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 The Amazon Basin is the world’s largest flowing basin and plays an important role in the 
global hydrological cycle. We combined 20 years of Gravity Recovery and Climate Experiment 
(GRACE), Swarm, and GRACE Follow-On (GRACE-FO) satellite data to investigate variations 
of the terrestrial water storage (TWS) from April 2002 to December 2021. We also analyzed the 
effects of precipitation, surface temperature, and evapotranspiration on TWS changes. Compared 
with different methods of processing GRACE data, we found that the combined filtering method 
of P4M6 + Gaussian 300 km in GRACE/GRACE-FO data provided the most accurate results. 
The long-term trend of TWS was an increase of approximately 0.23 ± 0.11 cm/a in the Amazon 
Basin, and the central and eastern regions had the highest increase rate, whereas the southeastern 
region showed a decreasing trend. In the last 20 years, maximum TWS variations occurred in 
April and minimum TWS variations occurred in October. In spring, the TWS in the Amazon 
Basin changes considerably from north to south (increasing in the north and decreasing in the 
south), opposite to that in winter. In the Amazon Basin, precipitation and surface temperature 
are the important factors affecting the TWS changes, unlike evapotranspiration. In October 
2020, the anomalous decreases in TWS changes correlate with insufficient precipitation and 
rising surface temperatures, which results in a drought.

1. Introduction

 Terrestrial water storage (TWS), which includes groundwater, snow and ice, soil moisture 
and permafrost, surface water, and wet biomass (canopy), plays a key role in water resource 
management and land–surface processes in the climate system, such as predicting potential 
flood hazards and understanding land–atmosphere energy balance and exchange. Traditional 
methods of monitoring TWS rely on weather stations, tide gauge stations, wells, and other 
carriers. Accuracy is limited owing to varying equipment and observation conditions, which is 
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not conducive to reliable long-term data acquisition. The recent launch of a series of gravity 
satellites has solved this problem, which can make continuous, rapid, and repeated observations, 
and such gravity satellites have become widely used in the field of TWS monitoring.
 Gravity Recovery and Climate Experiment (GRACE) is a twin satellite mission jointly 
sponsored by the National Aeronautics and Space Administration (NASA) and German 
Aerospace Center (DLR). The two identical satellites orbit behind each other in the same orbital 
plane at an approximate distance of 220 km. GRACE uses a K-band ranging system to provide 
precise measurements of the distance change between the two satellites. Each satellite carries a 
Global Positioning System (GPS) receiver of geodetic quality and high-accuracy accelerometers 
to enable accurate orbit determination, the spatial registration of gravity data, and the estimation 
of gravity field models. Since its launch in March 2002, GRACE has provided global 
measurements of gravity change with unprecedented accuracy at approximately monthly 
intervals. GRACE has also provided a unique opportunity to monitor TWS changes in the 
Amazon Basin, including interannual and long-term changes (see, for example, Refs. 1–8), but 
the GRACE mission ended in June 2017.
 To continue the data acquisition, GRACE Follow-On (GRACE-FO) was launched in May 
2018 and has continued to monitor global gravity field variations. The two GRACE-FO satellites 
use the same type of microwave ranging system as GRACE. However, GRACE-FO also carries 
something new: a laser ranging interferometer (LRI). GRACE-FO’s interferometer detects 
changes at a distance more than 10 times smaller than what a microwave instrument detects. 
However, there is a gap of almost one year between the end of the GRACE mission and the 
successful launch of GRACE-FO, and studies on TWS changes in the Amazon Basin during this 
gap are few. Lück et al. used GRACE and Swarm data to invert the Amazon Basin mass 
changes, and found that the Swarm results are similar to the GRACE results, but with more 
pronounced noise.(9) Cui et al. combined GRACE, GRACE-FO, and Swarm satellite data to 
calculate the TWS changes, and found that the linear trend was −0.72 cm/a in the Amazon Basin 
from December 2013 to May 2020.(10) Xiang et al. combined GRACE, GRACE-FO, Swarm, and 
Global Land Data Assimilation System (GLDAS) data to invert the TWS changes in the Amazon 
Basin from 2010 to 2020, and found that the drought may intensify after 2015.(11) Li et al. used 
Swarm and GRACE data to estimate TWS changes in the Amazon Basin during the 2015–2016 
drought, and demonstrated the potential of Swarm to replace GRACE in detecting extreme 
drought and flood disasters.(12)

 With the successful launch of the GRACE-FO satellites, observations of monthly gravity 
fields have been accumulated for nearly 20 years. However, the analysis of factors affecting 
TWS changes in the Amazon Basin is still insufficient at present. To ensure the temporal 
continuity of TWS observations and study the latest TWS changes in the Amazon Basin, we 
used the Swarm data to fill the gap between GRACE and GRACE-FO data. We combined 
GRACE, Swarm, and GRACE-FO satellite data to estimate the TWS changes in the Amazon 
Basin over the last 20 years (April 2002–December 2021) and compared the results with the 
GLDAS model. We analyzed the spatial and temporal characteristics of the TWS changes and 
used the Global Precipitation Climatology Project (GPCP) precipitation data, Climatic Research 
Unit Time series (CRU TS) temperature data, and GLDAS evapotranspiration data to further 
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analyze the factors affecting the TWS changes. We also explored the reasons for the 2009 flood 
and 2020 drought disasters in the Amazon Basin. 

2. Observation Data and Processing Methods

2.1 Observation data

 The Amazon Basin is located in the central and eastern regions of South America. It is the 
world’s largest basin (in terms of flow and area), with a total area of approximately 7.05 × 106 
km2, which is approximately 40% of the total area of South America.(4) The Amazon Basin is 
east of the Andes Mountains, extending from the Guyana Plateau in the north to the Brazilian 
Plateau in the south, with high topography in the west, an average elevation of approximately 
4000 m, and low topography in the east.(13) The Amazon Basin is a complex ecosystem 
containing the largest tropical rainforest area in the world and plays an important role in the 
global hydrological cycle and global climate change.(14)

 The GRACE/GRACE-FO data was provided by the Center for Space Research (CSR), 
University of Texas, Austin. In this paper, we used the GRACE RL06 data from April 2002 to 
June 2017 and the GRACE-FO RL06 data from June 2018 to December 2021, and missed 22 
months (namely, June 2002, July 2002, June 2003, January 2011, June 2011, May 2012, October 
2012, March 2013, August 2013, September 2013, February 2014, July 2014, December 2014, 
June 2015, October 2015, November 2015, April 2016, September 2016, October 2016, February 
2017, August 2018, and September 2018). Over the 204-month period, we calculated the average 
spherical harmonic coefficient and then subtracted the average from the monthly data to obtain 
the gravity field anomalies. The coefficients of monthly gravity field were truncated to the 
degree and order of 60. Tidal and non-tidal atmospheric and high-frequency ocean signals were 
removed.(15)

 Swarm data were provided by the Astronomical Institute at the Czech Academy of Sciences 
(ASU). The data were truncated to the degree and order of 40, and covered the period of 
December 2013 to December 2021. Teixeira et al. reported that the accuracy of the geodetic level 
error was consistent with GRACE when the coefficients of Swarm time-variable gravity field 
were below the degree and order of 10.(16) Therefore, we used the first 10 orders of the Swarm 
time-variable gravity field models to calculate the TWS changes in the Amazon Basin.
 The GLDAS model has been jointly developed by the National Aeronautics and Space 
Administration/Goddard Space Flight Center (NASA/GSFC) and the National Oceanic and 
Atmospheric Administration/National Centers for Environmental Prediction (NOAA/NCEP). It 
is a global, high-resolution terrestrial modeling system incorporating ground and satellite 
observations in order to provide optimal simulations of global land surface states and fluxes in 
near real time. The land water storage in the GLDAS model includes soil moisture, snow, and 
canopy water. In this paper, we used the NOAH land surface model with 1° × 1° resolution from 
January 2002 to December 2021. To compare with GRACE, Swarm, and GRACE-FO results, 
the same Gaussian filter and de-striping filter were used to eliminate the error of the GLDAS 
model.
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 To investigate the effect of precipitation on the TWS changes in the Amazon Basin, we used 
precipitation data from the GPCP. The data is based on infrared and microwave satellite data and 
surface rain gauge observations. The GPCP provides global monthly average precipitation data, 
and we used GPCP monthly precipitation data in a 2.5° × 2.5° latitude-longitude grid from April 
2002 to December 2021.
 To investigate the effect of surface temperature on the TWS changes in the Amazon Basin, 
we used surface temperature data from the CRU TS. The CRU TS data was developed by the 
UK’s National Centre for Atmospheric Science (NCAS), including 10 climate variables such as 
temperature, humidity, and cloud cover for the global land surface. We used the monthly surface 
temperature data of CRU TS with a spatial resolution of 0.5° × 0.5° from April 2002 to December 
2020. The self-calibrating Palmer Drought Severity Index (scPDSI) data is also derived from the 
CRU TS, which is a drought index that describes the severity of drought. We used the monthly 
scPDSI data of CRU TS with a spatial resolution of 0.5° × 0.5° from April 2002 to December 
2020.

2.2 Processing methods

 TWS changes can be directly estimated on the basis of gravity coefficient anomalies for each 
month. We used the equivalent water height (EWH) Δhw(θ, λ) to express the TWS(17):
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where θ is the geocentric residual latitude, λ is the geocentric longitude, R is the radius of Earth 
at the equator, ρe is the average density of Earth, l and m are the degree and order of the gravity 
field, respectively, kl is the loading love number, ΔClm and ΔSlm are the variations in the Stokes 
coefficients, and P̀ lm is the normalized Legendre function.
 We have to make a series of corrections to obtain the precise TWS changes. First, the 300 km 
width of the Gaussian filter was used to reduce the errors at high degrees.(18) Then, monthly 
degree 1 coefficients from Swenson et al. were used.(19) Since GRACE is not sensitive to the 
degree 2 and order 0 (C20) coefficients, the C20 coefficients were replaced by Satellite Laser 
Ranging (SLR) solutions.(20) The ICE-5G model was used to eliminate the effects of the glacial 
isostatic adjustment on the estimation results.(21) Although Gaussian filtering can reduce the 
high-order spherical harmonic coefficient noise, it cannot eliminate the effect of the systematic 
correlation error. Swenson and Wahr proposed the polynomial fit method to eliminate the 
systematic correlation error, called Swenson filtering.(22) Duan et al. proposed a refined 
approach for choosing parameters of decorrelation filtering, called Duan filtering.(23) 
Chen et al.(24) and Chambers and Bonin(25) proposed the PnMl decorrelation filtering method.
 We calculated the TWS changes in the Amazon Basin over the most recent 20 years and 
analyzed the effects of different filtering methods. The results are shown in Table 1. The root 
mean square error (RMSE) obtained using a P4M6 + Gauss 300 km combined filtering method 
was 6.81 cm, which was the smallest RMSE among the four combined filtering methods. The 
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TWS changes in autumn 2006 with different methods of processing GRACE data are shown in 
Fig. 1. As shown in Fig. 1, the results obtained using the P4M6 + Gauss 300 km combined 
filtering method were the most consistent with the GLDAS results. Therefore, the P4M6 + Gauss 
300 km combined filter was used to process the GRACE/GRACE-FO data in subsequent 
analyses.
 To analyze the effects of precipitation, surface temperature, and evapotranspiration on TWS 
changes, we used Pearson correlation coefficients to describe the correlation between the two 
variables x and y. The Pearson correlation coefficient r is calculated using the formulas shown 
below. A strong correlation means that the absolute value of the correlation coefficient is greater 
than 0.6, a weak correlation means that the absolute value of the correlation coefficient is less 
than 0.4, and a moderate correlation means that the absolute value of the correlation coefficient 
is between 0.4 and 0.6.

Table 1
Statistical results of TWS changes obtained with different filtering methods.
Model and filtering method Max (cm) Min (cm) RMSE (cm)
GLDAS 10.66 −13.02 —
Swenson + Gauss 300 km 22.76 −20.86 7.02
Duan + Gauss 300 km 23.14 −22.31 7.46
P4M6 + Gauss 300 km 23.04 −20.48 6.81
P4M15 + Gauss 300 km 22.79 −20.98 6.96

Fig. 1. (Color online) TWS changes (in cm of equivalent water height) in the Amazon Basin in autumn 2006.
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3. Results and Discussion

3.1 Secular variations of TWS

 We used the GRACE (April 2002 to June 2017), Swarm (July 2017 to May 2018), and 
GRACE-FO (June 2018 to December 2021) data to calculate the time series of the TWS changes 
in the Amazon Basin over the last 20 years, as shown in Fig. 2. In general, the GRACE, Swarm, 
and GRACE-FO results agreed well with the GLDAS results. Conversely, the GRACE/GRACE-
FO results had more prominent amplitudes than the GLDAS results. This is mainly because the 
GLDAS model underestimates data such as groundwater.(26) The GRACE, Swarm, and GRACE-
FO results revealed that the TWS changes in the Amazon Basin over the last 20 years (April 
2002 to December 2021) had an increasing trend at a rate of approximately 0.23 ± 0.11 cm/a.
 The EWHs of TWS changes in the Amazon Basin observed by GRACE were −19.99 cm in 
October 2005 and 23.04 cm in May 2009. These results were consistent with the extreme drought 
in 2005 and the extreme flood in 2009 in the Amazon Basin, respectively, which were discussed 
by Chen and coworkers.(3,4) As observed by GRACE, the EWHs of TWS changes in the Amazon 
Basin were −20.48 cm in October 2010 and 20.53 cm in March 2012, which were consistent with 
the drought peak in October 2010 and the flood peak in March 2012, respectively, as discussed 

Fig. 2. (Color online) Time series of TWS changes based on GRACE, Swarm, GRACE-FO, and GLDAS results in 
the Amazon Basin over the last 20 years.
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by Nie et al.(6) The EWH of TWS changes was −19.95 cm in October 2016, which was consistent 
with the extreme drought in 2016 in the Amazon Basin.(27)

 Further analysis of the spatial variation characteristics of TWS changes in the Amazon Basin 
over the last 20 years is shown in Fig. 3. The TWS changes in the Amazon Basin had an overall 
increasing trend with obvious spatial distribution heterogeneity. Locally, the rate of the TWS 
changes in the western region of the Amazon Basin was close to zero, with no obvious changes 
in relatively stable water storage. The TWS changes increased with a maximum rate of 0.76 cm/a 
in the central and eastern regions and decreased with a minimum rate of −0.84 cm/a in the 
southeastern region. The southeastern region is located in the northern section of Brazil, and the 
decrease may be due to the overextraction of groundwater by humans in agriculture and related 
irrigation activities.(28)

3.2 Seasonal variations of TWS

 To further investigate the seasonal variations of TWS, we used the least square method to fit 
the time series of TWS changes in the Amazon Basin over the last 20 years. The results are 
shown in Table 2. The GRACE/GRACE-FO results show that the annual phase is approximately 
123°, indicating that the maximum TWS changes in the Amazon Basin occur at the end of April, 
whereas the GLDAS model results suggest that the maximum TWS changes occur in the middle 
of April. There is a phase difference of approximately 17 days between the two results. 
Therefore, the GRACE/GRACE-FO observations are relatively lagging. In terms of semiannual 
amplitudes, the GLDAS model results agreed well with the GRACE/GRACE-FO results.
 Figure 4 shows the monthly average TWS changes in the Amazon Basin over the last 20 
years. The difference between the GRACE-FO results and the GLDAS model results is large in 
January, April–July, and October–December, with the variation exceeding 5 cm. The largest 
variation was observed in November (reaching 8.46 cm), which is mainly due to the 
underestimation of GLDAS subsurface water.
 We further analyzed the seasonal spatial patterns of TWS changes in the Amazon Basin by 
using 2006 as an example. As shown in Fig. 5, in spring, the TWS in the Amazon Basin varies 
greatly from north to south, with an increase in the northern region and a decrease in the 

Fig. 3. (Color online) Long-term trend of TWS changes in the Amazon Basin over the last 20 years.



4060 Sensors and Materials, Vol. 34, No. 11 (2022)

southern region. The summer is the season with the least amount of water stored. The TWS 
increases in autumn when compared with summer, with characteristics of low in the northern 
region and high in the southern region. In winter, the TWS is the opposite to that in spring, with 
a decrease in the northern region and an increase in the southern region.

Table 2
Annual and semiannual variations of TWS changes based on different filtering methods in the Amazon Basin from 
April 2002 to December 2021.

Model and filtering method Annual Semiannual
Amplitude (cm) Phase (°) Amplitude (cm) Phase (°)

GLDAS 7.9 105.3 1.0 320.6
Swenson + Gauss 300 km 14.7 123.2 0.6 338.1
Duan + Gauss 300 km 16.1 123.1 0.8 332.9
P4M6 + Gauss 300 km 15.2 122.3 0.7 328.1
P5M12 + Gauss 300 km 15.4 122.7 0.7 332.7

Fig. 4. (Color online) Average monthly TWS changes in the Amazon Basin from April 2002 to December 2021

Fig. 5. (Color online) TWS changes (in cm of equivalent water height) in the Amazon Basin in four seasons of 
2006.
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3.3	 Effects	of	TWS

3.3.1 Precipitation

 To study the factors affecting the TWS changes in the Amazon Basin, the monthly 
precipitation changes were computed by removing the average monthly estimates from January 
2003 to December 2020. We analyzed the correlation between the TWS and GPCP precipitation 
changes in the Amazon Basin, as shown in Fig. 6. The fluctuation patterns of the TWS and 
GPCP precipitation changes in the Amazon Basin are relatively consistent. The TWS changes 
lag behind the precipitation changes by approximately 64 days and have a larger amplitude, 
which is mainly due to the TWS changes observed by GRACE, Swarm, and GRACE-FO 
including the precipitation changes before that month. The correlation coefficient between them 
is 0.57, which suggests a moderate correlation. However, the correlation coefficient between the 
precipitation changes with a lag of two months and the TWS changes is 0.85, showing a strong 
correlation. This result reveals that precipitation is an important factor affecting the TWS 
changes in the Amazon Basin.

3.3.2 Surface temperature

 To investigate the effect of temperature on the TWS changes in the Amazon Basin, the 
monthly surface temperature changes were computed by removing the average monthly 
estimates from January 2003 to December 2020. As shown in Fig. 7, the TWS changes negatively 
correlate with surface temperature changes, with a correlation coefficient of −0.50, which 
suggests that they are moderately negatively correlated, indicating that surface temperature 
affects the TWS changes in the Amazon Basin.

Fig. 6. (Color online) Time series of the monthly TWS and GPCP precipitation changes in the Amazon Basin.
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3.3.3 Evapotranspiration

 To further understand the effect of evapotranspiration on the TWS changes in the Amazon 
Basin, we obtained evapotranspiration changes after removing the average monthly estimates 
from January 2003 to December 2020. As shown in Fig. 8, the TWS changes in the Amazon 
Basin positively correlate with evapotranspiration changes, with a correlation coefficient of 0.29, 
which is a weak correlation, indicating that the relationship between the TWS changes and 
evapotranspiration changes in the Amazon Basin is not significant.

3.4 Drought index

 Water storage deficit (WSD) is the difference between the monthly water storage change and 
the average of the corresponding month. We standardized the time series of WSD data to obtain 
the water storage deficit index (WSDI) as follows:

 , ,i j i j jWSD TWSC TWSC= − , (4)

 WSDWSDI µ
σ
−

= , (5)

where TWSCi,j represents the TWS changes in the i year (2002 ≤ i ≤ 2020) j month (1 ≤ j ≤ 12), 
jTWSC  is the mean deviation of TWS changes in the j month, and μ and σ are the mean and 

standard deviation of the WSD, respectively. When the WSDI is negative and lasts for more than 
three months, drought is considered to occur during that time period. Drought duration equals 
the number of months between the start and end months of the drought. Peak magnitude 
indicates the maximum of monthly WSDI during the drought, and average magnitude indicates 
the monthly average of WSDI during the drought. The drought severity S is as follows:

Fig. 7. (Color online) Time series of the monthly TWS and surface temperature changes in the Amazon Basin.



Sensors and Materials, Vol. 34, No. 11 (2022) 4063

 S M D= × , (6)

where M  is the average magnitude and D is the drought duration.
 We calculated the time series of the monthly WSDI from April 2002 to December 2020. To 
verify the accuracy of the WSDI results, we compared the WSDI results with the scPDSI results. 
As shown in Fig. 9, there is a relatively good agreement between the WSDI and scPDSI results, 
with a correlation coefficient of 0.62. Therefore, it is reliable to use WSDI to detect drought 
events in the Amazon Basin.
 Table 3 shows the drought events detected by WSDI in the Amazon Basin and the 
characteristics of each drought event. The Amazon Basin experienced 10 drought events from 
April 2002 to December 2020 on the basis of the WSDI results. The longest duration was the 
drought that started in November 2009 and lasted 14 months, with an average magnitude of 
−0.60 and a peak magnitude of −1.11. The most severe drought event occurred from December 
2015 to December 2016, with a drought severity of −27.90 and an average magnitude of −2.15. 
The most recent drought event in the Amazon Basin occurred from March 2020 to October 
2020, and the average magnitude was –0.79. In addition, there were numerous minor droughts in 
the Amazon Basin with low severity values or short durations. The previous studies have 
demonstrated the validity of our results (Table 3).

3.5	 Typical	flood	and	drought	disasters	in	the	Amazon	Basin

 In May 2009, TWS changes revealed a maximum of 23.04 cm in the Amazon Basin over the 
last 20 years. GPCP changes showed a continuous and positive rainfall pattern from December 
2008 to May 2009, and reached a maximum of 12.33 cm in March 2009. The CRU showed 
continuous and negative surface temperature changes from December 2008 to July 2009, and 
reached a minimum in January 2009 (−0.60 ℃). From December 2008 to May 2009, the 

Fig. 8. (Color online) Time series of the monthly TWS and evapotranspiration changes in the Amazon Basin.
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anomalous increases in precipitation and decreases in surface temperature led to a flood disaster 
in the Amazon Basin in 2009. Figures 10(a)–10(f) show the TWS changes in the Amazon Basin 
over a two-month interval from September 2008 to July 2009. In September 2008, the TWS in 
the Amazon Basin was below average; by November, the TWS in the southwestern region 
started to increase; in January 2009, the TWS in the southern region was significantly higher 
than the normal level; in March, the flood had developed from the central region to the eastern 
region; in May, the flood peaked mainly in the central and eastern regions, and gradually 
subsided in July.
 In October 2020, TWS changes reached a minimum of −15.98 cm in the Amazon Basin, with 
the GPCP showing continuous negative precipitation changes from June to November 2020, 
reaching a minimum of −9.72 cm in August. The CRU showed positive and continuous increases 
in surface temperature changes from August to October 2020, and reached a maximum of 0.85 
℃ in October. These results indicate that the decrease in TWS in the Amazon Basin in October 
2020 was due to an abnormal decrease in precipitation and a continuous increase in surface 

Fig. 9. (Color online) Time series of the monthly scPDSI and WSDI in the Amazon Basin.

Table 3 
Summary of drought events detected by WSDI in the Amazon Basin.

Drought event Time span Duration 
(months) Peak magnitude Average 

magnitude
Drought 
severity Reference

1 200209–200305 9 –1.84 –1.10 –9.89 5
2 200312–200408 9 –1.11 –0.84 –7.58 10
3 200412–200512 13 –1.64 –0.91 –11.85 3, 5
4 200702–200711 10 –1.18 –0.60 –6.01 10
5 200911–201012 14 –1.11 –0.60 –8.43 4, 5, 6
6 201208–201301 6 –0.43 –0.27 –1.36 10
7 201512–201612 13 –3.55 –2.15 –27.90 11, 12, 27
8 201706–201708 3 –0.75 –0.33 –1.00 29
9 201801–201805 5 –2.05 –1.42 –7.10 29

10 202003–202010 8 –0.79 –0.40 –1.81 11
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temperature, which led to another drought disaster in the Amazon Basin. Figures 11(a)–11(f) 
show the TWS changes in the Amazon basin over two-month intervals from April 2020 to 
February 2021. In April 2020, the TWS in the Amazon Basin was slightly above average; in 
June, the TWS in the southern region started to decrease; in August, the TWS in the central 

Fig. 10. (Color online) Evolution of monthly TWS changes in the Amazon Basin every two months during the 
period from September 2008 to July 2009.

Fig. 11. (Color online) Evolution of monthly TWS changes in the Amazon Basin every two months during the 
period from April 2020 to February 2021.
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region was significantly below the normal level and the drought gradually shifted to the central 
region; in October, the drought mainly peaked in the northeastern region; in December, the 
drought gradually subsided; in February 2021, the TWS increased and the drought ended.

4. Conclusions

 We combined GRACE, Swarm, and GRACE-FO satellite data to investigate the temporal and 
spatial variation characteristics of the TWS changes in the Amazon Basin over the last 20 years 
(April 2002 and December 2021). To verify the results, we compared the TWS changes with the 
GLDAS model. Moreover, we used GPCP precipitation data, CRU TS surface temperature data, 
and GLDAS evapotranspiration data to further analyze the factors affecting the TWS changes in 
the Amazon Basin. We also investigated the reasons for the 2009 flood and 2020 drought 
disasters in the Amazon Basin. The results were obtained as follows.
 We assessed the combined filtering methods of Swenson filtering, Duan filtering, P4M6 
filtering, and P4M15 filtering with Gaussian 300 km. The results that the combined P4M6 + 
Gaussian 300 km filtering provided are most similar to the GLDAS model.
 The linear trend of TWS changes was an increase of approximately 0.23 ± 0.11 cm/a in the 
Amazon Basin, and the central and eastern regions had the highest increase rate, whereas the 
southeastern region showed a decreasing trend. In the last 20 years, maximum TWS variations 
occurred in April and minimum TWS variations occurred in October. In spring, the TWS in the 
Amazon Basin varies greatly from north to south, with an increase in the northern region and a 
decrease in the southern region. The summer is the season with the least amount of water stored. 
In winter, the TWS is the opposite to that in spring, with a decrease in the northern region and an 
increase in the southern region.
 Precipitation and surface temperature are important factors affecting the TWS changes in the 
Amazon Basin. Conversely, the TWS changes have a limited relationship with evapotranspiration. 
The TWS changes observed by GRACE, Swarm, and GRACE-FO lagged behind the 
precipitation changes by approximately 64 days. The correlation coefficient between them was 
0.57, which demonstrates a moderate correlation. However, precipitation changes (with a lag of 
two months) were significantly correlated with the TWS changes, with a correlation coefficient 
of 0.85, indicating that precipitation is an important factor affecting the TWS changes. In 
addition, the TWS changes were negatively correlated with surface temperature changes, with a 
correlation coefficient of −0.50, indicating that surface temperature affects the TWS changes.
 The WSDI results detected 10 drought events in the Amazon Basin from April 2002 to 
December 2020, and the most recent occurred from March 2020 to October 2020. The decrease 
in TWS in October 2020 was related to an abnormal decrease in precipitation and a continuous 
increase in surface temperature, which resulted in a drought disaster in the Amazon Basin.
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