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 As environmental problems increase, green development has become an indispensable part of 
the modern logistics system. Therefore, to help the logistics industry achieve the green development 
goals of energy saving and emission reduction, we studied the green logistics vehicle routing 
problem. Considering that the Internet of Things (IoT) plays an essential role in logistics scheduling, 
we constructed a Smart-IoT-based multi-objective green logistics vehicle scheduling model. This 
model guarantees the accuracy of vehicle-related information in all aspects of dispatch through 
IoT sensor technologies such as Global Positioning System (GPS) sensors, load sensors, and radio 
frequency identification (RFID) sensors and considers practical dispatch constraints such as 
dynamic vehicle carbon emission and physical constraints on heterogeneous vehicles. Furthermore, 
to address problems such as the poor convergence accuracy of the traditional path planning 
algorithm, we designed an improved path optimization algorithm by introducing the Levy flight 
strategy and simulated annealing mechanism in the bald eagle search algorithm to improve the 
search space and convergence speed of the algorithm. Then we conducted simulation experiments 
based on the scheduling task of a real logistics company. We also compared the designed algorithm 
horizontally with cutting-edge algorithms such as the sparrow search algorithm and crow search 
algorithm to verify the feasibility of the designed model and algorithm. Our results provide a 
practical reference for helping the logistics industry achieve green development.

1. Introduction

 As a new generation of information technology, the extensive integration between intelligent 
Internet of Things (IoT) technology and the logistics industry has promoted the development of 
informatization, intelligence, and automation in the logistics industry. Owing to the efficiency of 
decision-making based on smart IoT technology, the logistics industry has reduced the redundancy 
and waste of many resources, providing a feasible path to achieve the green development goals of 
energy saving and emission reduction.(1)
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 Intelligent IoT constitutes an information sensing network utilizing a variety of sensors combined 
with information transmission equipment and uses radio frequency identification (RFID) technology 
to realize intelligent identification and monitoring of dispatch links and provide a guarantee for 
the dispatch of green logistics vehicles.(2) Green logistics vehicle dispatch based on intelligent IoT 
is essentially a variant of the green vehicle routing problem (GVRP), which extends the optimization 
objectives of the general vehicle routing problem (VRP) by using IoT technology, thus organically 
integrating energy saving and emission reduction with vehicle path planning.(3) The GVRP, a 
research hotspot in recent years, has extensive applications.(4,5) Among them, Sadati and Çatay(6) 
studied the green vehicle scheduling problem involving multiple centers, constructed a mixed-
integer linear programming model with the shortest travel distance as the optimization objective, 
and solved the problem in a short time using a hybrid general variable neighborhood search and 
Tabu search approach. Foroutan et al.,(7) on the other hand, studied the GVRP involving heterogeneous 
vehicles and developed a mixed-integer nonlinear programming model using operational and 
environmental costs as measures, and finally found a solution using a metaheuristic algorithm. 
Qiu et al.(8) designed a two-layer pollution path optimization model based on carbon pricing and 
freight schedules to provide effective decision-making for long-haul road freight reduction using 
an interactive algorithm integrating particle swarm optimization (PSO) and a domain search. 
Although the above studies show that the GVRP has been extended to multiple variants and is 
widely used in various industries, research on the smart IoT-based GVRP for the logistics industry 
is currently lacking.
 The main methods commonly used to solve vehicle scheduling problems, which are essentially 
NP-hard problems, are precision-based algorithms(9–11) and biologically inspired swarm intelligence 
(SI) algorithms.(12,13) The green logistics vehicle scheduling problem studied in this paper has 
higher requirements on the solution algorithm’s generalizability and global search capability 
because it involves complex factors such as multiple dispatch centers and heterogeneous vehicle 
groups.(14) The SI algorithm has a more comprehensive and thorough search capability than the 
exact algorithm, which facilitates a more available solution,(15) so many researchers have used SI 
to plan vehicle paths. Among them, the artificial bee colony algorithm,(16) bat algorithm,(17) and 
ant colony algorithm(18) have been effectively applied. In addition, to further improve the optimization 
performance of algorithms, researchers have attempted to introduce improvement strategies based 
on the classical algorithm and investigate the search mechanism of the algorithm.(19) Among them, 
Mehlawat et al.(20) improved the genetic algorithm (GA) using fuzzy simulation and solved the 
multi-warehouse GVRP with fuzzy travel time, and the experimental simulation results showed 
the improved feasibility and robustness of their algorithm. On the other hand, Yu et al.(21) developed 
a simulated annealing (SA) algorithm introducing a restart policy to solve a hybrid VRP and 
verified its superiority utilizing a numerical example. The above studies show that introducing 
improved strategies adapted to the search mechanism of the classical SI algorithm can effectively 
reduce the blindness of the search. Therefore, in this paper, we design an improved path planning 
algorithm, the improved bald eagle search algorithm (IBES), which is based on the bald eagle 
search algorithm (BES) combined with the Levy flight strategy and SA mechanism, to enhance 
its global search and jump out of local optima, thus providing a feasible solution for vehicle path 
planning.
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 We study the green logistics vehicle dispatch problem under intelligent IoT. The Global Positioning 
System (GPS), load, RFID, and vehicle dispatch processes are combined. On the basis of the vehicle 
dynamics model, a green logistics vehicle dispatch model with the lowest carbon cost, lowest 
dispatch cost, and highest dispatch fairness as the optimization objectives is constructed to meet 
the dispatch task needs of the logistics industry under green development. Furthermore, the Levy 
flight strategy and SA mechanism are introduced into the BES to complete the path planning of 
logistics vehicles and provide assistance to promote the realization of intelligence in the logistics 
industry. To summarize, the contributions of this paper are as follows.
1.  We introduced the concept of basic logistics vehicle dispatch tasks involving multiple sensors 

under intelligent IoT.
2.  We constructed a vehicle carbon emission cost adaptation function, vehicle in-transit 

transportation cost adaptation function, and vehicle distribution fairness adaptation function 
based on a vehicle dynamics model.

3.  We designed the IBES combining the Levy flight strategy and SA mechanism to improve the 
convergence speed of the algorithm while ensuring convergence accuracy to achieve efficient 
and intelligent scheduling decisions in the logistics industry.

4.  On the basis of the actual scheduling data of a logistics company, we employed path planning 
algorithms such as the sparrow search algorithm (SSA), crow search algorithm (CSA), SA, GA, 
and the proposed IBES for simulation experiments, and verified the effectiveness of the proposed 
algorithm and model by cross-sectional comparison.

 The rest of the paper is organized as follows. In Sect. 2, the green logistics vehicle scheduling 
task flow under smart IoT is introduced; in Sect. 3, the developed green logistics vehicle scheduling 
model is presented; in Sect. 4, IBES incorporating the Levy flight strategy and SA mechanism is 
designed; in Sect. 5, simulation experiments are carried out, and the results are analyzed; finally, 
Sect. 6 summarizes the paper.

2. Task Description

 Smart IoT combines IoT technology with intelligent algorithms to carry out data analysis and 
application. Real-world data is acquired through IoT technology and transmitted to the computing 
center using wireless communication technology, and the computing center realizes the integration, 
analysis, prediction, and application of the data using relevant intelligent algorithms. The green 
logistics vehicle scheduling task based on intelligent IoT is carried out using GPS sensors, load 
sensors, RFID antennas, and tags preset in the logistics park and logistics vehicles to achieve 
timely access to physical information of logistics vehicles and real-time verification of order data 
to ensure an orderly operation process from logistics vehicles entering the park to the completion 
of order loading. The main architecture of the logistics-industry-oriented traffic dispatch task 
based on intelligent IoT includes information sensing, network transmission, and intelligent 
application layers.
 Real-time vehicle load information is obtained at the information sensing layer by a load sensor 
on the logistics vehicle. In contrast, the vehicle’s physical information, the physical load limit, and 
other related information are obtained by an identity recognition sensor when entering the logistics 
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park. Furthermore, when the logistics vehicle is loaded in the warehouse, the RFID electronic tag 
attached to the finished goods entering the vehicle is identified by an RFID sensor to obtain the 
actual loading information of the logistics vehicle. In addition, the logistics park obtains the location 
information of vehicles in real time through vehicle GPS sensors. At the layer of network transmission, 
the logistics center completes the data aggregation at the layer of information sensing in the logistics 
park and transits outside the park through a wireless local area network, 4G/5G, and other short-
range and long-range communication technologies. It transmits the data to the intelligent application 
layer. At this layer, using the cloud computing platform of the logistics center and the collected 
vehicle and order information, vehicle distribution path planning is carried out using intelligent 
algorithms. After allocating an order, the logistics park sends the order of the vehicle to the vehicle 
mobile terminal, and the vehicle goes to the logistics warehouse for loading. In the loading process, 
the RFID identification results are summarized and synchronized to the logistics center for the 
comparison of order allocation results and for accounting, thus improving the scheduling accuracy 
at the warehouse level. The vehicle also sends real-time location information to the logistics center 
via a GPS sensor during the dispatch to carry out a real-time comparison of the predetermined 
dispatch results, thus ensuring the survivability and accuracy of dispatch. The described task 
architecture of the logistics-industry-oriented traffic scheduling based on intelligent IoT is shown 
in Fig. 1. In this paper, we mainly establish and solve the vehicle scheduling model at the intelligent 
application layer based on the scheduling task architecture for efficient utilization at the resource 
scheduling layer, thus promoting the green development of the logistics industry and reducing 
carbon emission.

3. Vehicle Dispatch Model

3.1 Model assumptions

 The distribution task of logistics vehicles has the requirements of long-distance transport and 
high timeliness; therefore, its dispatch process is different from general urban dispatch, and it is 
difficult to fully consider relevant factors such as road conditions, vehicle dynamic speed, and 
other related factors. We make the following assumptions by combining the vehicle scheduling 
system of logistics companies with the actual scheduling task requirements.
1.  A logistics vehicle always undergoes approximately uniform motion in the long-distance 

distribution process, i.e., at the maximum speed while ensuring the vehicle’s safety.
2.  The logistics vehicle should return to the dispatch center.
3.  The goods distributed by this logistics company are homogeneous, such as finished cigarettes, 

and the logistics vehicle can carry all goods up to the maximum load, i.e., the weight of the 
goods is the deciding factor in establishing the model.

4.  The statutory transportation permit used by the logistics company for scheduling is as follows.
(1) A single customer point order is handled by a single dispatch vehicle.
(2)  The dispatch vehicle must arrive at the customer point of the order from the dispatch center 

within the valid time of the order permit issued by the management.
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3.2 Carbon emission model based on vehicle dynamics

 The core of the research on green logistics vehicle scheduling based on intelligent IoT lies in 
combining carbon emission and vehicle scheduling. Current models incorporating vehicle carbon 
emission include the average speed model,(22) empirical regression model,(23) and kinetic model.(24) 
Among them, the average speed model is the simplest, but it requires a large amount of experimental 
data, while for the logistics scheduling studied in this paper, it is difficult to collect relevant data 
due to the operational cost and the complexity of the situation. The empirical regression model is 
also not applicable because it is only valid in the range of the available data. We thus employ the 
kinetic carbon emission model used by Barth and Boriboonsomsin(25) and integrate the vehicle 
engine speed, displacement, and other power factors to establish an effective carbon emission 
model for logistics vehicles, as follows.

 CE CEF FC= ⋅  (1)

 1 DFC FR
vα

= ⋅ ⋅  (2)

Fig. 1. (Color online) Scheduling task architecture.
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Equation (1) represents the carbon emission of the vehicle, Eq. (2) represents the amount of fuel 
consumed by the vehicle traveling between customer points i and j, Eq. (3) represents the fuel 
consumption rate of the vehicle, Eq. (4) represents the total power of the vehicle, and Eq. (5) 
represents the tractive power of the vehicle.
 In these equations, CEF is the vehicle carbon emission factor, α is the unit conversion factor, 
γ is the fuel calorific value, ω is the mass ratio of fuel to air, μ is the engine friction coefficient, N 
is the engine speed, E is the engine displacement, δ is the efficiency parameter of the engine, ε is 
the engine efficiency, Pa represents other power requirements of the vehicle, such as steering and 
brakes, and it is generally set to zero, v is the vehicle travel speed, Mk is the total mass of the 
vehicle, g is gravitational acceleration, a is the vehicle acceleration, ϕ is the road gradient, Cr is 
the coefficient of resistance to vehicle rotation, ρ is the air density, A is the windward area of the 
vehicle, Ca is the air resistance coefficient, and D is the travel distance.
 According to Assumption 1, owing to the long distribution distance of logistics vehicles and 
the road gradient, the change in vehicle acceleration is complex and unmeasurable; thus, the carbon 
emission model needs to be simplified, i.e., we set the acceleration as A = 0 and the road slope as 
ϕ = 0. Combining Eqs. (1)–(5) yields the simplified carbon emission equation
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All variables in Eq. (6) are constant except for Mk and D. To observe the relationship between 
carbon emission and Mk and D and to facilitate the subsequent modeling, we rewrite Eq. (6) as

 1 2( ) ,kCE W W M D= +  (7)

where

 
2

1

1
2 ,

v 1000

aAC vCEF NEW
ρω µ

αγ εδ

 
 

= + 
 
 

 (8)



Sensors and Materials, Vol. 34, No. 8 (2022) 3323

 2 .
1000

rgCCEFW ω
αγ εδ

= ⋅  (9)

3.3 Vehicle scheduling optimization model for intelligent IoT-based green logistics 

3.3.1 Real-time access to vehicle information

 An advantage of logistics vehicle dispatch based on intelligent IoT is the use of sensor technology 
to accurately obtain vehicle-related information in each stage of the process of logistics vehicle 
dispatch, through which logistics resources are integrated and utilized to save energy in the use 
of logistics warehouse cargo resources. The information on logistics vehicles in the logistics 
warehouse is obtained as follows.

 ( )t t t P
cik k k P ck

P
M M L O R= + + ×∑  (10)

 ( )
A

P tk
P ck i

P i
O R q× =∑ ∑  (11)

 
H

t t tk
ijk cik j

j
M M q= −∑  (12)

 
1, vehicle monitors the entry of goods through the RFID sensor
0, otherwise

P
ckR


= 


 (13)

 Equation (10) represents the total mass of a t-type vehicle when it departs from the dispatch 
center, where t

kM  is the net weight of vehicle k, t
kL  is the load weight of vehicle k when it enters 

the dispatch center, which is obtained by a load sensor in the vehicle, and Op is the mass of goods 
P. Equation (11) represents the vehicle loading constraints, where A is the collection of order 

points for vehicle k and 
A

tk
i

i
q∑  denotes the total weight of orders to be dispatched. Equation (12) 

represents the total mass of t-type vehicle k between customer points i and j, H is the set of 

dispatched order points for vehicle k, and 
H

tk
j

j
q∑  represents the total weight of dispatched orders. 

In Eq. (13), when 1P
ckR =  (0), the vehicle monitors (does not monitor) the entry of goods P 

through the RFID sensor.

3.3.2 Real-time access to vehicle information

 Carbon emission is different from other scheduling optimization indicators, which leads to a 
lack of intuitive optimization results. Thus, on the basis of the established carbon emission model, 
we convert the carbon emission into the carbon cost by introducing carbon cost coefficients, which 
are combined with Eq. (7) to obtain the carbon emission costs of vehicles in the scheduling process 
as follows.
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0. otherwise
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The first two terms on the right of Eq. (14) represent the cost of carbon emissions generated by 
vehicle k during travel, and the third term represents the fixed carbon emission cost of the transport 
center served by vehicle k. Equations (15) and (16) define the decision-making variables.

3.3.3 Scheduling cost adaptation function

 The in-transit transportation cost of vehicle k during the dispatch process is

 
,

[ ( )] ,t t
d ci cik ij ijk kp

i j I
TC w d X d X C

∈
= × + × +∑  (17)

where

 kp maintain tolls otherC C C C= + + . (18)

 Equation (18) represents the vehicle transport subsidy cost, which includes the vehicle 
maintenance cost Cmaintain, vehicle passage cost Ctolls, and other costs Cother. wd is the cost per 
unit distance traveled.

3.3.4	 Scheduling	fairness	fitness	function

 Since the logistics scheduling task involves many logistics vehicles, the centralization of the 
distribution task will lead to the idleness of some vehicles. Therefore, the scheduling fairness is 
constructed as an optimization index to realize the greening and rationalization of resource 
utilization at the comprehensive utilization level of vehicles. The scheduling fairness fitness 
function of vehicles in the scheduling process is shown in Eq. (19), where the first term on the 
right indicates the deviation degree of the total weight of vehicle k and the average scheduling 
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weight, and the second term indicates the deviation degree of the total distance of vehicle k and 
the average scheduling distance.
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∑  (19)

 In summary, we combine the vehicle carbon cost adaptation function CC, the scheduling cost 
adaptation function TC, and the scheduling fairness adaptation function FF to construct the general 
objective function
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 Combining the established scheduling model with Assumptions 1–4 and the scheduling 
requirements of a logistics company, we summarize the constraints as follows.
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ikY ∈  (30)
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Equation (21) indicates that t
ckG  can only be 0 or 1. Dispatch center c recognizes the entry of 

vehicle k through the vehicle GPS when 1t
ckG =  but not when 0t

ckG = . Equation (22) represents 
the vehicle load constraint, where maxkQ  and minkQ  are the upper and lower load limits of vehicle 
k, respectively. Equation (23) guarantees the return of vehicles to the same dispatch center. 
Equation (24) indicates that the number of dispatched vehicles cannot exceed the total number of 
vehicles in the dispatch center. Equations (25)–(27) represent the dispatch permit constraint of 
the finished goods, where Eq. (25) indicates that each customer point can only be visited by one 
dispatch vehicle and Eqs. (26) and (27) indicate that the vehicle must complete the dispatch task 
within the maximum time limit. Equations (28) and (29) ensure that the vehicle leaves the 
customer point. Equation (30) indicates that 0t

iky = can only be 0 or 1. t-type vehicle k serves 
customer point i when 0t

iky = = 1 but not when 0t
iky = . Equation (31) ensures the elimination of 

subloops. Equation (32) indicates that the vehicle can only travel to one dispatch center.

4. Improved Bald Eagle Search Algorithm Incorporating Levy Flight and SA 
Mechanism

 The smart IoT-based green logistics vehicle scheduling problem studied here is essentially a 
variant of the VRP, and such complex optimization problems often involve complex constraints, 
large scales, and multiple optimization objectives, making them difficult to solve. The SI-based 
metaheuristic algorithm is efficient and convenient in solving such complex optimization 
problems.(26) Therefore, we use the SI algorithm to optimize the cross-territory multi-constraint 
logistics scheduling path. As an emerging SI algorithm, the BES has been effectively applied in 
the transportation field due to its novel search mechanism, making it a good search space and 
giving it a high search speed.(27) Therefore, we have designed an improved BES (IBES) incorporating 
the Levy flight strategy and SA mechanism to solve the studied green logistics vehicle scheduling 
problem.

4.1 Traditional bald eagle search algorithm

 The BES was proposed by Alsattar et al.(28) in 2020. Similarly to other group intelligence 
algorithms, its main idea is to model the behavior of bald eagles hunting for prey by dividing it 
into three stages: selecting the search space, searching for the prey, and diving to capture the prey, 
as outlined below.
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4.1.1 Select search space

 A bald eagle randomly selects the search space and determines the best search position 
according to the number of preys to facilitate the search for prey. The position Pi,new of bald 
eagle i is updated as follows by multiplying the a priori information of the random search by α:

 , ( ).i new best mean iP P r P Pα= + ⋅ −  (34)

Here, α is the parameter for controlling position changes, r is a random number between 0 and 1, 
Pbest is the best search position determined by the current BES, Pmean is the average distribution 
of the positions of the bald eagles at the end of the previous search, and Pi is the position of the 
ith bald eagle.

4.1.2 Search for prey

 Each bald eagle flies in a spiral shape in the search space to search for prey and find the best 
position to dive to catch prey. The position in the spiral flight is updated using the following polar 
equations:

 ( )i a randθ = ⋅ π ⋅ , (35)

 ( ) ( )r i i R randθ= + ⋅ , (36)

 
( ) ( ) sin( ( )),
( ) ( ) cos( ( )),

xr i r i i
yr i r i i

θ
θ

= ⋅
 = ⋅

 (37)

 
( ) ( ) / max(| |),
( ) ( ) / max(| |),

x i xr i xr
y i yr i yr

=
 =

 (38)

where θ(i) and r(i) are the polar angle and polar diameter of the spiral equation, respectively, a 
and R are parameters controlling the spiral trajectory, rand is a random number between 0 and 1, 
and x(i) and y(i) are the positions of bald eagle i in polar coordinates. After the coordinate 
transformation, the positions of the bald eagles are updated as

 , 1( ) ( ) ( ) ( )i new i i mean i iP P x i P P y i P P+= + ⋅ − + ⋅ − . (39)

4.1.3 Dive to catch prey

 The bald eagles dive quickly from the best position in the search space to the target prey and 
attack the prey at the same time. The motion is described by the following polar equations:
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xr i r i h i
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θ
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 (41)

 1

1

( ) ( ) / max(| |),
( ) ( ) / max(| |).

x i xr i xr
y i yr i yr

=
 =

 (42)

 The equation for updating the position of the bald eagle during the dive phase is

 , 1 1 1 2( ) ( ) ( ) ( ),i new best i mean i meanP rand P x i P c P y i P c P= ⋅ + ⋅ − + ⋅ −  (43)

where c1 and c2 are the intensities of movement of the bald eagle toward the optimal and central 
positions, respectively.

4.2 Improvement strategies

 As mentioned above, a bald eagle’s hunting process can be divided into selecting a search space, 
searching the space for individual prey to be captured, and diving to capture the prey. When 
selecting a search space, the bald eagle uses the information available from the previous stage to 
determine the next search area. When randomly selecting another search area, it determines the 
corresponding domain on the basis of the previous search domain, which makes it easy for the 
bald eagle to fall into a local optimum when selecting the search space, thus resulting in the inability 
to accurately capture prey in the global search for the optimum process and greatly reducing the 
effectiveness of the algorithm. Therefore, we introduce the Levy flight strategy and SA mechanism 
to enrich the algorithm’s search space and enhance the global search optimization ability of the 
bald eagle.

4.2.1	 Levy	flight	strategy

 Levy flight refers to a random walk with a heavy-tailed probability distribution of step lengths. 
The Levy flight strategy is widely used in the measurement and simulation of random and pseudo-
random natural phenomena. The movement of predators, birds, and marine animals in search of 
food can be described by Levy flight, which obeys the following distribution formula with parameter 
(step length) s:

 1( ) ~ , (0,2]Levy s u t β β− −= ∈  (44)

 1// | |s βµ ν= , (45)
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1/

( 1)/2
(1 ) (sin( / 2)) , 1

((1 ) / 2) (2 )

β

µ νβ
β πβδ δ

β β −

 Γ + ⋅
= = 

Γ + ⋅ ⋅  
 (46)

where 1.5β =  and (1 ) (1 )!β βΓ + = + .
 The classical bald eagle algorithm, controlled by the position change parameter α and random 
parameter r, tends to make the population converge prematurely and fall into a local optimum 
when selecting the search space. In this paper, the Levy flight strategy is introduced into the BES 
and acts on parameters α and r. The bald eagle searches for the prey to be captured by a unique 
spiral flight search, which increases the diversity of the search traversal, allowing it to jump out 
of a local optimum solution and improve the convergence of the original algorithm to find the best 
prey location. The position update, shown in Eq. (34), is improved to

 , ( ) .i new best mean iP P r P P Levyα= + ⋅ − ×  (47)

4.2.2 Simulated annealing mechanism

 When searching for prey using the polar spiral, eagles can explore new search space solutions. 
In this situation, SA has powerful local search capabilities. The use of SA can improve the local 
search ability and thus improve the exploration process of the local domain of the solution space. 
To improve the ability of a bald eagle to search for prey in a given space, the population location 
solution obtained by the bald eagle at that stage is used as the initial solution of SA, and cumulative 
iterations are performed to find the optimal solution so that the bald eagle can capture prey through 
more accurate diving and improve the quality of the global solution. The SA mechanism accepts 
solutions that are inferior to the current solution with a certain probability, allowing it to jump out 
of a local optimal solution and obtain the global optimal solution. When the domain solution is 
better than the current solution, it is considered as a completely new solution; otherwise, the 
probability of the latest solution is determined by the Boltzmann probability

 exp( / ).p Tθ= −  (48)

Here, θ is the difference between the best solution and the currently generated domain solution 
and T is a parameter that decreases periodically in accordance with a certain law during the search.

4.3	 Basic	flow	of	the	improved	algorithm

 The pseudo-code of IBES based on Levy flight and the SA mechanism is shown in Table 1.
 The basic flow of IBES is as follows.
Step 1: Initialize the number and location of the bald eagle population.
Step 2: Calculate the fitness function and initialize the population location.
Step 3: Select the search space using Eq. (47).
Step 4:  Update each bald eagle position in polar coordinates using Eq. (38) and search for the prey 

using Eq. (39) combined with the SA mechanism.
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Step 5: Update each bald eagle dive position using Eq. (43).
Step 6: Update the optimal solution and optimal position.
Step 7:  If the maximum number of iterations is reached, the optimal bald eagle position and the 

global optimal solution are output; otherwise, return to Step 3.

5. Model Validation and Evaluation

 To verify the model and algorithm established in this paper, simulation experiments based on 
the scheduling task of a real logistics company were conducted. Three dispatch centers and 80 
order customer points in a dispatch task were selected as the simulation data. IBES, BES, SSA, 
CSA, GA, and SA were used as simulation algorithms, and the results are compared.

5.1 Example validation

 To verify the effectiveness of the proposed algorithm, four benchmark test functions were 
selected for numerical validation, and PSO, BES, and IBES were compared. To increase the validity 
of the results, each algorithm was run 30 times independently on each benchmark function. Table 

Table 1
Pseudo-code of the IBES.
Improved bald eagle search algorithm (IBES)
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2 shows the types, ranges of values, and optimal solutions of the four benchmark test functions. 
Table 3 shows the specific results of the benchmark test functions. Figures 2(a)–2(d) show the 
results of the algorithm validation for the (a) Sphere function, (b) Rastrigin function, (c) Ackley 
function, and (d) Kowalik function, respectively. The table shows that the mean value of IBES for 
each benchmark function is closer to the theoretical global optimum than the other two algorithms, 
and the standard deviation is smaller, indicating less fluctuation of the results. Therefore, IBES 
outperformed PSO and BES in terms of finding the optimal solution.

5.2 Simulation experiment

 The parameters and the values of the model in the simulation experiment are shown in Table 
4. The types of logistics vehicles and their related information are shown in Table 5. Selected 
information related to the 80 orders is shown in Table 6. The partial distance matrix between the 
dispatch centers and the customer points is shown in Table 7. Information about the logistics centers 
is shown in Table 8.

5.3 Simulation results

 Using the simulation data, the proposed IBES and SA, GA, CSA, SSA, and BES were run 100 
times, where some of the parameters of IBES are shown in Table 9. The convergence curves for 
the best and worst optimization results for each algorithm are shown in Figs. 3 and 4, respectively. 
The average convergence curve of each algorithm is shown in Fig. 5. The best, worst, and average 
optimization objective function values of the six algorithms in 100 runs are shown in Table 10.
 The results of one of the 100 randomly selected runs are presented. The convergence curves 
of the six randomly selected algorithms are shown in Fig. 6. The optimized objective function 

Table 2 
Parameters related to the benchmark test function.
Functions Types Dimensionality Range of values Optimal solution
f1 Sphere 30 [−100, 100] 0
f2 Rastrigin 30 [−5.12, 5.12] 0
f3 Ackley 30  [−32, 32] 0
f4 Kowalik 30 [−5, 5] 0

Table 3 
Algorithm validation results.
Statistical 
quantities Algorithms f1 f2 f3 f4

Average value
PSO 1617.6983 236.9663 9.4045 0.0092688
BES 3.2966 × 10−19 73.4004 0.21289 0.0071868
IBES 1.9004 × 10−13 66.7804 0.057934 0.0044889

Standard 
deviation

PSO 717.9285 30.8476 2.0599 0.0094827
BES 1.2138 × 10−11 68.8264 0.6496 0.0091435
IBES 5.4203 × 10−13 61.4417 0.31732 0.0080813
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Table 4
Relevant parameters of the model.
Parameters Meaning General values
wd Travel cost factor 1.6
wc Cost of carbon factor 4.54
CEF Carbon emission factor (kg/l) 2.32
α Unit conversion factor (g/s → l/s) 737
δ Engine efficiency parameters 0.9
N Engine speed (rev/s) 38
E Engine displacement (l) 5
μ Engine friction coefficient 0.2
ω Mass ratio of fuel to air 1
γ Fuel calorific value (kJ/g) 44
ε Vehicle transmission efficiency 0.4
g Gravity acceleration (m/s2) 9.8
Cr Coefficient of resistance to vehicle rotation 0.01
ρ Air density (kg/m3) 1.201
A Windward area of the vehicle (m2) 3.912
Ca Air resistance coefficient 0.7

Fig. 2. (Color online) Graphs showing results of numerical verification.(a) Test result of Sphere function; (b) test 
result of Rastrigin function; (c) test result of Ackley function; and (d) test result of Kowalik function.
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Table 5
Logistics vehicle model parameters.
Vehicle type t t1 t2 t3
Unladen mass /t 5 8 8
Lower load limit /t 11 14 13
Upper load limit /t 28 28 25
Quantity /t 16 11 18
Subsidy cost/CNY 500 675 850

Table 6 
Information table of 80 orders for a scheduling task.
Order 
number

Customer 
point

Order weight 
(t)

Permit time 
limit (day)

Order 
number

Customer 
point

Order weight 
(t)

Permit time 
limit (day)

1 Xiangcheng 2.5 5 41 Shaoshan 2.5 5
2 Zhumadian 5 3 42  Hengyang 1.5 4
3 Wuhan 5 3 43  Leiyang 1.5 4
4 Huangshi 2 3 44 Shaoyang 2 4
5 Daye 2.5 3 45 Wugang 2.5 4
6 Shiyan 1.5 4 46  Yueyang 1.5 4
7 Danjiangkou 2.5 5 47 Miluo 2.5 5
8 Yichang 4 5 48 Linxiang 4 5
9 Danyang 2 4 49 Changde 2 4
10 Xiangfan 3 5 50  Jinshui 3 5
11 Laohekou 5 4 51  Zhangjiajie 1.5 4
12 Zaoyang 2.5 5 52  Yiyang 2.5 5
13 Yicheng 1.5 3 53  Yuanjiang 2.5 4
14 Ezhou 3 3 54  Chenzhou 3 3
15 Jingmen 3.5 4 55  Zixing 3. 5 4
16 Zhongxiang 2.5 4 56  Yongzhou 2.5 4
17 Xiaogan 2.5 5 57  Lingshutan 2.5 5
18 Yingcheng 1.5 3 58  Huaihua 2.5 4
19 Anlu 5 2 59  Hongjiang 1.5 2
20 Jingzhou 5 3 60  Loudi 1.5 4
21 Shishou 3 3 61 Lingshuijiang 3 4
22 Honghu 3.5 4 62 Lianyuan 3.5 4
23  Huangzhou 2 5 63 Lianyungang 2 5
24 Macheng 5 3 64 Jishou 1.5 3
25 Wuxiang 5 2 65 Guangzhou 1.5 2
26 Xianning 2 5 66 Panyu 2 5
27  Chibi 1.5 3 67 Huadu 2.5 4
28  Suizhou 5 5 68 Zengcheng 1.5 5
29  Guangshui 2 4 69 Conghua 2 4
30 Enshui 2.5 4 70 Shaoguan 2.5 4
31  Lichuan 2.5 5 71 Lechang 2.5 5
32 Xiantao 5 3 72 Shenzhen 1.5 4
33 Qianjiang 5 3 73 Zhuhai 1.5 4
34 Tianmen 2 3 74 Shantou 2 4
35 Changsha 2.5 3 75 Chenghai 2.5 4
36 Liuyang 3 4 76 Foshan 3 4
37 Zhuzhou 2.5 5 77 Nanhai 2.5 5
38 Liling 4 5 78 Shunde 4 5
39  Xiangtan 2 4 79 Sanshui 2 4
40  Xiangxiang 3 5 80 Gaoming 3 5
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Table 7 
Distance matrix (km).

Xiangcheng, 
Henan … Gaoming, 

Guangdong C1 C2 C3

Xiangcheng, Henan 0 … 1211.09 1843 1694 1780
Zhumadian, Henan 248.7 … 1128.58 2199 2050 2143
Wuhan, Hubei 291.46 … 886.22 1893 1744 1842
Huangshi, Hubei 285.71 … 882.56 2072 1923 2009
Daye, Hubei 332.98 … 863.47 1987 1838 1901
Shiyan, Hubei 537.01 … 1116.77 1994 1845 2079
Danjiangkou, Hubei 361.18 … 1166.83 1925 1790 1970
Yichang, Hubei 334.16 … 888.21 1820 1686 1865
Danyang, Hubei 192 … 893.09 1793 1659 1838
Xiangfan, Hubei 248.37 … 1057.22 1987 1852 2032

… … … … … … …
Le Chang, Guangdong 1141 … 294 1855 1769 1676
Shenzhen, Guangdong 1160.7 … 163.07 1305 1219 1132
Zhuhai, Guangdong 1068.2 … 95.31 1765 1671 1676
Shantou, Guangdong 1122.1 … 408.29 1843 1722 1707
Chenghai, Guangdong 1068.3 … 2216.38 1358 1272 1230
Foshan, Guangdong 1069.1 … 414.53 1758 1638 1622
Nanhai, Guangdong 1125.3 … 79.23 1743 1636 1645
Shunde, Guangdong 1065.4 … 80.77 1675 1568 1577
Sanshui, Guangdong 1128.6 … 66.93 1325 1218 1227
Gaoming, Guangdong 1220.67 … 63.49 1358 1230 1354

Table 8 
Logistics Center Information.
Number C1 C2 C3
Name Kunming Honghe Huize
Daily storage capacity (t) 795 536 90

Table 9 
Algorithm parameters of IBEA.
Parameter Meaning Value
itermax Number of iterations 200
N Population size 60
lm Control position change parameter 2
a Control rotational trajectory change parameter 4
R Control the rotational trajectory change parameter 1.5
T Simulated annealing initial temperature 500
delta Temperature decay coefficient 0.95
Lk Number of iterations at each temperature 10

values, running time, carbon cost CC, and dispatch cost TC of the six algorithms in this run are 
shown in Table 11, and the vehicle selection and dispatch results generated by IBES in this run 
are shown in Table 12.



Sensors and Materials, Vol. 34, No. 8 (2022) 3335

Fig. 5. (Color online) Average convergence curves 
of SA, GA, CSA, SSA, BES, and IBES after 100 runs.

Fig. 4. (Color online) Worst convergence curves for 
SA, GA, CSA, SSA, BES, and IBES in 100 runs.

Fig. 3. (Color online) Best convergence curves of 
SA, GA, CSA, SSA, BES, and IBES in 100 runs.

Table 10
Run results of the six algorithms SA, GA, CSA, SSA, BEA, and IBEA.

Algorithm Index
Best Worst Average

SA 2.42 × 105 2.86 × 105 2.77 × 105

GA 2.31 × 105 2.96 × 105 2.70 × 105

CSA 2.35 × 105 2.54 × 105 2.41 × 105

SSA 2.42 × 105 2.91 × 105 2.50 × 105

BES 2.27 × 105 3.03 × 105 2.48 × 105

IBES 1.77 × 105 2.39 × 105 2.19 × 105

Fig. 6. (Color online) Convergence curves of SA, 
GA, CSA, SSA, BES, and IBES for one of the 100 
runs.
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Table 11
XResults of a particular run of the six algorithms SA, GA, CSA, SSA, BEA, and IBEA.
Algorithm SA GA CSA SSA BES IBES
Objective function value 2.70 × 105 2.60 × 105 2.67 × 105 2.56 × 105 2.42 × 105 2.11 × 105

Running time (s) 18.10 19.24 16.92 96.14 5.77 23.40
CC 2.30 × 104 2.27 × 104 2.31 × 104 2.42 × 104 2.22 × 104 2.12 × 104

TC 1.20 × 105 1.11 × 105 1.29 × 105 1.23 × 105 1.14 × 105 1.01 × 105

Table 12 
IBEA results for one run of path generation
Dispatch Center Scheduling path results Vehicle type

C1

C1→34→9→43→C1 
C1→17→4→C1 

C1→16→30→45→5→C1 
C1→52→57→40→63→C1 

C1→18→54→66→6→10→C1 
C1→1→24→68→C1 

C1→61→20→55→25→56→C1 
C1→50→67→7→C1 

C1→70→47→53→78→C1 
C1→15→46→74→72→42→C1 

C1→3→80→33→C1 
C1→75→71→C1 
C1→11→13→C1

T1 
T2 
T2 
T3 
T2 
T3 
T3 
T1 
T2 
T2 
T3 
T3 
T2 
T1

C2

C2→49→35→79→C2 
C2→26→8→C2 

C2→29→48→31→C2 
C2→21→39→41→C2 

C2→37→51→C2

T3 
T1 
T1 
T2 
T2

C3

C3→77→65→C3 
C3→12→32→60→14→C3 

C3→69→64→44→C3 
C3→36→38→62→19→C3 

C3→76→28→73→C3 
C3→58→59→23→2→C3 

C3→22→27→C3

T2 
T3 
T3 
T3 
T2 
T3 
T1

5.4 Analysis of results

 From Figs. 3–5, it can be seen that, despite the poor convergence results in the early stage 
compared with the other algorithms, IBES can quickly jump out of a local optimal solution and 
search over a wider space to obtain better optimization results than the other algorithms. This is 
due to the introduced Levy flight strategy and SA mechanism. From the results of the six algorithms 
in Table 10, it can be seen that the best result of IBES is only 1.77 × 105 after 100 runs, the smallest 
value among the six algorithms and 26.9, 23.4, 24.7, 26.9, and 22.0% less than the values for SA, 
GA, CSA, SSA, and BES, respectively. The worst result of IBES after 100 runs is 2.39 × 105, which 
is also the smallest value among the six algorithms and 16.4, 19.3, 5.91, 17.9, and 21.1% less than 
the values for SA, GA, CSA, SSA, and BES, respectively. After averaging over 100 runs, the result 
of IBES is 2.19 × 105, which is 20.9, 18.9, 9.13, 12.4, and 11.7% less than the values for SA, GA, 
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CSA, SSA, and BES, respectively. In summary, the introduced improvement strategies improved 
the global search capability and robustness of the algorithm.
 Furthermore, the run results in Table 11 show that the value of the objective function for IBES 
is only 2.11 × 105, which is 21.8, 18.8, 21.0, 17.6, and 12.8% less than the values for SA, GA, CSA, 
SSA, and BES, respectively. The running time of IBES is 23.40 s, which is 7.14, 21.6, 38.3, and 
306% higher than those of SA, GA, CSA, and BES, respectively, and 75.7% lower than that of 
SSA. The convergence curve in Fig. 6 shows that IBES converges after 40 iterations. The convergence 
time to the optimal solution of IBES is 7.83, 6.61, 8.23, 12.4, and 4.50% shorter than those of SA, 
GA, CSA, BES, and SSA, respectively. The scheduling cost TC of IBES is 15.8, 9.00, 21.7, 17.9, 
and 11.4% lower than those of SA, GA, CSA, BES, and SSA, respectively. Overall, the designed 
algorithm can reduce the costs for logistics companies compared with other metaheuristics.
 In summary, compared with the traditional metaheuristic algorithms, our proposed IBES has 
good convergence speed and the ability to jump out of a local optimum while guaranteeing 
convergence accuracy, enabling it to effectively solve the green logistics vehicle scheduling problem. 
It is suitable for effective decision-making at the intelligent application level for logistics enterprises 
based on intelligent IoT and for realizing the efficient utilization of logistics resources.

6. Conclusions

 We investigated the green logistics vehicle scheduling problem based on smart IoT. By constructing 
optimization indexes such as the vehicle dispatch carbon cost and transportation cost, we established 
a green logistics vehicle dispatch model applicable to the intelligent application level that involved 
multi-dimensional dispatch constraints such as multiple dispatch centers, heterogeneous vehicles, 
and distribution permit restrictions. Furthermore, IBES was constructed by introducing the Levy 
flight strategy and SA mechanism into BES to improve the established model. An experimental 
simulation with real logistics scheduling tasks showed that IBES has greater robustness and a 
higher convergence speed and accuracy than other metaheuristic algorithms and can effectively 
solve the green logistics vehicle scheduling problem and realize green and efficient logistics 
enterprises at the level of intelligent applications. The proposed model and algorithm can be 
extended to similar areas of logistics dispatch, such as urban super-distributions. In this study, we 
assumed an ideal vehicle and road situation, which requires further adaptation for actual application. 
In the future, we will focus on more realistic scheduling situations such as complex road conditions 
and a dynamic speed of vehicles in the logistics scheduling process to further extend the effectiveness 
and generalizability of the research.
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