beneficial for eliminating the influence of a complex background. The SEAFF 
network integrating the SE, FPN, and AM modules had the highest performance in comparative 
experiments. However, in the case of dense nighttime ship targets, some ship targets remain 
undetected. Moreover, for weak and small ship targets in complex nighttime scenes, the SEAFF 
network is still insufficient.

5.	 Conclusions

	 Owing to the high cost of object detection and its difficulty in a large region, we applied deep 
learning methods to verify the feasibility of detecting nighttime ship targets. Starting with a 
dataset of original nighttime images generated by the Luojia 1-01 remote sensing satellite, we 
augmented the dataset by implementing common data augmentation techniques and modified 
CycleGAN. Then, we conducted experiments on several mainstream networks. The experimental 
results verified the feasibility of deep learning methods for detecting nighttime ship targets. 
Then, we constructed the SEAFF network, with SE, AM, and FPN modules integrated into 
Faster R-CNN, and conducted experiments. The experimental results showed that SEAFF has 
superior detection performance to mainstream networks such as SSD, YOLOv3, and Faster 
R-CNN. In the future, we plan to combine multiple remote sensing images for joint detection to 
improve the overall discrimination accuracy of nighttime ship targets.

Fig. 15.	 (Color online) Comparison of results for different detection networks. (a) Ground truth, (b) SSD, (c) 
YOLOv3, (d) Faster R-CNN, and (e) SEAFF.

(a) (b) (c) (d) (e)
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