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 The water body on the earth’s surface is an important element of the environmental 
ecosystem. Floating matter, suspended matter, and dissolved matter negatively affect most 
traditional methods used to extract water body information from remotely sensed images. As a 
result, extracting water body information with high precision from a wide range from remote 
sensing images that contain complex ground-based objects has proved difficult. In this study, we 
proposed a method of extracting water body information from a remote sensing image that 
considers the wetness of ground-based objects, and we carried out threshold value selection 
using the Otsu method and post-processing supported by mathematical morphology. Hangzhou 
Bay, which is rich in inland water resources and marine resources, was selected as the study 
area. The results obtained from a Landsat 8 Operational Land Imager (OLI) image show that the 
contours and spatial extent of the water extracted by the method are highly consistent, with 
reduced effects of floating matter, suspended matter, and dissolved matter; the producer’s 
accuracy and user’s accuracy are 0.9706 and 0.9572, respectively. Overall, the proposed method 
can provide technical support for the accurate extraction of water body information, which is of 
great significance for the scientific management of water resources.
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1. Introduction

 Water serves as an important resource related to human survival and economic 
development.(1–4) Whether water is treated as an environmental factor, as a resource, or as a 
cause of flood disasters, the monitoring and investigation of the nature of water bodies have 
great significance in the use of natural resources;(5,6) in land use planning, in the development 
and protection of the environment; and in flood protection and mitigation.(7,8) Remote sensing 
satellite observations can effectively overcome the limitations that may be encountered in 
ground mapping, with the graphics of the landscape recorded numerically and processed by 
computers.(9–11) Remote sensing satellite images cover the entire earth with high-resolution and 
multiple phases; can accurately record rivers, lakes, coastlines, tidal conditions, and related 
ground information; and allow scientists to determine the range of a water body quickly and 
accurately.(12–18) Remote sensing is cheaper than field-survey-based methods, and remotely 
sensed images provide many economic and social benefits.(19,20)

 Since the 1970s, scientists have conducted a considerable amount of research on the extraction 
of boundaries between water bodies and other ground-based objects.(21,22) From the earliest 
attempts at edge detection and threshold segmentation to the application of deep learning, 
methods of extracting water body information have been continuously developing over 
time.(23,24) The methods used to extract water body information from remote sensing imagery 
can be divided into three categories: the single-band threshold method, the inter-spectral-
relationship-based method, and the water-index-based method.(19,25–28) The single-band 
threshold method was an early commonly used method. When using a single band of a remote 
sensing image, the reflectivity of water significantly differs from that of other features, and the 
water body information can be automatically extracted by setting a threshold. The process of 
extracting water bodies using the single-band threshold method is relatively simple, and the 
effects of extracting local water body information are clearly visible. Nevertheless, dense 
vegetation, mountain shadows, and the water spectrum cannot always be correctly distinguished, 
and small water bodies cannot be extracted using this method.(29,30) The inter-spectral-
relationship-based method extracts water bodies by searching for the difference between the 
characteristics of the spectral curve of water and other features. This method can extract water 
bodies as well as distinguish water from shadows, making it suitable for the extraction of water 
bodies in mountain plateaus.(19,31) This method can also extract the wider part of lakes, larger 
rivers, and smaller rivers on plains, but a phenomenon known as staggered buildings can create 
problems. However, a threshold can be used to determine the conditions for the extraction of 
water bodies from small rivers and those from large urban areas.(32,33) In addition to buildings, 
this method is also affected by clouds. The water-index-based method is performed by processing 
the normalized difference in specific wavelength between ground-based objects to highlight 
water body information in remote sensing images.(3,34,35) The method is very precise, has wide 
applicability, is simple to operate, and is currently the most widely used and developed method.
(36) It can effectively eliminate shadow pixels and improve the accuracy of shadow extraction or 
of other dark surface areas; however, the reflective surfaces of urban areas, such as ice, snow, 
and reflective roofs, may be accidentally classified as water.(37,38)



Sensors and Materials, Vol. 34, No. 12 (2022) 4327

 Because the traditional methods discussed above are affected by floating matter, suspended 
matter, and dissolved matter, it is difficult to extract water bodies with high precision from a 
wide range of remote sensing images with a complex geographical environment. Toward solving 
the above problems, we propose a new method of extracting water body information that 
considers the wetness of ground-based objects. This method is based on the superiority of the 
tasseled cap transformation (TCT) used in representing the water content of ground-based 
objects and is combined with threshold value selection by the Otsu method and post-processing 
supported by mathematical morphology.

2. Methodology

 The overall workflow of the proposed method for extracting water body information from 
remote sensing images is shown in Fig. 1, which can be divided into five steps: (a) pre-
processing, (b) TCT, (c) the initial extraction of water body information, (d) the final extraction 
of water body information, and (e) accuracy assessment.

2.1 Pre-processing

 The pre-processing of remote sensing images makes them easily identifiable and interpretable 
for a particular application. As pre-processing, the digital numbers (DN) in the pixel gray values 
without physical meaning were converted to top of atmosphere (TOA) reflectance with a clear 
physical meaning via calibration parameters. 

2.2	 TCT	of	Landsat	8	OLI	TOA	reflectance	data

 The TCT, also known as the Kauth–Thomas transformation, was first reported in 1976. It 
uses the maximum segment size data to study the growth of crops and vegetation, with four 
bands used in the analysis of the maximum segment size.(39–41) In a 4D space, the spectral data 
points of vegetation are regularly distributed, forming a hatlike shape, giving the TCT its 
name.(42,43)

Fig. 1. (Color online) Flowchart of the proposed method.
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 The TCT has been widely used in remote sensing. It can compress multi-spectral data into a 
few bands that can be directly linked to physical scene characteristics that are easily understood.
(42-44) However, the TCT is sensor-dependent and affected by seasonal changes, and its 
availability varies with the geographic location.(44,45) Table 1 shows the TCT coefficients of 
reflectance data for Landsat 8 OLI TOA.(44,46) Band 1 (0.43−0.45 μm) and band 9 (1.36−1.38 μm) 
of Landsat 8 OLI were not used in the derivation of the TCT coefficients because they are used 
to detect aerosol and cirrus and provide very little information on land use and land cover.(46) 
 For satellite remote sensing imagery, a TCT can compress a multi-spectral image into a sum 
of a set of components, each of which corresponds to a weighted index. The weighted index can 
reflect each pixel in the original multi-spectral image. The TCT is as follows:(43)

 y = cx + a, (1)

where y is the component in the multi-spectral space after the transformation, x is the Landsat 8 
OLI TOA reflectance data, c is the transformation coefficient for Landsat 8 OLI sensors, which 
is related to the sensors onboard a satellite, and a is a constant used to avoid negative values.

2.3 Initial extraction of water body information based on Otsu method

2.3.1 Selection of threshold value based on Otsu method from wetness component

 The Otsu method is a nonparametric and unsupervised method of automatic threshold 
selection for image segmentation, which usually has a clear border and a uniform internal 
spectrum.(47,48) In the Otsu method, the threshold k is selected from a gray level histogram ([1, 2, 
…, L]) to extract objects (C0) from their background (C1). All gray level histograms are assessed 
to select the optimal threshold to maximize the between-class variance.(49) The discriminant 
criterion (between-class variance) is(47)

 2 2 2
0 0 1 1( ) ( )T Tσ ω µ µ ω µ µ= − + − , (2)

where μ0, μ1, and μT are the means of class C0, class C1, and the original image, and ω0 and ω1 
are the probabilities of the occurrences of class C0 and C1, respectively.
 According to the basic principle of the TCT, objects with a high water content, such as rivers, 
lakes, and oceans, have bright colors, while objects with a low water content, such as buildings, 

Table 1
TCT coefficients for Landsat 8 OLI TOA reflectance data.
Band Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
TCT (Blue) (Green) (Red) (NIR) (SWIR 1) (SWIR 2)

Landsat 8

Brightness 0.3029 0.2786 0.4733 0.5599 0.5080 0.1872
Greenness −0.2941 −0.2430 −0.5424 0.7276 0.0713 −0.1608
Wetness 0.1511 0.1973 0.3283 0.3407 −0.7117 −0.4559
Yellowness −0.8239 0.0849 0.4396 −0.0580 0.2013 −0.2773
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roads, and vegetation, have dark colors. Once the appropriate threshold is selected, a binary 
image of water can be generated with water assigned a value of 1 and other objects assigned a 
value of 0, allowing the easy identification of water.

2.3.2 Extraction of initial water body information

 The initial water body information was extracted with the formula
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where Iwater is the initial water body information, Iwetness is the wetness component after the 
TCT, and Twetness is the threshold value selected from the wetness component using the Otsu 
method.

2.4 Final extraction of water body information based on mathematical morphology

 The initial water body information involves both the ocean and high-water-content objects 
such as lakes and rivers. Ships can create holes in initial water body information, and the fact 
that different objects have the same spectrum leads to some misextraction, which is represented 
by small plaques. To determine the water body information more accurately, the water bodies 
surrounded by land (e.g., lakes and rivers) must be post-processed. Considering the differences 
between lake, river, hole, and misextracted water body information, the mathematical 
morphology of the initial water body information was used as a tool.
 Mathematical morphology is a mathematical tool for image analysis according to 
morphology.(50,51) As a branch of image interpretation, mathematical morphology was 
established on the basis of the integral geometry work of Metheron and Serra at Mines Paris 
Tech, France, in 1964.(52,53) Its basic idea is to use certain structuring elements to measure and 
extract the corresponding shapes or objects in images to realize visual interpretation and target 
recognition.(54,55) This method has been widely used in image processing, pattern recognition, 
and computer vision.(56,57) There are four basic operations in mathematical morphology analysis: 
erosion, dilation, opening, and closing. Using the external filtering function, dilation can fill the 
smaller (compared with the size of structuring elements) gaps in images and smooth an object’s 
outline.(58,59) Using the internal filtering function, erosion can eliminate the small fragments in 
an image and shrink the image.(60–62) Opening can smooth the image, eliminating tiny objects at 
the edge such as “burrs,” or remove the isolated pixels or blocks in an image. Closing has the 
effect of image filtering, filling up small holes and gaps in an image and filtering nearby objects 
with a smoothed boundary. These four basic operations can be combined in different ways to 
generate new operations for morphology analysis.
 In this study, we used opening and closing with circular structuring elements for post-
processing and obtaining final water body information. According to the basic principle of 
mathematical morphology, the opening operation removes the misextracted plaques caused by 
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different objects having the same spectrum, and closing can fill up the holes caused by ships. 
The method provided the final water body information with high accuracy, avoiding any changes 
to the original boundaries of the water.

2.5 Accuracy assessment

 The accuracy was assessed qualitatively and quantitatively.(63,64) By definition, qualitative 
evaluation is the assessment of an image produced by visual observation with the support of 
feature knowledge.(56,65,66) Quantitative evaluation is the assessment of an image using statistical 
parameters and is generally based on two factors: non-positional and positional accuracies.(56,67) 
We mainly conducted qualitative evaluation on two factors: location and shape. For the positional 
accuracy, we calculated the producer’s accuracy (PA), user’s accuracy (UA), errors of omission 
(OE), and errors of commission (CE) from the extraction and reference results. For the non-
positional accuracy, we calculated the lengths of the coastline in the resulting images and 
compared them with the length of the real coastline.
 The PA is the accuracy of a map from the viewpoint of the mapmaker (the producer).(42,43,56) 
It indicates how often the physical features on the ground are correctly shown on the classified 
map or the probability that a certain area on the ground is classified as a given land cover. The 
UA is the accuracy from the viewpoint of the map user (not the mapmaker). The UA reflects how 
often the features on a map are actually present on the ground and is referred to as the reliability. 
The equations for the PA and UA are
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where η1 and η2 are the PA and UA, and o and o’ are the reference data obtained by visual 
interpretation for a type of surface feature and the data extracted for that type of surface feature, 
respectively.
 Errors of omission refer to the reference sites omitted from the correct class in the classified 
map.(42,43,56) The errors of omission and commission complement the PA and UA, respectively. 
The equations for these errors are
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where η3 and η4 are the errors of omission and commission, and η1 and η2 are the PA and UA 
calculated using Eq. (4), respectively.



Sensors and Materials, Vol. 34, No. 12 (2022) 4331

3. Study Area and Data

3.1 Study area

 Hangzhou Bay was selected as the study area to verify the validity and applicability of the 
proposed method. Hangzhou Bay is located in the northeast of Zhejiang Province, China, where 
the Qiantang River flows into the East China Sea. It is one of the world’s strongest tidal estuaries 
due to its trumpet shape (Fig. 2).(68,69) Hangzhou Bay is an important part of the Yangtze River 
Delta owing to its geographical location, dense population, concentrated cities, and developed 
industry.(70,71) Since China’s reform and opening up, the Hangzhou Bay area has witnessed rapid 
social and economic developments. It is one of the fastest growing regions in China and has 
brought together a large number of people and economic activities. Hangzhou Bay coastal 
wetland is one of the eight coastal salt marshes in China and has rich biodiversity.(71-74) 
Therefore, it is of great significance to extract water body information as an environmental 
factor for the spatial planning and sustainable development of Hangzhou Bay.

3.2 Data

 Landsat 8 OLI images with a spatial resolution of 30 m were used in this study. Beginning in 
1972, the Landsat series of satellites has provided the longest continuous record of satellite-
based observations.(75–77) As such, Landsat is an invaluable resource for monitoring global 
changes and a primary source of medium-spatial-resolution earth observations used in decision-
making.(77–79) In this study, taking into consideration the imaging time, weather conditions, and 
cloud cover, we obtained Landsat 8 OLI satellite images of the study area on February 27, 2022.

Fig. 2. (Color online) (a) Geographical location and (b) Landsat 8 OLI image of coverage area of Hangzhou Bay, 
China. The Landsat 8 OLI image rank band is composed of near-IR, red, and green bands.

(b)(a)
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4. Results and Analysis

4.1 Water body information extraction from remote sensing images

 A TCT was performed on the Landsat 8 OLI TOA reflectance data to obtain four components, 
brightness, greenness, wetness, and yellowness, using the coefficients in Table 1. The 
components after the TCT are shown in Fig. 3.
 As shown in Fig. 3, the water body shows distribution characteristics different from those of 
vegetation (including dry fields), human-made features (including roads, residential land, and 
industrial land), and shadows (mainly mountain and building shadows). Rivers, lakes, and ocean 
have higher wetness values than other ground objects. The distinction between water and other 
ground objects in the wetness component is greater than that in the other components. 

Fig. 3. TCT components. (a) Brightness component, (b) greenness component, (c) wetness component, and (d) 
yellowness component.

(a) (b)

(c) (d)
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 The wetness component was selected for segmentation and to extract initial water body 
information using the Otsu method. Post-processing was then carried out using mathematical 
morphology to obtain the final water body information.
 The extraction results are shown in Fig. 4.
 As shown in Fig. 4, by visually observing the difference between the extraction results and 
the original remote sensing image, information on water bodies such as rivers, lakes, and ocean 
was extracted accurately. The results have clear boundaries and accurate locations, and can 
effectively remove the effects of dense vegetation, suspended sediment, and ships floating on 
water.

4.2 Accuracy assessment

 Accuracy assessment is an important part of information extraction from remote sensing 
imagery.(16) The boundaries of water bodies were obtained by visual interpretation from high-
resolution imagery, and the PA, UA, OE, and CE were calculated on the basis of visual 
interpretation and the extracted results. The water bodies were obtained by the proposed method 
and compared with the results obtained by four traditional methods, a near-IR (NIR) band-based 
method, a normalized difference vegetation index (NDVI)-based method, a normalized 
difference water index (NDWI)-based method, and a modified normalized difference water 
index (MNDWI)-based method, to perform a quantitative evaluation of the results (Fig. 5).
 Table 2 shows that both the PA and UA of the proposed method are higher than 0.95, and that 
the OE and CE are lower than 0.05; these values are superior to those obtained by the traditional 
methods. This indicates that the water body information extracted using the proposed method is 
consistent with the visual interpretation results and that the proposed method considering the 
wetness of ground-based objects is reliable and accurate.

Fig. 4. (Color online) Water body information extracted using the proposed method. (a) Initial and (b) final water 
body information.

(a) (b)
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(a) (b)

(c) (d)

Fig. 5. (Color online) Water body information extracted using traditional methods. (a) NIR band-based, (b) NDVI-
based, (c) NDWI-based, and (d) NDWI-based methods.

Table 2
Quantitative evaluation of extracted water body information using different methods.
Method Formula and threshold value PA UA OE CE
Proposed method Iwetness > 0.0320 0.9706 0.9572 0.0294 0.0428
NIR band-based method ρNIR < 0.0972 0.8003 0.7922 0.1997 0.2078
NDVI-based method (ρNIR − ρred)/(ρNIR + ρred) < 0 0.8308 0.8235 0.1692 0.1765
NDWI-based method (ρgreen − ρNIR)/(ρgreen + ρNIR) > 0.0888 0.8909 0.8491 0.1091 0.1509
MNDWI-based method (ρgreen − ρNIR)/(ρgreen + ρNIR) > 0.3596 0.9157 0.8782 0.0843 0.1218
Note: ρ is the reflectance of remote sensing imagery; red, green, NIR, and MIR are red, green, NIR, and mid-IR bands, 
respectively; Iwetness is the wetness component obtained by the TCT.
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5. Discussion and Conclusions

 The components obtained by the TCT are associated with the water content of ground-based 
objects. In this study, we developed a method of extracting water body information from remote 
sensing imagery by considering the wetness of ground-based objects to reduce the effects of 
complex geographical environments with, for example, floating matter, suspended matter, and 
dissolved matter. After pre-processing the remote sensing image, the TCT, the initial extraction 
of water body information using the threshold value selected by the Otsu method, and the final 
extraction of water body information supported by mathematical morphology, we extracted the 
water body information accurately. An experiment using a Landsat 8 OLI remote sensing image 
was carried out in Hangzhou Bay, China, to demonstrate and validate this method. Our 
qualitative and quantitative evaluations verified that the proposed method is accurate, valid, and 
practical.
 The proposed method has high precision and is simple to execute. However, a remaining 
problem is that the mixed pixels caused the boundaries of the water body information extracted 
from the remote sensing imagery to be inconsistent with their actual boundaries in the real 
world. Therefore, the development of a mixed-pixel decomposition method to extract the 
boundaries of water body information more accurately is required in a follow-up study.
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