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	 Ground-based synthetic aperture radar (GB-SAR) has a wide range of applications in bridge 
health detection by monitoring dynamic deflection data. However, the collected dynamic 
deflection signals are easily subjected to interference by noises during GB-SAR monitoring due 
to ground motion and complex traffic factors. It is also difficult to accurately eliminate the 
influence of noises by using the traditional modal decomposition method. Therefore, we propose 
a cyclically shifted extreme-point symmetric mode decomposition (CS-ESMD)-based 
progressive denoising approach, which can accurately identify high/low-frequency noise 
information from dynamic deflection signals through a progressive process. First, CS-ESMD is 
used to construct virtual multi-channel signals for the following progressive denoising process. 
Second, ESMD is performed on multi-channel dynamic deflection data to separate useful and 
high-frequency noise information. Finally, the low-frequency noises and the residual high-
frequency noises are further identified and removed by second-order blind identification (SOBI) 
and the fast Fourier transform (FFT) method. Through simulation and practical experiments, we 
show that the accuracy of the progressive denoising method can be increased by 37.2% compared 
with traditional methods, which shows its effectiveness in improving the precision of GB-SAR 
dynamic deflection signals.

1.	 Introduction

	 Dynamic deflection is one of the important indexes for bridge health monitoring. It has 
become a research hotspot for obtaining the dynamic deflection of bridges quickly and 
accurately.(1) Ground-based synthetic aperture radar (GB-SAR) is a novel form of ground 
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microwave interference technology with the advantages of high precision (0.01 mm), high 
sampling frequency (1000 Hz), and overall monitoring.(2,3) It can achieve sub-millimeter-level 
micro-deformation monitoring without contact with the observational target. It can also solve 
many problems of traditional bridge monitoring technology, such as a small measuring range, 
short measuring distance, low accuracy, and environmental impact. Thus, GB-SAR has been 
widely used in bridge dynamic deflection monitoring.(4–6) However, bridge dynamic deflection 
monitoring with GB-SAR is inevitably affected by noise factors such as ground motion and 
complex traffic (such as from the subway, vehicles, and pedestrians passing through the radar 
beam), which reduce the measurement accuracy of bridge dynamic deflection. It is critical to 
investigate a denoising approach that can acquire high-precision dynamic deflection signals 
using GB-SAR.
	 Only one GB-SAR device is commonly used to monitor the dynamic deflection of a bridge 
due to its cost and the on-site monitoring environment. Thus, only single-channel monitoring 
data is acquired. In this study, we conduct research based on single-channel monitoring signals. 
The widely used denoising approaches mainly include the wavelet transform (WT),(7,8) singular 
value decomposition (SVD),(9) and empirical mode decomposition (EMD).(10) The WT achieves 
denoising by removing the wavelet coefficients of noises and reconstructing the other wavelet 
coefficients based on a single wavelet threshold. Wavelet threshold criteria are different for 
different noise frequency scales and need to be set manually. However, a single wavelet threshold 
criterion cannot fully consider the signal and noise distributions. That is, it is difficult to 
completely eliminate the noise information with different frequency scales. The above reasons 
reduce the adaptability of the WT method, making it unsuitable for monitoring bridge dynamic 
deflection signals monitored by GB-SAR.(11) The SVD method converts nonstationary or 
nonlinear signals into matrices and performs SVD on them. Since the singular values 
corresponding to signals and noises are different, the selection of appropriate singular values can 
effectively separate noise information from signals containing noises.(1) However, the denoising 
accuracy depends on how the effective rank order is selected and how the structure of the 
reconstruction matrix is determined. Moreover, the signal denoised by SVD has a small phase 
shift, which limits the applicability of the method.(12,13)

	 EMD can adaptively decompose the original signal into a series of intrinsic mode function 
(IMF) components, making it suitable for nonstationary and nonlinear signals. It is widely used 
in the field of signal denoising.(14) However, modal aliasing and the endpoint effect exist in this 
method. Ensemble empirical mode decomposition (EEMD) is an improved method for solving 
the modal aliasing problems in EMD.(15) It takes the EMD algorithm as the core and repeatedly 
adds a white noise of finite amplitude to the original signal for multiple decomposition. Then it 
takes the average value obtained through multiple decomposition to reduce the problem of modal 
aliasing. However, it is difficult to reduce the influence of instantaneous noises in EEMD.(16,17) 
Extreme-point symmetric mode decomposition (ESMD) inherits the adaptability of EMD and is 
suitable for nonstationary and nonlinear signal processing.(18,19) Compared with EMD, its 
internal mean square has a smaller amplitude, which can effectively reduce the uncertainty 
caused by interpolation. In addition, the problems of modal aliasing and the endpoint effect can 
be effectively solved. However, the principle of signal denoising using modal decomposition 
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methods such as EMD, EEMD, and ESMD is to reduce the impact of noise by eliminating a 
certain number of low-order IMF components with relatively high frequency features.(10) The 
remaining IMF components will inevitably have low-frequency noises and some high-frequency 
residual noises. Therefore, it is difficult to accurately eliminate the influence of noises by using 
traditional modal decomposition methods. 
	 In view of the above problems, in some studies, the traditional modal decomposition method 
has been combined with second-order blind identification (SOBI) to denoise the monitoring 
signal and achieve better denoising effects. For example, Liu et al. proposed a denoising 
approach based on a combination of EEMD, ESMD, and SOBI for GB-SAR bridge dynamic 
deflection signals.(20) They experimentally showed that their method had a better denoising 
effect than traditional modal decomposition methods alone. However, to solve the 
underdetermination problem existing in the SOBI denoising process when using single-channel 
GB-SAR dynamic def lection data, virtual multi-channel monitoring signals are first 
constructed. Liu et al. adopted EEMD and ESMD to decompose the original signals. Then the 
original signals were combined with decomposed parts to construct virtual multi-channel data. 
Nevertheless, the multi-channel extended data had been subjected to EEMD and ESMD as well 
as high-frequency noise removal, which may cause the loss of useful data. Therefore, to solve the 
above problems, cyclically shifted ESMD (CS-ESMD) is proposed in this study as a method for 
virtual multi-channel data construction. Then a progressive denoising model based on SOBI and 
the fast Fourier transform (FFT) is built. Four critical items are investigated as follows: (i) CS-
ESMD is proposed as a method to construct virtual multi-channel dynamic deflection signals. 
First, a series of IMF components is generated by ESMD. Then the IMF1 component is cyclically 
shifted to obtain multiple groups of different noise components. The noise components obtained 
by cyclic shifting and other IMF components are superimposed to obtain new virtual multi-
channel observation signals. (ii) Several groups of new multi-channel observation signals are 
decomposed by ESMD to distinguish the high- and low-frequency IMF components based on 
Spearman’s Rho. Then the high-frequency IMF components are removed to achieve preliminary 
GB-SAR signal denoising. (iii) The low-frequency noises and the residual high-frequency noise 
components are further identified and removed by combining SOBI and the FFT. (iv) A 
simulation experiment and practical experiment are conducted to verify the validity of the 
proposed method. The remainder of the paper is organized as follows. In Sect. 2, the proposed 
CS-ESMD approach is introduced in detail. In Sect. 3, the simulation experiment and practical 
experiment are described. Section 4 presents the conclusions.

2.	 Methodology

	 Figure 1 shows the overall flow of the proposed CS-ESMD-based progressive denoising 
approach, which includes three key technologies: (1) CS-ESMD is performed on the original 
GB-SAR bridge dynamic deflection signal to obtain virtual multi-channel signals. (2) ESMD is 
used to decompose the multi-channel signals, and Spearman’s Rho is applied to separate and 
remove the high-frequency noises. (3) SOBI and the FFT are then employed to eliminate low-
frequency noises and residual high-frequency noises.
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2.1	 Acquisition of virtual multi-channel GB-SAR dynamic deflection signals

	 Owing to the cost of the instrument and the on-site monitoring environment, we use only one 
GB-SAR device to monitor bridge dynamic deflection. Thus, only single-channel monitoring 
data is acquired. CS-ESMD is proposed to extend the single-channel signal to virtual multi-
channel signals. First, the original signal is decomposed by ESMD to generate a series of IMF 
components and remainder r. Then, the IMF1 component is cyclically shifted to obtain multiple 
groups of different noise components. After cyclic shifting, the signal has a different shape but 
its power remains unchanged. By using cyclic shifting, multiple groups of IMF1 components can 
be obtained. The new components are then superimposed on the remaining IMFs to obtain 
multi-channel signals with a constant signal-to-noise ratio (SNR). As ESMD is a commonly used 
and mature algorithm, it will be not repeated here. The detailed algorithm of ESMD can be 
found in Ref. 20. The specific process of CS-ESMD is as follows: 
(1) Perform ESMD on the original signal X(t) to obtain n components imf(t) and remainder r(t):

	
1

( ) ( ) ( ).
n

i
i

X t imf t r t
=

= +∑ 	 (1)

(2) Perform m cyclic shifts on the first IMF component imf1(t) to obtain m groups of new 
components:

	 11 ( ) ( ( )), 1, 2, ..., ,jimf t circulate imf t j m= = 	 (2)

Fig. 1.	 Technical and analytical framework of CS-ESMD-based progressive denoising approach.
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where j represents the number of cycles and 1 ( )jimf t  represents the new component generated by 
cycle j.
(3) Superimpose the new noise component 1 ( )jimf t  generated by cyclic shifting on the remaining 
IMF components to obtain m groups of new multi-channel signals:

	 1
2

, 1, 2 .( , ..) ( ) ( ) ( ) .,
n

jj
i

i
X t imf t imf t r mt j

=
= + + =∑ 	 (3)

2.2	 High-frequency noise separation and removal

	 The original signal can be decomposed into a series of IMF components from high frequency 
to low frequency using ESMD. The high-frequency noises are always centered on the lower-
order IMF components. Therefore, the impact of high-frequency noises on GB-SAR signals can 
be effectively reduced by identifying and removing these IMF components. Spearman’s Rho is a 
commonly used basis to separate high-frequency and low-frequency IMF components. It uses 
the ranks of two variables to analyze variable elements and to measure the closeness of the 
correlation between them. For each IMF component, the more noise it contains, the lower the 
correlation it has with the original signal. Thus, the IMF dominated by the signal has a greater 
correlation with the original signal. In this study, the multi-channel signals are first decomposed 
by ESMD to obtain IMF components. Then Spearman’s Rho is used to distinguish between the 
IMF components dominated by noise and the IMF components dominated by the signal. The 
specific steps are as follows: 
(1) Perform ESMD on m groups of new multi-channel data to obtain a series of IMF components:

	
1

) 1, 2, ..., ,( ) ( ) ( ,
n

j j j
i

i
X t imf t r t j m

=
+ ==∑ 	 (4)

where ( )j
iimf t  represents the IMF component generated by ESMD of the jth group of multi-

channel data.
(2) For each group of IMFs, calculate Spearman’s Rho between each IMF and the noisy signal to 
remove high-frequency noise information. Spearman’s Rho has a range of [−1, 1], where the 
larger the value, the stronger the correlation with the original signal. It is calculated as 
follows:(21,22)
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( ) ( ( ), ( )) 1 .
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X t IMF t
SP i X t IMF t

N N
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−
= = −

−

∑
	 (5)

	 In Eq. (5), X(t) is the original observation signal, IMFi(t) is the ith IMF component generated 
by ESMD of the original observation signal, and N is the signal length.
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	 The basic principle of determining the cut-off point is to find the position where Spearman’s 
Rho develops in the opposite direction, meaning that the correlation between the IMF and the 
original observation signal has changed from gradually decreasing to gradually increasing. This 
position is denoted as ith.
(3) For m groups of multi-channel data, remove the IMF components dominated by high-
frequency noise:

	
+1

( ) ( )+ ( ),
j

th

n
j j j

iesmd
i i

X t imf t r t
=

= ∑ 	 (6)

where ith represents the demarcation point between the high- and low-frequency components, 
and ( )j

esmdX t  represents the signal of the jth group after removing the high-frequency noise 
information.

2.3	 Removal of low-frequency and residual high-frequency noises 

	 Since there are different degrees of noise information in the IMFs generated by ESMD, the 
remaining IMF components will inevitably contain residual high-frequency noise and low-
frequency noise information after only removing the IMF components dominated by high-
frequency noise. In this study, the noise information and useful information can be regarded as 
different sources of information. The SOBI algorithm, as shown in Fig. 2, can use a small 
amount of prior information data to process the observed mixed signal by using the joint 
approximate diagonalization of the source signal time correlation and the covariance matrix to 
estimate the source signals.(23,24) It can estimate the number of source signals and separate 
Gaussian white noise. This algorithm does not have the problem of modal aliasing and is a robust 
algorithm. Therefore, in this study, the SOBI algorithm combined with the FFT is used to further 
process the residual high- and low-frequency noises in the signals. The specific steps are as 
follows:
(1)	Use the SOBI algorithm to perform blind source separation (BSS) processing on the signal  

( )j
esmdX t  from which the high-frequency noise information has already been removed. The 

mixing matrix A and the estimated source signal Y(t) can be obtained.
(2)	Use the FFT to identify the noise components in the separated source signal, which can be 

removed. The mixing matrix is used to inversely reconstruct the separated source signal to 
obtain the denoised signals.(25)

	 ( )  * ( )N ZY Yt t= A 	 (7)

Fig. 2.	 Schematic diagram of SOBI.
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Here, YZ(t) represents the separated source signal with the noise components removed, A 
represents the estimated value of the mixing matrix, and YN(t) is the final denoised signal.

3.	 Experiment and Analysis

3.1	 Simulation experiment and analysis  

	 To verify the feasibility of the denoising method proposed in this study, a simulation 
experiment is first conducted. The simulation signal x(t) consists of the useful signal s(t) and 
Gaussian white noise n(t) [Eq. (8)]. To make it more similar to real bridge dynamic deflection 
data obtained by GB-SAR, s(t) includes a stationary signal s1(t) and a nonstationary signal s2(t) 
[Eq. (9)]. The SNR of the Gaussian white noise is 20 dB. The corresponding waveforms are 
shown in Fig. 3.

Fig. 3.	 (Color online) (a)–(d) Signal components s1(t), s2(t), s(t), and n(t), respectively. (e) Simulation signal x(t).

(a) (b)

(c) (d)

(e)
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1

2

1 2

( ) cos(15 +2sin(2 ))
( ) 0 6sin(6
( ) ( )+ )

)
(

s t t t
s t = .
s t s t t

t
s

π
π

=


 =

	 (9)

The data sampling frequency is 200 Hz and the number of sampling points is 1000.
	 As shown in Fig. 4, the ESMD method decomposed the original x(t) into six IMFs and one 
remainder curve. The IMF1 component was cyclically shifted to generate three sets of new noise 
components, as shown in Fig. 5. Figure 6 shows the three-channel signals constructed by using 
the three groups of new noise components generated by cyclic shifting. It can be seen from the 
figures that the three-channel signals had the same waveform characteristics as the original 
simulation signal. To further analyze the signal characteristics, these three-channel signals were 

Fig. 5.	 (Color online) Cyclically shifted IMF1 component.

Fig. 4.	 (Color online) ESMD of simulated signal x(t).
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processed by the FFT and compared with the spectrum of the original simulated signal x(t). 
Figure 7 shows the spectrograms of the original simulation signal x(t) [Fig. 7(a)] and multi-
channel signals [Fig. 7(b)]. After comparison and analysis, it was found that the multi-channel 
signals have the same main frequencies (3 and 7.333 Hz) as the original simulation signal x(t) and 
the spectrum characteristics are basically consistent. This further shows that three-channel 
signals retain all the useful information of the simulation signal x(t), with only differences in the 
noise morphology between them. 
	 Then, the three-channel signals generated by cyclic shifting were decomposed by ESMD. 
Spearman’s Rho was used to distinguish high- and low-frequency components and to remove 
high-frequency noise components. The result is shown in Fig. 8.
	 The BSS method was used to remove the residual high-frequency noises, after which only 
low-frequency noise existed in the multi-channel signals. This method involved a combination of 
SOBI and the FFT. Figure 9 shows the results of denoising using the BSS method. It can be seen 
that separated component 1 had the same waveform change and opposite direction characteristics 
from the original simulation signal x(t), indicating that component 1 is useful information. 
Separated components 2 and 3 were disordered in the time domain and may be noise components. 
For further verification, the FFT was performed on the separated components to obtain the 
spectrum, in which the time domain problem was transformed into a frequency domain problem. 
Figure 10 shows the frequency spectrum of the components after SOBI separation. It can be seen 
that separated component 1 had main frequencies of 3 and 7.333 Hz, consistent with the original 
simulation signal x(t). Separated components 2 and 3 had no main frequency features in the 
frequency domain. The frequency peaks of components 2 and 3 were mainly concentrated at 
0–50 Hz and 0–60 Hz, respectively, and the peaks were noisy and disordered. This revealed that 
separated components 2 and 3 were residual high-frequency and low-frequency noise 
information and separated component 1 was useful information. Then the noise information can 
be removed. The progressive denoising approach was used to improve the accuracy of the GB-
SAR bridge dynamic deflection signal.

Fig. 6.	 (Color online) Three-channel signals.
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Fig. 8.	 (Color online) Multi-channel signals after high-frequency noise removal.

Fig. 7.	 (Color online) Spectrogram of (a) the simulated signal and (b) multi-channel signals.

(a)

(b)



Sensors and Materials, Vol. 34, No. 11 (2022)	 4011

	 Figure 11 shows the denoising effect of the progressive denoising approach. It can be seen 
from Fig. 11(a) that the signal after denoising was smoother than the original simulation signal 
x(t). To further illustrate the effect of denoising, Fig. 11(b) shows a comparison between the 
denoised signal and the useful signal s(t) in the simulation shown in Fig. 3. The two curves were 
basically consistent in form and highly overlapped. It can thus be seen that the progressive 
denoising approach can remove noise information and effectively retain useful information.
	 We used two common indexes, SNR and root-mean-square error (RMSE), to evaluate the 
denoising effect of the proposed progressive denoising approach:(1,20)

	 ( ) ( )2 2

1 1
=10lg ( ) ( ) ( ) ,

N N

i i
SNR s i y i s i

= =

 
−  

 
∑ ∑ 	 (10)

Fig. 10.	 (Color online) Spectrogram of components obtained by FFT.

Fig. 9.	 (Color online) Results of performing SOBI separation on multi-channel signals.
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	 ( )2
1

1= ( ) ( ) ,
N

i
RMSE y i s i

N =
−∑ 	 (11)

where s(i) is the original signal, y(i) is the denoised signal, and N is the number of sampling 
points.
	 The SNR and RMSE values of different denoising methods are shown in Table 1. Compared 
with the original data, the SNR of the progressive denoising approach was increased by 17.02% 
and the RMSE was reduced by 32.36%, which shows the effectiveness of the proposed 
progressive denoising approach. In addition, compared with EEMD and ESMD, the proposed 
approach had improved SNR and RMSE values, showing its superior denoising effect to these 
methods and further illustrating its feasibility and effectiveness in noise reduction.

3.2	 Practical experiment and analysis 

	 Beishatan Bridge is in Haidian District, Beijing. Line 15 of the subway passes under the 
bridge. There are many buildings such as hotels, schools, and large shopping malls in the 

(a)

(b)

Fig. 11.	 (Color online) Effect of proposed progressive denoising approach: (a) comparison between x(t) and denoised 
signal and (b) comparison between s(t) and denoised signal.
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surrounding area. The bridge is an important section of the G6 highway connecting the North 
Fourth Ring Road and the North Fifth Ring Road. Owing to its critical location, Beishatan 
Bridge is an important transportation hub, making its health monitoring particularly important. 
Beishatan Bridge consists of two continuous beam bridges with a length of 86.58 m and a width 
of 12.93 m on the left and right, as shown in Fig. 12(a). In this study, the main span of the right 
sub-bridge is selected as the research object. To collect real-time dynamic deflection changes of 
the lower surface of the bridge, the GB-SAR instrument is deployed under the right bridge as 
shown in Fig. 12(b). The altitude of the instrument is 30°, and the instrument is aligned with a 
position near the midpoint of the main span of the right bridge. The distance resolution is 0.75 m, 
the sampling frequency is 200 Hz, and the acquisition time is 60 s.
	 Figure 13 shows the dynamic time series dynamic deflection signals on the main span 
midpoint of the right sub-bridge. There was obvious noise interference information in the time 
series dynamic deflection signals. During the monitoring period, there were six large dynamic 
deflection changes, which were caused by passing vehicles. The maximum deflection of the 
right sub-bridge was 1.29 mm. To provide more reliable data support for subsequent bridge 
health analysis, it was essential to process the noises and improve the accuracy of the Beishatan 
Bridge monitoring data.
	 The proposed progressive denoising approach was used to process the original GB-SAR 
monitoring data of Beishatan Bridge. Figure 14 shows the denoising effect of the proposed 
approach, where the red curve represents the original monitoring data and the blue curve 
represents the data after denoising. The proposed denoising approach removed the noise 
information and retained the useful information characteristics. In particular, it was effective for 
removing abnormal information at the peaks and troughs.

Table 1
Comparison of different denoising methods.

Raw data EEMD ESMD Proposed method
SNR 20 21.4027 22.8562 23.4032
RMSE 0.0819 0.0698 0.0590 0.0554

Fig. 12.	 (Color online) (a) Beishatan Bridge and (b) GB-SAR instrument layout. 

(a) (b)
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	 For real data, the SNR and RMSE are no longer suitable indicators for evaluating the 
denoising effect. Therefore, we use two different indicators, the noise mode (NM) and the ratio 
of the variance root (RVR), to comprehensively evaluate the denoising effect of the proposed 
method from the aspects of energy and graphics. They are expressed as follows:(20)

	 2

1
( ( ) ( )) ,

N

i
NM y i x i

=
= −∑ 	 (12)

	
[ ]
[ ]
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−
=
−
=

+ −
=

+ −

∑
∑

	 (13)

where y(i) represents the denoised signal, x(i) represents the original signal, and N is the number 
of sampling points.
	 The larger the NM value and the closer the RVR value is to zero, the better the denoising 
effect. By combining these two indicators, the results of denoising can be objectively evaluated 
and a comprehensive system for evaluating the denoising effect can be realized.

Fig. 14.	 (Color online) Results of denoising of signal obtained from main span of right Beishatan Bridge.

Fig. 13.	 (Color online) Time series dynamic deflection data on main span midpoint of right sub-bridge. 
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	 The evaluation index values of denoising accuracy for different denoising methods for the 
real bridge dynamic time series dynamic deflection signals are shown in Table 2. Compared 
with EEMD and ESMD, the proposed progressive denoising approach has superior NM and 
RVR values. In summary, the proposed approach can denoise actual bridge monitoring signals 
with superior performance to the EEMD and ESMD denoising approaches.

4.	 Conclusions

	 For bridge deformation monitoring using GB-SAR, the collected dynamic deflection data is 
easily subjected to interference by noises due to ground motion and complex traffic factors. 
Aiming to improve the credibility of dynamic deflection and to ensure the accuracy of bridge 
safety performance evaluation, we propose a CS-ESMD-based progressive denoising approach. 
The method can accurately identify useful and noise information of a dynamic deflection signal 
with different scale frequencies. Through simulation and practical experiments, we obtain the 
following conclusions:
(1)	In the simulation experiment, the SNR of the denoised signal is 23.4032 dB and the RMSE is 

0.0554 mm. Compared with EEMD or ESMD alone, the proposed approach achieves higher 
denoising accuracy. The proposed approach is also shown to be suitable for the denoising 
processing of nonlinear and nonstationary signals.

(2)	In a practical experiment, we show that the proposed method has superior performance to 
EEMD and ESMD in terms of NM and RVR values, with the NM value increased from 
0.4305 and 1.9931 for EEMD and ESMD, respectively, to 2.1870 and the RVR value reduced 
by 37.2 and 5.1%. The results show the advantageousness of the proposed progressive 
denoising method. 

	 In summary, the proposed CS-ESMD-based progressive denoising approach can effectively 
reduce the impact of complex environmental noises on GB-SAR monitoring signals. Improving 
the accuracy and reliability of bridge dynamic deflection signals is of great significance. The 
research results have high theoretical importance and application value for the safe operation of 
bridges.
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