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 Time series data are collected through most of the applications that permeate our lives today. 
Internet of Things (IoT) sensor data are generated through smart applications and stored in 
databases. Time series databases require huge storage spaces, as over time they consume a large 
amount of memory. In this paper, we propose an enhanced compression algorithm for time series 
data generated by IoT systems that monitor the production of electrical energy by solar panels. 
The best way to ensure that solar energy systems have high efficiency is to continuously monitor 
all electrical and environmental factors. However, this requires the collection of enormous 
quantities of data that can be used to detect defects in the generation of electric energy or in solar 
panels. As the data must be available for analysis, a lossless compression algorithm is needed. In 
addition, the compressed data must be in a format that can be queried to perform analysis 
operations dependent on speed; this means that the decompression of data should not be time-
consuming. Our results showed the high speed of the compression process along with good 
compression rate (16.6%) after applying the proposed compression algorithm.

1. Introduction

 Time series data are generated by various applications, such as smart electricity grid 
applications,(1) health-monitoring sensor systems,(2) Internet applications,(3) and Internet of 
Things (IoT) applications.(4–6) These applications require a huge storage capacity to store the 
data to be analyzed later, leading to the need to compress the data. Data compression, in addition 
to saving storage capacity, simplifies the data transfer and enhances the performance of time 
series databases.(7)
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 Compression techniques fall into two main groups: lossless compression and lossy 
compression.(8) Lossless compression is used to retrieve the original data for various 
purposes.(9,10) IoT and Internet applications retrieve data for analysis,(11) making lossless 
compression suitable for these applications. In the case of lossy compression, some data are 
removed during the compression process, making it impossible to recover the original data.(12) 
This technique can be used to compress image, video, and audio files (e.g., JPEG, MPEG-4, and 
MP3 files, respectively). A large set of compression algorithms is used or directed to a specific 
domain. Various publications presenting time series compression algorithms have been reviewed 
with a focus on lossless compression(13) in the context of storing data for use in managing the 
maintenance operations of solar panels.
 The removal of data redundancy is the basis of lossless compression techniques. Several basic 
compression methods for numerical data that are based on more complex methods to deal with 
the exponential growth of data have been developed. One of these methods is delta coding,(14) 
which depends on storing the difference between successive elements inside the data being 
compressed. The delta coding method is suitable for time series data generated by IoT systems 
where the recorded data, for example, temperature data, change slowly.(15) The delta coding 
algorithm was developed by designing the delta-of-delta encoding algorithm based on 
Facebook’s Gorilla time series database.(16) In this case, time stamps are compressed to benefit 
from the fact that most time series are generated at a fixed interval; therefore, a value 
representing only the difference between the time series is recorded in the timestamp column.(16) 
Another method is the Huffman code, a lossless data compression algorithm based on the 
existence of frequencies of data; it is performed by building a Huffman tree.(17) To compress 
float data and overcome the difficulty in using all available bits even after the compression, 
Facebook developed the Exclusive-OR (XOR) compression algorithm.(18) In this algorithm, only 
different bits are stored in the memory, saving a large amount of storage space.
 Pelkonen et al.(19) introduced a compression algorithm based on XOR compression for the 
data generated by monitoring Facebook systems, improving the production query latency by a 
factor of 70. Furthermore, the Sprintz algorithm based on machine learning was introduced to 
compress the time series produced by IoT sensors, aiming at bypassing the memory and latency 
limitations of these devices.(20)

 Deep learning and machine learning methods have been used to compress data in various 
studies. For example, a recurrent neural network that tracks long-term dependences in time 
series was used to compress data.(21) In a study by Li et al.,(22) a method of compressing images 
based on convolutional networks was presented. Another example is the introduction of an 
image compression algorithm using a long short-term memory (LSTM) network to provide 
high-quality images in a minimal storage space.(23) Bidirectional LSTM (Bi-LSTM) has been 
used to compress and extract features from time series data collected from a power grid.(24)

 Monitoring the characteristics of photovoltaics (PV) is crucial for optimization of the 
production process, solar energy reliability, and optimum usage, as well as for the prolonging the 
lifespan of their components, to lower the operation and maintenance costs.(25–27) At the 
Renewable Energy and Energy Efficiency Center (REEEC) of the University of Tabuk, a 
network of wireless sensors was set up to gather big data on electrical and environmental factors 
from solar power plants. On the basis of the above discussion and the need to compress time 
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series data while maintaining the ability to retrieve them or use them in their compressed form, 
we propose an improved compression algorithm for time series data that are automatically stored 
in a database. This algorithm stores data in a format that can be easily used to perform queries 
and analyze the data for maintenance and monitoring operations.

2. Materials and Methods

2.1 Time series data

 Rows of solar panels, inverters, battery banks, and loads are the basic units in a solar energy 
production system. These devices store solar-panel-generated energy. As a result, any damage or 
weakness (e.g., dust accumulation) will result in not only lower production but also the loss of 
operation of an entire row of panels due to their internal connectivity. Their continuous, 
effective, and efficient operation is ensured by monitoring them and taking immediate action in 
the case of failure. The PV solar monitoring system has been designed in order to enable real-
time monitoring by modifying the measurement intervals(1–20 s), set at 5 s in this study. The 
structure data file (SDF) format was used to create the database. SDF files contain a compact 
relational database saved in the structured query language (SQL) server compact format as a 
preliminary step to minimize the data size.
 A wireless sensor network (WSN) based on ZigBee technology was installed to collect data 
on electrical parameters, such as the voltage, current, and power of each solar panel, inverter, 
and battery bank, as well as environmental data, such as the temperature of each solar panel, the 
ambient temperature, the incident irradiance of sunlight, and the humidity of the solar field. The 
WSN was installed at the REEEC site (latitude: 28.38287N; longitude: 36.48396E; elevation: 781 
m), where three identical operating solar systems with a combined capacity of 3 × 3 kW are 
installed. The solar farm comprises 36 (12 × 3 rows) GCL-P6/60265W (1658 × 992 mm2) solar 
panels, each with 60 polycrystalline silicon solar cells with a maximum output of 265 W 
(8.55 A × 31 V). The station has three battery banks with a maximum voltage of 56 V per bank 
(4-series battery × 12 V/200 Ah) and three inverters with 60–115 V/80 A/5 kW capacities each 
(Fig. 1). A block diagram of the architecture of the acquisition devices, including the wireless 
sensors placed throughout the solar plant, is shown in Fig. 2. The measurements were recorded 
by sensors (see Table 1 for specifications) and include solar irradiance, humidity, rain, 
temperature, current, and voltage.
 The output signals from the sensors were captured by the Arduino/Leonardo board with a 
built-in ZigBee socket, which collects and sends all data using the ZigBee WSN distributed 
throughout the monitoring area of the PV subsystems. The physical and medium access control 
layers specified in the Institute of Electrical and Electronics Engineers (IEEE) standard 
802.15.4(28) serve as the foundation for the ZigBee network. A point-to-multipoint WSN (one 
master node to 43 slave nodes; the slave nodes cover 36 PVs, three inverters, three battery banks, 
and one environmental station) was installed using a 900 MHz ZigBee transceiver with TXRX 
modules with a long range (up to 9 miles) and a power of 250 mW. Figure 3 shows the circuits of 
the different WSN nodes. A multi-platform application called XCTU was used to configure, test, 
and simulate the ZigBee modules.
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Table 1
Specifications of the sensors.
Sensor Model Node Specifications

DC current ACS725LLCTR-10AU
PVs

Isolated current sensor
Sensitivity: 264 mV/A
Unidirectional sensing range: 0–10 A
Analog output signal

Temperature NTC-LM393 Temperature sensing range: −25–+80 °C
Analog output signal

DC current ACS758LCB-100B Battery banks

Isolated current sensor
Sensitivity: 0.02 V/A
Bidirectional sensing range: −100–100 A
Analog output signal

DC voltage Voltage divider PVs and battery banks Sensing range: 25–100 V
Analog output signal

Fig. 1. (Color online) REEEC solar system with a total capacity of 9 kW.

Fig. 2. (Color online) Block diagram of the WSN.
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Table 1
(Continued) Specifications of the sensors.
Sensor Model Node Specifications

AC voltage/current PZEM-004T Inverters

Power range: 0–9999 kW
Voltage range: 80–260 VAC
Current range: 0–100 A 
Working frequency: 45–65 Hz
Serial output signal

Pyranometer RK200-03

Environmental

Irradiance range: 0–2000 W/m2

Sensitivity: 7–14 μVW−1m2

Operating temperature: −40–+80 ℃
Wavelength range: 300–3200 nm
Analog output signal

Temperature and 
humidity DHT11

Humidity sensing range: 20–95%
Temperature sensing range: −25–+60 °C
Digital output signal

Fig. 3. (Color online) Circuit photographs of (a) inverter, (b) battery bank, (c) PV panel, and (d) environmental 
nodes.
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 Using the spectrum analyzer tool of XCTU, energy levels between the master node and the 
farthest PV nodes were measured in real time (Fig. 4). These signals were transmitted even at 
sunset when the solar panel’s output was lowest. Several channels used for transmission had 
signal strengths as low as −90 dB, with the lowest acceptable level being −70 dB. In this case, 
the transmitted signals were exposed to noise, which is redundant data and must be excluded. 
Under weather conditions optimal for solar energy output, the minimum power of the same 
channels ranged between −80 and −50 dB, ensuring that no unwanted radio noise was recorded 
(Fig. 5). The interval of the reception periods and the strength of the received signals for the 
farthest and nearest nodes were tested with the received signal strength indicator in the early 
afternoon (measured at 16:20–16:30; irradiance: ~1100 W/m2), late afternoon (measured at 
17:30–18:00; irradiance: ~400 W/m2), and early evening (measured at 18:20–19:00; irradiance: 
<100 W/m2). A huge amount of data was recorded during 8 months from January to the end of 
August 2022, while the strength of signals was measured on 26 August 2022 (Figs. 6 and 7). The 
synchronization between the readings from the farthest and nearest nodes was tested by 
calculating the average data transfer (Figs. 8 and 9).
 The temperature, voltage, and current data from the solar panel were stored in the database 
(Table 2). These data and their changes over time are respectively shown in Figs. 10–12. The 
temperature changed slowly over time, while the voltage and current generated by the solar 
panel changed rapidly. Although the collected dataset was huge, the slow variability of these data 
can be used to improve the compression ratio. The dataset can be divided into three main 
categories: 1) repeated records (identical values) that occur when environmental parameters such 
as temperature and sunlight fluctuate slowly over a short period; 2) consistently trivial readings 

Fig. 4. (Color online) Spectrum analysis of node channels: (a) strong and (b) weak signals.
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Fig. 6. (Color online) Radio range and received signal interval tests of farthest node in (a) late afternoon and (b) 
early evening.

Fig. 5. (Color online) Radio range and received signal interval tests for (a) nearest and (b) farthest nodes in early 
afternoon.
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for current and voltage due to low values close to zero after sunset; and 3) false data caused by 
noise and distortions in the broadcast signals of the wireless transceiver nodes. The latter is an 
uncommon phenomenon and different from changes due to cloudy weather in that it occurs 
suddenly and instantly.

2.2 Measurement of compression quality 

 To measure the performance of the proposed compression algorithm, the compression ratio 
was used and is defined as

Fig. 7. (Color online) Radio range and received signal interval tests of nearest node during (a) late afternoon, (b) 
early evening, and (c) power blackout and dropped mode of nearest ZigBee node.
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Fig. 8. (Color online) Transfer ratio of (a) farthest and (b) nearest nodes during daytime.

Fig. 9. (Color online) Transfer ratio of (a) farthest and (b) nearest nodes at sunset.
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Table 2
Data generated from solar panel.
Time Temperature Voltage Current
1/18/2022 9:10:45 AM 15 31 3
1/18/2022 9:10:50 AM 15 31 3
1/18/2022 9:10:55 AM 15 32 3
1/18/2022 9:11:00 AM 15 31 3
1/18/2022 9:11:05 AM 15 31 3
1/18/2022 9:11:10 AM 15 31 3
1/18/2022 9:11:15 AM 15 31 2
1/18/2022 9:11:20 AM 15 30 2
1/18/2022 9:11:25 AM 15 29 2
1/18/2022 9:11:30 AM 15 28 2

Fig. 10. (Color online) Temperature changes (a) in 1 min and (b) hourly intervals.

(a) (b)

Fig. 11. (Color online) Voltage changes (a) in 1 min and (b) hourly intervals.

(a) (b)
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 In addition, the accuracy of the compressed data was evaluated by retrieving and 
decompressing the data and comparing them with the original data.

2.3 Proposed compression algorithm

 The data collected from the solar panels were stored in a database and automatically 
compressed every 24 h. Thereafter, they were stored in separate tables and not in the original 
table, which is emptied every 24 h after compression. Figure 13 shows the lossless compression 
algorithm that manages the data of electricity production from the solar panel system. To analyze 
the compressed data, they were first decompressed, then retrieved and stored in the original 
table for use.
 Owing to the importance of the data and the need to preserve all the information, lossless 
compression was applied to allow the data to be restored to its original form. The lossless 
compression used in this study required the successful elimination of different forms of data 
redundancy. Overall, the proposed compression algorithm is based on providing a high 
compression rate for the big data generated by IoT devices along with high-speed decompression 
to analyze the data over multiple periods.
 The compression algorithm involved in the data management framework was based on 
redundancy, where temperature, voltage, and current values at close intervals are repeated. The 
proposed algorithm is divided into three phases to compress the data to the maximum extent 
while maintaining the ability to query the data when compressed.
 The first phase is responsible for removing unwanted and outlier data since IoT devices can 
incorrectly record errors. For example, when the values of the electric current generated by the 
solar panels are recorded as zero or do not coincide with the values recorded before or after 

Fig. 12. (Color online) Current changes (a) in 1 min and (b) hourly intervals.

(a) (b)
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them, then they are identified as errors and are removed. Algorithm 1 illustrates this process, 
where the data recorded after sunset are discarded along with the errors.
 The second phase of compression records only the time change between the current record 
and the previous record. As an example, the following four records are presented [date (YYYY/
MM/DD) and time (HH:MM:SS P)]:
X1:2022/01/18; 09:10:44 AM
X2: 2022/01/18; 09:10:49 AM
X3: 2022/01/18; 09:10:54 AM
X4: 2022/01/18; 09:10:59 AM
 Then, they are stored in the database by entering the time difference (measured in s) between 
the readings starting with the second row as follows:
X1: 2022-01-18; 09:10:44 AM
X2: 5
X3: 5
X4: 5
 The data generated after the second phase are significantly compressed, reducing the 
required storage space. This also makes it possible to easily analyze the compressed data without 
decompressing them.
 Finally, the third phase involves the compression of the temperature, voltage, and current data 
by collecting consecutive identical rows of the dataset. Figure 14 shows how the data were 
compressed in the third phase, where the number of consecutive and identical rows was 
calculated so that 11 rows containing a temperature of 15 ⁰C were compressed to one row and 
eight rows containing a temperature of 14 ⁰C were also compressed to one row.
 To decompress the data, the number of iterations and their values in the compressed data 
were extracted, and a number of rows corresponding to these values and equal to the number of 
iterations was created and stored. The decompression algorithm is described in Algorithm 2, 

Fig. 13. (Color online) Compression algorithm.
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Fig. 14. (Color online) Compressed temperature data.

Algorithm 1
Time series compression.
 Input:  List of Rows Ts (Contain the time series), D = Date and Time, T = Temperature, C = Current,  

V = Voltage
Phase 1

1 Removing Unwanted and Outlier Data
Phase 2

2 While is not end of Ts
3  Read current Row
4  If current Row = first Row then DateTime = Raw Value
5  else 
6   DateTime = value of change between current and previous Date and Time
7 End  

Phase 3
8 While is not end of Ts
9  Read current Row
10  If current Row = first Row then 
11   Old_D = D; Old_T = T; Old_V = V; Old_C = C
12   countDate = 1,countTemprature = 1, countVoltage = 1, countCurrent = 1
13  End 
14  else 
15   New_D = D; New_T = T; New_V = V; New_C = C
16   CompressData (New_D, Old_D, countDate)
17   CompressData (New_T, Old_T, countTemprature)
18   CompressData (New_V, Old_V, countVoltage)
19   CompressData (New_C, Old_C, countCurrent)
20   Old_D = New_D; Old_T = New_T; Old_V = New_V; Old_C = New_C
21  End 
22 End  
 Function CompressData(First, Second, count)
  If  First=Second then count= count + 1
  Else store count and first values
 End  
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where the data of date and time, temperature, voltage, and current are decompressed and stored 
in a separate table. The decompression process depends solely on the third phase of compression 
of Algorithm 1, as this is sufficient to obtain complete information about the original data to 
apply data analysis.

3. Results and Discussion

 In this section, we discuss the performance of the proposed compression and decompression 
algorithms within the framework of data management in the solar power generation system. Our 
experiments were aimed at measuring the performance of these algorithms and were based on 
data recorded from solar panels for approximately 24 h. 
 Figure 15 illustrates the compression ratio after applying the first phase (removal of unwanted 
and outlier data). The compression ratio was approximately 3:1 resulting in a storage space of 
120 kB with a storage savings rate of 66%.
 The second phase of compression entails representing the date and time fields as time 
intervals to save storage space since they are stored every 5 s. The storage size of the data after 
applying this step is shown in Fig. 16. The compression ratio was approximately 1.3:1 after the 
execution of the second phase, resulting in a storage space of 91 kB with a storage savings rate of 
24%.
 Finally, in the third phase of the compression, successive equal rows are presented as one 
row. A comparison between the storage space before and that after the execution of this phase is 
shown in Fig. 17. The compression rate was 1.5:1, resulting in a storage space of 91 kB with a 
storage savings rate of 33%.
 The first and second phases of compression are time-consuming, while the third phase is 
performed faster (9.25 s). The total time of the compression algorithm executed daily was 40.6 s, 
which is fast. The decompression process for daily data required only 11 s, which is a very short 
time and one that will be sufficient for our needs. In general, the saving in storage space 
amounted to about 83%, which helps users to store data without discarding it. Also, the 
decompression process is very fast and allows the data to be analyzed reliably. The proposed 

Algorithm 2
Time series decompression.
 Input:  List of compressed Data, D Rows (Count, Value), T Rows (Count, Value),  

C Rows (Count, Value), V Rows (Count, Value)
1 DecompressData (DateTime, D)
2 DecompressData (Temperature, T)
3 DecompressData (Voltage, V)
4 DecompressData (Current, C)
 Function DecompressData (Type, Rows)
  While is not end of Rows
   For i = 1 to Rows. Count
    Store Value in Field (Rows. Type)
   End
  End
 End  
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Fig. 15. (Color online) Compression ratio after first phase of compression process.

Fig. 16. (Color online) Compression ratio after second phase of compression process.

Fig. 17. (Color online) Compression ratio after third phase of compression process.
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compression algorithm can be used to compress other time series data, especially those with 
stable values such as blood pressure measurements in intensive care. On the other hand, the 
proposed algorithm does not exhibit good performance in cases of rapidly changing time series 
data.

4. Conclusion

 The compression of time series data obtained from IoT systems is essential, as the resulting 
databases are stored at high rates and used for decision-making. In this study, we proposed an 
algorithm for the compression of data with properties related to an IoT system that monitors 
solar panels and their production levels. This algorithm is used to compress the data daily, 
meaning that the compression process must be fast. Additionally, the data resulting from the 
compression process must be accessible for queries without decompressing them.
 The proposed algorithm is divided into three phases. The first phase removes unwanted and 
outlier data. The second phase arranges date and time data and converts them to values of 
seconds that represent the difference between the current and previous rows, saving a large 
amount of storage space. Finally, the third phase exploits the properties of the data and collects 
them in a single row, further significantly reducing the storage space. It is sufficient to apply the 
decompression algorithm only to the data generated from the third phase of the compression 
algorithm, as the resulting data can be easily processed to perform queries.
 This method reduces the time required to decompress data, especially time series data, which 
usually have a very large volume. The results also showed that the compression ratio after the 
second stage was 16.6%. Also, the daily decompression time was in seconds, and the reverse 
decompression time was less than 30 s for a full day of data.
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