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 With the rapid development of electronics, sensors, wireless communication, networks, and 
software, machine tool (MT) technology has entered a period of intelligentization in industry. 
As a result, experiential knowledge relying on domain experts will gradually be substituted by 
intelligent technology. The accuracy of MTs can be upgraded by reducing the human experience 
effectively. However, when dynamic errors resulting from the motion of MTs induce abnormally 
large composite accuracy errors, the errors must be removed by shutting down the MT or 
handled by periodic preventive maintenance. These processes are time-consuming and costly, 
and shutdown inspections affect a factory’s production cycle and productivity. In this study, an 
accelerometer was integrated with a gyroscope to create an inertial measurement unit used to 
measure the accuracy error in the dynamic behaviors of MTs. The measured vibration signals of 
the acceleration and angular acceleration were processed by the basic mathematical operations 
of filtering and integration, and the subsequent values were merged using the data fusion method 
to remove the information and errors resulting from repeated integrations or cumulative 
frequencies of blended data. Finally, the accuracy errors of the MT and angle value errors were 
obtained with high reliability in this study. In an experiment to validate the accuracy of the 
signal measurement and processing of the constructed inertial measurement unit module, a 
movable table of MTs was tested under compensation error baselines of 15 and 50 μm. In the 
case of 10 mm travel, the positioning value was increased by 5.58 μm under 15 μm testing and 
reduced by 2.34 μm under 50 μm testing. According to the measurement and operation, the 
inertial measurement unit block conformed to the principle of the measuring tool unit being at 
least 0.2–0.5 times the compensation unit, and the validation results matched the target. 

1. Introduction

 With the rapid development of electronics, sensors, wireless communication, networks, and 
software, machine tool (MT) technology has entered a period of intelligentization in industry, in 
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which experiential knowledge depending on domain experts will be gradually substituted by 
intelligent technology. The accuracy of MTs can be upgraded by reducing the human experience 
effectively. However, when dynamic errors resulting from the motion of MTs induce abnormally 
large composite accuracy errors, they must be removed by shutting down the machine or handled 
by periodic preventive maintenance. These processes are time-consuming and costly, and 
shutdown inspections affect a factory’s production cycle and productivity.(1,2) 
 The manufacturing industry has experienced rapid increases in labor shortage and labor cost. 
As the concept of smart manufacturing becomes widespread, lights-out production and unstaffed 
factories(3–6) are slowly becoming a trend in the industry. The spirit of Industry 4.0 is connection 
and optimization, linking manufacturing-related elements for optimization to improve the 
competitiveness and profits of businesses. In practice, when the accuracy and reliability of 
machine tools in terms of temperature, vibration, and control fail to meet requirements,(7,8) the 
implementation of lights-out factories will be an issue. The linear axial precision of an MT 
significantly affects the accuracy of manufactured parts. In the working of MTs, faults in the 
linear axial system reduce precision and reproducibility.(9) Vogl et al.(10) mentioned that the 
linear axial system is one of the important subsystems of an MT; when the linear axial system 
degrades, the overall system productivity degrades accordingly. In their study, changes in the 
linear and angular errors of a linear axial system were found using the data of an inclinometer, 
an accelerometer, and a gyroscope. Szipka et al.(11) employed an inertial measurement unit 
(IMU) to evaluate the accuracy failure variations of two linear axes of an MT for MT accuracy 
compensation control, and the measured accuracy error resulted in a linear axial accuracy error 
variation without a double integral, in contrast to the conventional measuring method. 
 The accuracy of an MT is usually obtained through signal processing, and how to obtain the 
best accuracy results is very important. Although different signal processing methods have 
different final accuracy values, most of the multitarget signal processing methods utilize data 
fusion to optimize the signal results. Coraluppi and Carthel(12) proposed the multiple hypothesis 
tracking (MHT) algorithm for multitarget signal tracking problems and used an approximate 
method to validate the final signal processing result. Their result showed that the MHT method 
can directly treat signal problems by target aggregated Kalman filtering to significantly enhance 
the reliability of the signals. However, Rincon et al.(13) indicated that a particle filter is more 
flexible than the Kalman filter, as it can handle the nonlinear dependence and non-Gaussian 
density in dynamic models and noise errors. However, many particles are needed to achieve a 
modest variation in estimation, and the computational cost is decreased. To reduce the 
computational cost of particle filters and enhance the reliability of signals, distributed particle 
filters(14–16) have been extensively used. Coates(15) used a dispersed particle filter to detect the 
surroundings of space models and obtained a nonlinear signal result and non-Gaussian noise. 
Morbee et al.(17) used the Dempster–Shafer theory to construct a 2D view with multiple cameras 
and evaluated the contribution of each camera to the task. Their primary objective was to 
evaluate the effectiveness of fusion hypotheses using the Dempster–Shafer theory. 
 In contrast, most optimal statistical methods require a significant amount of computing, and 
their sophistication typically rises exponentially with the number of objectives. When a particle 
filter is used, multiple target signals can be acquired simultaneously as a combination. However, 
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if multiple target signals are monitored simultaneously, the required number of particles 
increases exponentially. Compared with a particle filter, the distributed data fusion method has 
several advantages in data fusion. Castanedo and coworkers(18,19) used the inherent redundancy 
of distributed systems and found that the complexity of particle filters can be reduced by using 
distributed inference techniques and collaborative calculations. Davenport et al.(20) proposed a 
simple model that could obtain the correlations among the measured values of sensors by 
matching different parameter values. 
 An IMU module for MT equipment accuracy error measurements was built and designed in 
this study. The mathematical operation of the acceleration and angular acceleration in the 
dynamic procedure was combined with data fusion to obtain the displacement and angle values 
with high reliability. The corresponding axial feed rate and optimum bandwidth were fused with 
the spatial frequency so that real-time error identification and self-compensation control 
functions may be developed in the future. 

2. Construction of Experimental Equipment 

2.1 Experimental equipment and IMU system

 In this study, an IMU accuracy measurement module with an accelerometer and a gyroscope 
was built and designed. The sensing elements included chips for the accelerometer, gyroscope, 
microcontroller unit (MCU) control, and power management, which were used to capture and 
analyze the signals. A three-axis vertical computer numerical control (CNC) MT was set up, and 
the IMU measurement module was installed on a moving table. The moving table reciprocated 
backward and forward, and the measured linear acceleration and angular velocity were quickly 
retrieved, as shown in Fig. 1. The measured values were then converted using various functions 
(the acceleration was converted into the displacement, and the angular velocity was converted 

 Fig. 1. (Color online) Three-axis vertical CNC MT and measurement installation.
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into an angle). The high-frequency and low-frequency data were analyzed by fusing the data of 
the corresponding axial feed rate and optimum bandwidth with the spatial frequency to obtain 
the axial displacement and angle. 
 Figure 2 shows the accuracy measurement module, comprising an MCU control board, a 
sensing module board, and an outer casing. The STM32H7 MCU control board used a 480 MHz 
Cortex-M7 kernel, which has the highest efficiency of the ARM Cortex-M series. An additional 
240 MHz Cortex-M4 kernel was used to provide a running frequency of 480 MHz, making it 
suitable for high-speed floating-point operations. 
 According to the design specifications of the STM32H743ZIT6 board, a pin-to-pin abutment 
sensor module board was designed to capture and process signals. This sensor board includes an 
SD card interface that can be inserted into an SD card to store all measurement signals, a three-
axis accelerometer used to capture the vibration signal, a gyroscope, and a differential signal 
analysis IC used to capture the angle error signal. A total of three connectable channels for 
differential signals were maintained, with one connected to a low-frequency high-sensitivity 
SDI 1521 accelerometer. The SD card could reach a reading speed above 32000 Hz during signal 
transmission. Table 1 shows the sensor specifications. 

Fig. 2. (Color online) IMU accuracy measurement module.
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2.2 Research theory

 An IMU measurement module with an accelerometer and a gyroscope was used for accuracy 
error measurements in this study. The acceleration values in the linear axial system motion of an 
MT and the angular velocity of rotation were measured using the accelerometer and gyroscope, 
respectively. Integral computations were used to collect information about the linear system’s 
speed, location, and angular variations. According to Newton’s second law of motion, the value 
estimated using an accelerometer corresponds to a particular force. Thus, the equation of motion 
in the inertial coordinate system (i) can be expressed as

 i i if r G= −�� , (1)

where if  is the specific force vector, ir��  is the particle acceleration vector, and iG  is the 
gravitational acceleration vector. 
 The uniaxial accelerometer system was a second-order dynamic mass–spring–damper 
system expressed as

 ( )xKc x x Gr
m m

x + ⋅ + ⋅ = − −�� � �� , (2)

where c is the damping constant, m is the inertia mass, x is the change in spring length, Kx is the 
spring stiffness coefficient, and r G−��  is the specific force. In this analysis, the gyroscope was 
employed to evaluate the angular velocity of the system. The second-order dynamic system can 
be expressed as a second-order ordinary differential equation:

 0 tbI b k Hθ θ θ Ω+ + =��� ,                      (3)

where I0 is the moment of inertia, b is the damping constant, ktb is the rotational stiffness, θ is 
the angle, and Ω is the angular velocity. 
 The speed signal (primary integral) and displacement (quadratic integral) can be derived 
from integral operations of acceleration signals, and the double integral is expressed as 

Table 1
Sensor specifications.
Sensor Product Bandwidth (Hz) Noise
Accelerometer 1 SDI 1521-002 400 5 (μg/s)/√Hz
Accelerometer 2 AIS328DQ 500 218 (μg/s)/√Hz
Rate gyroscope L3GD30H 50 1.919 (mrad/s)/√Hz
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 ( )
0 0

f x dxd
τ

τ∫ ∫ , (4)

where t  is the time and τ  is the time constant. 

2.3 Research method

 As shown in Fig. 3, data fusion was used to estimate the straightness error. We used the data 
fusion method to decompose the steady-state signal generated by the same geometric defect into 
components of various frequencies, and we reconstructed the original error signal by the 
recombination of signal filters. The operating speed and tracking length ranges of the MT, 
velocities of 40 and 16 mm/s were chosen, and the filter was divided according to the main 
signal frequencies of 20 and 350 Hz obtained by frequency analysis to obtain the geometric error 
that could be most stably detected at different speeds while retaining a consistent spatial 
frequency. The results of this study indicated that the acceleration frequency domain diagrams 
generated at various speeds would have a higher reproducibility in their specific temporal 
frequency blocks. Therefore, the data fusion method could convert the temporal frequency into 

Fig. 3. (Color online) Research method.
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the spatial frequency domain corresponding to the rate of movement, and various signals could 
be merged by frequency filtering without affecting the consistency of the spatial frequency. 
 To evaluate signal reproducibility, according to the operating velocity and tracking length 
ranges of the MT, velocities of 40 and 16 mm/s and two main signal frequencies of 20 and 350 
Hz were selected. The objective was to obtain the most stable geometric error that can be 
detected at different speeds while maintaining a consistent spatial frequency. 

3. Results and Discussion

 To directly display the machine accuracy results to the user, an HTCU11 smartphone with a 
built-in Bosch BMA 253 sensor (G-sensor) was used as the sensing device. The noise processing 
result and reproducibility were better than the results of simply using the sensor with the JN5168 
microcontroller as the core substrate to validate the integrated MAX21105 six-axis IMU sensor. 
At different feed rates, the numerical error reproducibility at a constant high speed (10 m/min) 
and a constant low speed (3 m/min) was higher than 3%, but significant differences were 
observed under different traveling speeds, showing the importance of coordinating the noise 
processing, accelerometer bandwidth, and resolution. 

3.1 Module signal capture

 In this study, data acquisition had to avoid data loss when the moving table was running at a 
high speed. However, when the amount of data increases at a high speed, the computational 
complexity increases and data transmission congestion occurs. Thus, the SD card storage was 
designed as another signal capture channel. The serial port transmission rate of the SD card on 
the module was 10 MB/s and the frequency was 32 kHz during single-channel signal reading. 
The writing activity was monitored via the COM port while writing to the SD card, as shown in 
Fig. 4.
 The USB module connection only provided an external power supply instead of monitoring 
the system; however, the user could identify the system state according to the three IO light 
signals on the board, as shown in Fig. 2. The orange light signaled the need to check whether the 
SD card was correctly installed. The green light indicated the reading state, meaning that the 
system was capturing information. The red light was the error signal; common errors included 
the SD card being full of files or an input error occurring when the memory card was removed 
during reading. In addition, to implement high-speed data acquisition, raw data was chosen to 
input the SD card instead of strings. Therefore, the data in the SD card could not be directly 
opened; rather, it needed to be decoded into comma-separated value (CSV) files for subsequent 
software reading and calculation, as shown in Fig. 5. 
 Plotting the accelerometer measurements in the Z-axis from the CSV data yielded Fig. 6. As 
shown in Fig. 6(a), the two signals had good concurrency, and the low-frequency high-sensitivity 
SDI accelerometer was characterized by low noise and response. The module was placed on the 
MT for reciprocation. Figure 6(b) shows that the general accelerometer had relatively obvious 
noise interference in the constant-acceleration and zero-speed regions, whereas the SDI had a 
relatively good signal-to-noise ratio in these regions. 
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3.2 Signal processing

 The signals corresponding to the reciprocating motion of the IMU module on the MT are 
shown in Fig. 7(a). In the motion axes, the origin of the coordinates was not zero in the stationary 
state, because the signal data were formatted without positive or negative signs, and the sensor 

Fig. 4. (Color online) Measurement signal access by SD card.

Fig. 5. (Color online) Raw data to CSV conversion.
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Fig. 6. (Color online) Comparison of accelerometer signals: (a) comparison between the two accelerometers and 
(b) actual machine test. 

(a)

(b)
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signals were free of zero correction. A stagnant zone was set as zero during zero correction, and 
the entire segment of signals was numerically displaced. An image of the numerical displacement 
is shown in Fig. 7(b); at this time, the stagnant or uniform acceleration zone approached the 
return-to-zero value of the y-axis. Finally, it was necessary to confirm the units of the values 
before the track could be calculated. The x- and y-axes were mapped into the correct format 
according to the sensor acceleration, voltage conversion, and tick frequency, as shown in 
Fig. 7(c). 
 The test stroke included the outbound motion, return motion, and several lengths of rest time. 
When the interval with movement was extracted and calculated during trajectory analysis, the 
accumulated errors in the integral were reduced. The acceleration variation was used as a feature 
value, and the acceleration and deceleration regions were marked. The sensing region of interest 
(ROI) was labeled according to the NC running-in rule and cut out of the original diagram for 
path tracking. Figure 8 shows the cutting process of the table moving from y = 0 to −200 mm, 
including the initial acceleration, followed by motion at a constant speed and deceleration to a 
stationary state. 

Fig. 7. (Color online) Normalized data: (a) original signal, (b) signal origin offset, and (c) converted correct unit. 

(a)

(b)

(c)
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 In the process of signal acquisition using the accelerometer, in addition to the motion signal, 
there are also transient errors caused by the environment noise. The 20 sets of data were 
overlapped to analyze them, and it was found that although the signals of the movement process 
were consistent, there were unstable noise deviations in the segment. As shown in Fig. 9(a), the 
20 sets of data overlap. The signals from the same motion showed consistency but had uncertain 
noise deviations in some zones, which was due to a transient error that did not continuously 
occur in the same motion. To reduce the effect of transient errors on the motion accuracy, the 
signals were overlapped and numerous signals were averaged to reduce the effect of noise 
without reproducibility. Figures 9(b) and 9(c) show the averages of five and 20 sets of data, 
respectively. According to the experiment, the average curve converged after about 20 sets of 
data. In other words, averaging more signals is not helpful for improving the data convergence.

Fig. 8. (Color online) Signal cutting results. 

Fig. 9. (Color online) Transient error: (a) superposed signals, (b) average of five sets of data, and (c) average of 20 
sets of data.

(a)

(b)

(c)
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 In the trajectory operation, the acceleration was integrated with respect to the time unit to 
obtain the velocity diagram and integrated again to obtain the displacement diagram. The 
moving table traveled in the range of y = 0 to 200 mm, and the running velocity was set as 320 
mm/s, 80% of 400 mm/s. Figure 10(a) shows that the velocity in the constant-velocity region was 
about 320 mm/s. Figure 10(b) shows that the final displacement was 200 mm. Displacements of 
10, 100, and 200 mm were tested, and the locations of the final points of the cumulative 
displacement diagrams matched the running-in settings of 10, 100, and 200 mm. 
 The data measured using the gyroscope were the angular velocity, similar to the displacement 
calculated using the accelerometer; however, the angular displacement calculation only required 
one integral. In addition, in the preprocessing signal cutting, when the moving table had a linear 
displacement, the variation in angular velocity was small, making it difficult to find the distance 
of table movement from the variation in angular velocity. Figure 11 shows that the angular 
velocity signal was cut according to the synchronous signals, and the signal measured using the 
accelerometer on the module board changes significantly. The resulting angular displacement 
was obtained from the primary integral of the angular velocity cutting result. Finally, by the 
superposition analysis of the results of multiple angular velocity experiments, we found that the 
numerical variation in angular displacement at the end of the run was 0.0429 mm. The results 
show that the gyroscope on the IMU module can be used for angular positioning. However, a 
lower frequency sensor is required to achieve µm-scale angular displacement longitude 
compensation. An angular velocity meter with differential signal outputs can be used to enhance 
performance in the future. 
 To achieve optimal monitoring accuracy, we discuss the frequency domain distribution 
during running-in. Figure 12 shows the acceleration frequency domain diagram for 80 mm/s 
running-in motion. There were two obvious sets of peak amplitudes at 0–40 and 200–400 Hz. 
From the results of frequency analysis, it was found that for the moving distance of the 

(a)

(b)

Fig. 10. (Color online) Trajectory operation: (a) velocity diagram and (b) displacement diagrams.
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Fig. 11. (Color online) Gyro signal cutting. 

Fig. 12. (Color online) (a) Acceleration and (b) frequency domain diagrams for medium-speed running-in at 80 
mm/s.

(a)

(b)
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Fig. 13. (Color online) (a) Acceleration and (b) frequency domain diagrams for high-speed running-in at 320 mm/s. 

Fig. 14. (Color online) (a) Acceleration and (b) frequency domain diagrams for low-speed running-in at 16 mm/s.

(a)

(b)

(a)

(b)

experiment, the vibration generated by the acceleration was mainly concentrated at 0–40 and 
200–400 Hz. 
 To clarify the relationship between the two frequency bands and the running-in motion, the 
frequency domain diagrams of two other speeds were analyzed, as shown in Figs. 13 and 14. In 
the motion at the higher speed of 320 mm/s (Fig. 13), the amplitude energy was concentrated at 
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0–40 Hz and had high reproducibility, and the amplitude variation at 350 Hz was greatly 
reduced. 
 The frequency domain diagram of the motion at the low speed of 16 mm/s is shown in Fig. 14. 
The amplitude energy was concentrated at 180–400 Hz, and the low-frequency signals almost 
disappeared. The amplitude at 180–400 Hz had a higher reproducibility than the medium-speed 
motion. Therefore, to evaluate the steady-state signals, it was necessary to simultaneously 
observe the low-frequency band (about 20 Hz) of the high-speed motion and the high-frequency 
band (about 350 Hz) of the low-speed motion. 
 The data fusion method was used to evaluate straightness errors in this study. The steady-
state signal generated by a geometric error was subdivided into different elements with various 
frequencies, and the original error signal was then generated by recombining the filtered signals. 
In terms of the spatial frequency, different sensor signals generated the same geometric error in 
adjacent spatial frequency ranges. As mentioned above, the acceleration frequency domain 
diagrams for different speeds had a higher reproducibility in specific temporal frequency blocks. 
Therefore, various signals could be combined by frequency filtering without affecting the 
consistency of the spatial frequency provided that the temporal frequency could be converted 
into the spatial frequency domain corresponding to the moving speed.
 Similarly to when evaluating the signal reproducibility, the operating speeds of the MTs were 
chosen to be 40 and 16 mm/s. The filter was divided according to the main signal frequencies of 
20 and 350 Hz obtained by frequency analysis. Our objective was to obtain the most stable 
geometric error that can be detected at different speeds while maintaining a constant spatial 
frequency, as shown in Fig. 15. 

3.3 IMU module validation 

 In the experiment, the IMU module was placed on the moving table of the MT, the correct 
start of the signal result was tested, and related data were captured. The machine tool makes the 
table move in an axial reciprocating manner by the action commands of the controller; the travel 
distance was 10 mm and the back-and-forth movement was performed 20 times. The traveling 
speeds used to find the reproducibility of the localization accuracy after the movement of the 
moving table were a lower speed of 16 mm/s and a higher speed of 40 mm/s. In the experimental 

Fig. 15. (Color online) Spatial frequency distribution.



4152 Sensors and Materials, Vol. 34, No. 11 (2022)

process, the acceleration signal was directly recorded in the SD card in the IMU module, and the 
experimental positioning information was found by computer calculation. The error value tested 
in the indicated spatial frequency domain was found to have good reproducibility. The moving 
table of the MT was then set up under error baselines of 15 and 50 μm for validation testing and 
compensation. The actual result after the axial accuracy compensation of the movement was 
thus obtained. 
 First, the moving table at a traveling speed of 16 mm/s was tested, and the outward signal was 
recorded. As shown in Fig. 16, the displacement error calculation result was obtained by 
integrating the acceleration signals twice after bandpass filtering at 20–512 Hz. Figure 16(a) 
shows the signals of the reciprocation motion on the moving table; the sampled data were 3,600 
to 6,400 outbound signals, and the acceleration, speed, and displacement were obtained by 
integration. Figure 16(b) shows the displacement of the moving table obtained after integrating 
the experimental signals twice. The displacement was tested 20 times at a traveling speed of 16 
mm/s, and the standard deviation was calculated to verify the high consistency of the 
experimental method. The calculated processing displacement was the displacement variation of 

Fig. 16. (Color online) Low-speed signal measurement results: (a) low-speed reciprocation signal, (b) low-speed 
signal overlay after filtering, and (c) low-speed frequency domain signal.

(a)

(b)

(c)
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Fig. 17. (Color online) High-speed signal measurement results: (a) high-speed reciprocation signal, (b) high-speed 
signal overlay after filtering, and (c) high-speed frequency domain signal.

(a)

(b)

(c)

the short-wavelength zone in the spatial frequency, but the real displacement error caused by the 
mechanical structure was the entire displacement error of the uninterrupted wavelength signals 
encompassing the short-wavelength and long-wavelength zones. Figure 16(c) shows the 
frequency domain signal resulting from filtering the low-speed signals obtained in experiments. 
The calculated cumulative variation was 0.007959 mm and the standard deviation of the 
numerical error was 0.029 μm, demonstrating the high consistency of the IMU module at a low 
speed of 16 mm/s. 
 The moving table at a traveling speed of 40 mm/s was tested, and the outward signal was 
recorded. Figure 17 shows that the error calculation result was obtained by evaluating two 
integrals after bandpass filtering at 20–512 Hz. Figure 17(a) shows the signals of the reciprocation 
on the moving table; the sampled data were 3000 to 6200 outbound signals, and the acceleration, 
speed, and displacement were obtained by integration. Figure 17(b) shows the displacement of 
the moving table resulting from two integral operations of the experimental signals. The 
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displacement was tested 20 times at a traveling speed of 40 mm/s, and the standard deviation 
was calculated to verify the high consistency of the experimental method. The calculated 
processing displacement was the displacement variation of the short-wavelength zone in the 
spatial frequency, but the real displacement error caused by the mechanical structure was the 
entire displacement error of the uninterrupted wavelength signals from the short-wavelength and 
long-wavelength zones. Figure 17(c) shows the frequency domain signal resulting from filtering 
the high-speed signals. The calculated cumulative variation was 9.9325 mm and the standard 
deviation of the numerical error was 5.053 μm, demonstrating the reproducibility of the IMU 
module at a high speed of 40 mm/s. The low-speed and high-speed positioning values were 
added during signal fusion, and the standard deviation of the error was 5.053 μm + 0.0029 μm ≈ 
5.0 μm. 
 A positioning error compensation experiment was performed to validate the measurement 
accuracy of the IMU module. The compensation value was set at 15 and 50 μm by the MT 
controller, and the axial movement of the moving table was set at 10 mm. In the 10 mm axial 
movement, after the measurement of the IMU module and calculation, the correct actual 
physical space and compensation were 10.015 and 10.05 mm, respectively. Table 2 shows the 
measurement results after compensation. The positioning result was 10.0234 μm prior to 
compensation. After 15 and 50 μm positioning compensations, the positioning values were 20.58 
and 47.66 μm, respectively. Comparing these values with 15 and 50 μm, the positioning value 
below 15 μm showed an increase of 5.58 μm, and the positioning value below 50 μm showed a 
reduction of 2.34 μm. The measurement and operation results of the IMU module met the 
requirement that the measuring tool unit must be at least 0.2–0.5 times the compensation unit. 
The validation results therefore achieved the target. 

4. Conclusions

 According to the experimental measurements of the IMU module, the accuracy of the 
positioning error could be controlled at 5 μm/m. However, the geometric error was only tens of 
μm because the acceleration signal was acquired by signal cutting using the thresholds of the 
reciprocating motion and the acceleration variation of the moving axis. Moreover, angular 
velocity signal cutting was defined by the acceleration cutting range. When the acceleration 
signal cutting range differed from the real physical movement, the signal acquisition range of the 
angular velocity accumulated errors. Therefore, the verification result of the geometric error was 
inferior to that of the positioning error. In future studies, the position signals of the MT controller 
should be combined with the acceleration and angular velocity signals to make a signal pattern 

Table 2
Experimental validation results.

Offset (μm) Axial motion velocity (mm/s) Location result
(mm)

Relative offset 
(μm) Error (μm)16 40

0 0.00801 10.01539 10.0234 0 0
15 0.00808 10.0359 10.04398 20.58 5.58
50 0.00811 10.06295 10.07106 47.66 2.34
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that can solve the cumulative error problem of angular velocity and accurately obtain the 
acceleration and angular velocity signals at every position of every controller. By calculating the 
positioning and geometric errors for every position, the ideal geometric error measurement 
accuracy can be achieved. The module can be combined with remote equipment precision 
monitoring and health recording systems in the future to assist autonomous prognoses and 
equipment control.
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