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	 The medical treatment of cardiovascular disease can be regarded as synchronizing a chaotic 
diseased coronary artery system (CAS) to a healthy CAS in periodic motion. The main goal of 
the study is to develop a novel self-tuning integral-type finite-time-stabilized sliding mode 
control (IFSMC) scheme for two CASs with parameters belonging to different parameter sets to 
achieve their state synchronization. The defined integral-type finite-time-stabilized sliding 
mode (IFSM) has a special characteristic making it suitable for application to CASs. It is 
concluded that, on the sliding surface, one of the error states is first stabilized within a finite 
time. Then, the other error state becomes exponentially stable. The proposed adaptive IFSMC 
scheme contains four time-varying state feedback gains, which can adaptively compensate for 
the effects of nonlinear terms in the synchronized error dynamical system. Numerical 
simulations are performed to validate the effectiveness of the present scheme.

1.	 Introduction

	 Many medical experts have concluded that vasospasm is the main cause of myocardial 
ischemia and other cardiovascular diseases, such as common angina pectoris, sudden death, and 
myocardial infarction.(1) According to medical studies, vasospasm is caused by the behavior of 
blood vessels falling into chaotic states.(2) The coronary artery system (CAS)(3) mainly describes 
the dynamics of the changes in blood pressure in coronary artery vessels and in the inner radius 
of coronary artery vessels. Therefore, it is important to understand the nonlinear characteristics 
of the CAS and to suppress the occurrence of chaos in biomedical engineering.
	 Researchers have mainly investigated chaotic synchronization, which is the problem of 
tracking control between master–slave systems, to clarify the dynamical characteristics of 
nonlinear systems. Synchronization is the status of consistency with the time trajectories of state 
variables for master–slave systems.(4) The applications of chaotic synchronization, such as to the 
nervous system,(5) circuit systems,(6) secure communication,(7) encryption,(8) and micro-electro-
mechanical systems,(9,10) have been paid considerable attention. From the viewpoint of 
biomedicine, a healthy CAS performs periodic motion and a diseased CAS performs chaotic 
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motion. The medical treatment of cardiovascular disease can be regarded as synchronizing the 
chaotic cardiac behavior to that of a healthy CAS, so as to improve the pathology of a diseased 
CAS.(11) 

	 Previous approaches for the chaotic synchronization of CASs include high-order sliding 
mode adaptive control,(1) where the effect of chatter was effectively alleviated by considering the 
unknown bound perturbation; the state feedback control scheme,(11) where the state equations of 
the CAS were equivalently transformed by differential transformation; the variable structure 
control scheme,(12) where the synchronized error system between two CASs was stabilized; the 
fuzzy logic control scheme,(13) where the cubic nonlinear term of the error dynamical system 
was directly eliminated by the applied state transformation; and terminal sliding mode control 
with adaptive rules,(14) where drive and response CASs were synchronized within a finite time. 
By considering the time delay in the CAS to design the control scheme for synchronization, 
finite-time synchronization with an input delay was proposed in Ref. 2, observer-based control 
schemes were addressed in Refs. 15 and 16, an H∞ synchronization approach was developed in 
Ref. 17, and an adaptive fuzzy control scheme was proposed in Ref. 18.
	 In practice, chaotic dynamical biological systems, such as a nerve-cell system and a CAS, can 
be realized by circuit implementation. For nerve-cell systems, hardware realizations by analog 
electronic circuits,(19,20) very large scale integration (VLSI),(21) and a field-programmable analog 
array(22) have been reported. For a CAS, the circuit realization and synchronization control of a 
cardiac system were studied in Ref. 23. Owing to its flexibility, real-time processing, and easy 
analysis, the analogy of a CAS with an electrical circuit is suitable for applications. Many 
voltage-sensing systems have been used to provide technologies for measuring the voltage in 
circuit systems.(24,25) The state variables of a CAS are analogized by the corresponding voltages 
in the circuits. Therefore, the time responses of an electrical CAS circuit for feedback control 
can be sensed by applying suitable voltage-sensing equipment. Furthermore, the control schemes 
developed for synchronization have also been applied in hardware circuit realization.(23)

	 Motivated by previous works,(1,12–14) in this study, the tracking control problem of state 
synchronization between master (healthy) and slave (disease) CASs is solved by introducing a 
novel self-tuning integral-type finite-time-stabilized sliding mode control (IFSMC) scheme. The 
novelty and main contributions of this study are listed below.
(1)	The dynamical behavior of a chaotic CAS is mainly determined by the parameters of the 

system involved. In the literature,(12,13) two main parameter sets of chaotic CASs have been 
studied. In the previous works on state synchronization between two chaotic CASs, it was 
assumed that the two CASs were chaotic systems with parameters belonging to the same 
parameter set.(1,11–14,17,23) In this paper, the control problem of state synchronization between 
two chaotic CASs whose parameters belong to different parameter sets is discussed. Solving 
this control problem is not only more practically applicable but also more complicated.

(2)	To solve the control problem of state synchronization between two CASs, an integral-type 
finite-time-stabilized sliding mode (IFSM) is defined. This sliding mode has a special stable 
characteristic. It is concluded that, on the sliding surface, one of the synchronized error states 
is first stabilized within a finite time, which is followed by the exponential stabilization of the 
other one. The proof of stability is given in detail.
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(3)	Using the defined sliding mode, a self-tuning IFSMC scheme for achieving state 
synchronization is developed. In past works on sliding mode control methods,(1,12,13) 

nonlinear terms, such as cubic items and external excitations, were directly eliminated by the 
equivalent control part. Different from the past works, the proposed self-tuning IFSMC 
scheme contains four time-varying state feedback gains, which can adaptively compensate 
for the effects of nonlinear terms in the synchronized error dynamical system. These time-
varying feedback gains need not be decided in advance but are updated online according to 
specified rules. The stability of the overall closed-loop control system is also demonstrated.

	 The rest of this paper is organized as follows. The formulation of the control problem for state 
synchronization between two CASs is defined in Sect. 2. In Sect. 3, the design procedures of the 
self-tuning IFSMC scheme are developed. Furthermore, a proof of stability for the closed-loop 
control system is also provided. Numerical simulations are performed to validate the 
effectiveness of the proposed control scheme in Sect. 4. In Sect. 5, we make some final remarks.

2.	 Formulation of Control Problems for State Synchronization

	 The mathematical model of a CAS is described by the following nonlinear differential 
equations with respect to the normalized time t:(3,12)

	 1 1 1
3

1 1 1 1( ) ( ) cos( )
x bx cy
y b x c y x E tλ λ λ λ λ σ

= − −


= − + − + + +





,	 (1)

where the state variables x1 and y1 represent the changes in the normalized inner radius of the 
vessel and in normalized blood pressure in the vessel, respectively. The system parameters b, c, 
and λ dominate the behavior of the CAS. Ecos(σt) represents the external excitation factor acting 
on the blood vessels with amplitude E and frequency f = σ/2π. The bifurcation analysis of a CAS 
for different values of [ ]0.1, 20E∈  with system parameters b = 0.15, c = −0.17, λ = −0.65, and 
σ = 1.0 was discussed in Ref. 13.  It was found that the CAS performs chaotic motion in the 
ranges of 0.3 ≤ E < 0.6 and 4.5 ≤ E < 5.9 and multi-periodic motion for other values of E. 
	 In the study, the healthy master CAS is defined as a CAS in periodic motion. Figure 1 depicts 
the phase portrait for Eq. (1) with λ = −0.65, E = 0.6 without any control input; the CAS performs 
periodic motion.(13) 

	 When a CAS performs chaotic motion, it is regarded to be diseased. Figure 2 depicts the 
phase portrait for Eq. (1) with λ = −0.5, E = 0.3 without any control input; the CAS descends into 
chaotic motion.(12) In this work, the diseased or slave CAS is built by the extension of the CAS 
shown in Fig. 2. Note that the CASs shown in Figs. 1 and 2 respectively belong to different  
parameter sets, as addressed in Refs. 12 and 13.
	 The model of the slave CAS is defined as

	
2 2 2

3
2 2 2 2

2 2

( ) ( )
cos( ) ( , ) ( ) ( )

s s s s s

s

x bx cy
y b x c y x

E t x y d t t
λ λ λ λ λ

σ µ

= − −


= − + − + +
 + + ∆ + +




,	 (2)
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where x2 and y2 are state variables. The system parameters λs and Es are not equal to λ and E, 
which are applied to the healthy CAS in Eq. (1). Δ(x2, y2) and d(t) are the unmodeled dynamics 
and another external disturbance, respectively. The designed control input μ(t), which is regarded 
as the potency or dosage of the medicine used for the treatment of angina and other heart 
disease,(12) is also included in Eq. (2).
	 The tracking control problem considered in this study is to develop an appropriate control 
scheme μ(t) such that the state variables of the slave CAS in Eq. (2) can synchronize with the 
master CAS in Eq. (1). That is, 2 1lim ( ) ( )

t
x t x t

→∞
→  and 2 1lim ( ) ( )

t
y t y t

→∞
→  for all given initial 

conditions. Such tracking control through a suitable therapy would enable a diseased CAS to 
become healthy.

Assumption

	 It is assumed that the uncertainty term Δ(x2, y2) and the other external disturbance d(t) are 
unknown but bounded, that is,

	 2 2 1 20 ( , ) , 0 ( )x y A d t A< ∆ < < < .	 (3)

Fig. 1.	 (Color online) Phase portrait of healthy CAS (in periodic motion).

Fig. 2.	 (Color online) Phase portrait of diseased CAS (in chaotic motion).
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	 The synchronized error states between the master and slave CASs in Eqs. (1) and (2) are 
defined by

	 2 1 2 1( ) ( ) ( ), ( ) ( ) ( )x ye t x t x t e t y t y t= − = − .	 (4)

	 By taking the derivative of Eq. (4) with respect to the normalized time t and substituting the 
CASs in Eqs. (1) and (2) into the derived results, the dynamical system of the synchronized error 
states for state synchronization is given by

	 1 1 2 2 1 1

2 2

( ( , ) 1 ) (1 ) ( ) ( , )
( )cos( ) ( , ) ( ) ( )

x x y

y s x s y s

s

e be ce
e F x x b e c e F x y

E E t x y d t t
λ λ λ λ

σ µ

= − −


= − − − + + −
 + − + ∆ + +




,	 (5)

where F1(x1, x2) = x1
2 + x1x2 + x2

2 and F2(x1, y1) = (1 + b)x1 + (1 + c)y1 − x1
3 are nonlinear and 

bounded functions. Because both the master and slave CASs are in chaotic or periodic motion, 
they are depicted as bounded phase portraits. In the design procedure of the control, F1(x1, x2) 
and F2(x1, y1) are assumed to have upper bounds and satisfy

	 1 1 2 1 2 1 1 20 ( , ) , 0 ( , )F x x B F x y B< < < < .	 (6)

	 They are treated as time-varying coefficients of the synchronized error state ex(t) and the 
additional external disturbance, respectively. They are the key points to be resolved.
	 In this stage, the tracking control problem is equivalently transformed to stabilize the 
dynamical system in Eq. (5). The key point of the present control problem is to develop the 
control μ(t) such that the error states in Eq. (5) can tend to zero, that is, lim ( ) 0xt

e t
→∞

→ , 
lim ( ) 0xt

e t
→∞

→ , and lim ( ) 0yt
e t

→∞
→ . This is equivalent to the completion of state synchronization 

between the master and slave CASs in Eqs. (1) and (2).

Remark 1

	 In the previous works on state synchronization between two chaotic CASs, it was assumed 
that the two CASs had parameters belonging to the same parameter set for a chaotic 
system.(1,11–14,17,23) There are two parameter sets for chaotic CASs in the literature,(12,13) which 
must be included in the aforementioned formulation of the control problem.

3.	 Design of Novel Self-tuning Sliding Mode Control Scheme

	 In this study, we introduce a self-tuning IFSMC approach to achieve state synchronization 
between the CASs in Eqs. (1) and (2). The design approach of the self-tuning IFSMC scheme 
involves two basic steps. First, the novel integral-type finite-time stabilized sliding mode for the 
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desired sliding motion is selected. The defined sliding mode has special stable characteristics, 
for which we prove that, on the sliding surface, the synchronized error state ey(t) is first 
stabilized in a finite time, then the synchronized error state ex(t) is exponentially stabilized. 
Second, a robust and adaptive control μ(t) is designed, and it brings any state trajectory in the 
phase plane of the dynamical system in Eq. (5) to the sliding surface, where it remains, despite 
the presence of system uncertainties and external disturbances.
	 The IFSM s(t) is defined by

	 /

0

1( ) [ ( )] ( ) ( )
tp q

y x xs t e t e t b e d
τ

τ
τ τ

ρ
=

=

 = + +  ∫ ,	 (7)

where ρ > 0 and p, q are positive and odd integers with 1 < p/q < 2 to avoid the singularity of the 
equivalent control. Theorem 1 provides a criterion guaranteeing the finite-time stability of 
s(t) = 0.

Theorem 1

	 For the IFSM s(t) defined in Eq. (7) with the first equation in Eq. (5), the global finite-time 
stability of ey(t) is guaranteed for s(t) = 0 associated with ( ) 0s t = . First, ey(t) → 0 is achieved in 
a finite time given by

	
( )/

0 0( )
( )

p q q

s y
pT e t t

c p q
ρ −

 = + −
.	 (8)

	 Then, it remains on ey(t) = 0 0st T∀ ≥ > , where t = t0 > 0 is the time of the state trajectory 
ex(t), ey(t) in the phase plane from the initial values ex(0), ey(0) when it arrives at the sliding 
surface s(t) = 0. Subsequently, ex(t) is stabilized exponentially.

Proof

	 When the state trajectory ex(t), ey(t) is controlled to reach the sliding surface s(t) = 0 and 
remain there, ( ) 0s t =  is also satisfied. The system dynamics is equivalent to the following 
nonlinear differential equation, obtained by substituting the first equation in Eq. (5) into ( ) 0s t = :

	
[ ]/ 1

2 /

1( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0.

p q

y y x x

p qy
y

ps t e t e t e t be t
q

de t c q e t
dt p

ρ

ρ

−

−

 = + + = 

−  ⇒ + = 

  

	 (9)

	 Integrating with respect to the normalized time [ ]0 ,t t t∈ , where t0 > 0 is defined as above, 
yields



Sensors and Materials, Vol. 34, No. 10 (2022)	 3875

	 ( )/ 1 / 1

0 0( ) ( ) ( )
p q p q

y y
q cqe t e t t t

p q pρ
− −

   − = −   −
.	 (10)

	 The finite time Ts required to travel from ey(t0) ≠ 0 to ey(Ts) = 0 is given by

	
/ 1

0 0( ) , 0
( )

p q

s y
pT e t t c

c q p
ρ −

 = + < −
.	 (11)

	 For the first equation in Eq. (5), it is obvious that the exponential stability of ex(t) is 
guaranteed by b > 0 and ( ) 0,y se t t T= ∀ ≥  on the sliding surface s(t) = 0 associated with ( ) 0s t = . 
That is, 

	 ( ) ( ) 0 ( ) ( )exp( ),x x x x s se t be t e t e T bt t T+ = ⇒ = − ∀ ≥ ,	 (12)

thus completing the proof of Theorem 1.
	 Next, the robust and self-tuning IFSMC scheme μ(t) of the system in Eq. (5) for achieving 
state synchronization is introduced in Theorem 2.

Theorem 2

	 If μ(t) in Eq. (5) is taken to be the adaptive IFSMC scheme μ(t) = μeq(t) + μsw(t) with

	

2 /

0 1 2 3

( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sign( ( )),

p q
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n
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cqt e t
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µ
ρ
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−
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 = − + + + ⋅ 

	 (13)

where the design parameter is 0 < n < 1, the sliding mode s(t) is defined in Eq. (7), sign(•) 
denotes the sign function, and the self-tuning feedback gains gi(t), i = 0, 1, 2, 3 are updated 
according to the following algorithms:
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

	 (14)

then the state trajectory ex(t), ey(t) in Eq. (5) asymptotically approaches the sliding surface 
s(t) = 0 and remains on it, i.e., ( ) 0s t = . It follows that ey(t) first tends to zero in a finite time Ts 
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evaluated using Eq. (8). Then, ex(t) is exponentially stabilized, thus accomplishing the state 
synchronization of the CASs in Eqs. (1) and (2).

Proof

	 The positive candidate Lyapunov function of the system in Eq. (5) is chosen as

	
23

2

0

( ( ) )1( ) ( ) 0
2 2

i i

i i

g t KpV t s t
q α=

−
= + ≥∑ ,	 (15)

where Ki > 0, i = 0, 1, 2, 3 are positive constants satisfying
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>

	 (16)

	 Taking the derivative of Eq. (15) with respect to t and substituting Eqs. (5), (7), (13), and (14) 
into the derived results, we obtain
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	 It is proved that V(t) is a positive definite function from Eq. (15) and a decreasing function 
with respect to t from Eqs. (16) and (18). It follows that zero equilibria [s = 0, gi(t) = Ki, 
i = 0, 1, 2, 3] are globally and asymptotically stabilized. This means that the state trajectory ex(t), 
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ey(t) in Eq. (5) asymptotically converges to s(t) = 0 with ( ) 0s t =  from the given initial conditions 
ex(0), ey(0) when the self-tuning IFSMC scheme given by Eqs. (13) and (14) is applied. 
	 On the sliding surface s(t) = 0, ey(t) is stabilized within a finite time Ts, which is evaluated 
using Eq. (8) with a suitable choice of ρ > 0 and positive and odd integers p and q with 1 < p/q < 
2. Then, according to Theorem 1, the exponential stabilization of ex(t) is guaranteed. Therefore, 
the synchronization between the two CASs in Eqs. (1) and (2) is accomplished, completing the 
proof.

Remark 2

	 The synchronized error state ex(t) in Eq. (5) is compensated adaptively without applying the 
equivalent control μeq(t) in Eq. (13).

Remark 3

	 The control scheme in Eq. (13) includes discontinuous control to reduce the amount of 
chatter, and the sign function in Eq. (13) is altered by tanh(s/δ), where δ = 10−4 is a sufficiently 
small constant. The alteration is applied to the overall numerical simulation.

4.	 Numerical Simulations

	 Numerical simulations are performed to validate the effectiveness of the developed self-
tuning IFSMC scheme. The fourth-order Runge-Kutta method with a time step size of 0.0001 
and initial conditions (x1(0), y1(0)) = (1.0, 0), (x2(0), y2 (0)) = (0.2, 0.2) is applied. Different from 
past studies,(1,12–14) the system parameters λs and Es of the diseased CAS in Eq. (2) are not equal 
to λ and E of the healthy CAS in Eq. (1). The related simulation parameters for the numerical 
simulations are listed in Table 1. 
	 The time histories of the master and slave CASs without control are depicted in Figs. 3 and 4, 
respectively. The numerical simulations are set up such that the master and slave CASs run 
individually without control from the initial conditions at t = 0. Then, the control input of the 
slave CAS is triggered to begin the process of state synchronization at t = 10. We show that by 
applying the proposed self-tuning IFSMC scheme, the slave (diseased) CAS undergoing chaotic 
motion can track the master (healthy) CAS undergoing periodic motion. 

Table 1
Simulation parameters used in coding.
Parameter Values
CAS parameters (common) b = 0.15, c = −1.7, σ = 1.0
Master (healthy) CAS parameters λ = −0.65, E = 0.6
Slave (diseased) CAS parameters λs = −0.5, Es = 0.3
Unmodeled dynamics Δ(x2, y2) = 0.1sin(x2)sin(y2)
External disturbance d(t) = 0.1cos(2σt)
Designed parameters of control scheme p = 9, q = 7, ρ = 40, α0 = 15, α1 = 16, α2 = 12.5, α3 = 20
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Fig. 4.	 Time histories of the slave (diseased) CAS.

Fig. 3.	 Time histories of the master (healthy) CAS.

	 The time responses of ex(t) and ey(t), and s(t) are shown in Figs. 5 and 6, respectively. The 
figures show that ex(t), ey(t), and s(t) oscillate irregularly when the control input is switched off, 
but when the control is applied at t = 10, ex(t), ey(t), and s(t) converge to zero and state 
synchronization is achieved. Figure 6 shows that the control signal μ(t) is continuous and chatter-
free. The time responses of gi(t), i = 0, 1, 2, 3 are shown in Fig. 7, where it can be seen that the 
gains become constant. The results indicate that ex(t) and ey(t), and the sliding mode s(t) all tend 
to zero when the updating algorithms in Eq. (14) are applied.
	 Figure 8 displays the phase portrait of ex(t) and ey(t) from t = 0 to t = 50 in the phase plane. 
After the self-tuning IFSMC is triggered at t = 10, the state trajectory reaches s(t) = 0 at t = 10.35, 
and ey(t) is first stabilized within a finite time. Then, ey(t) = 0 is maintained after t = 14.88 and 
ex(t) is subsequently exponentially stabilized. Finally, state synchronization is achieved. In Fig. 
9, the time responses of the state variables for the master and slave CASs are exhibited. As 
expected, the state variables of the two CASs in Eqs. (1) and (2) separate from each other when 
different initial conditions are chosen. After the start of control at t = 10, the two state variables 
tend to synchronize despite the presence of system uncertainties and external disturbances.
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Fig. 5.	 Time responses of the synchronized error states ex(t) and ey(t).

Fig. 6.	 Time responses of the sliding mode s(t) and the control input μ(t).

Fig. 7.	 Time responses of the adaptive feedback gains gi(t), i = 0, 1, 2, 3.
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	 Compared with past works,(1,11–14,17,23) where the chaotic synchronization between two CASs 
with parameters in the same parameter set was studied, the present work shows that the state 
synchronization between two chaotic CASs with parameters belonging to different parameter 
sets can be achieved using the introduced scheme.

5.	 Conclusions

	 To solve the tracking control problem of state synchronization between master and slave 
CASs, the special property of the defined IFSM is proven. That is, the error state ey(t) is first 
stabilized within a finite time on the sliding surface s(t) = 0. Then, the error state ex(t) is 
exponentially stabilized. To achieve the control goal, the novel self-tuning IFSMC approach has 
been addressed and the stability of the closed-loop system is also guaranteed. Numerical 
simulations are performed to validate the effectiveness of the present control scheme. According 

Fig. 8.	 Phase portraits of ex(t) and ey(t) from t = 0 to t = 50.

Fig. 9.	 Time responses of state variables for the master and slave CASs.
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to a previous study,(23) the developed control scheme for synchronization can be implemented by 
hardware circuit realization. Our proposed scheme can be extended to the study of other control 
problems, such as projective or anti-synchronization, belonging to the field of the CAS in future 
works. 
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