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	 We propose an indoor positioning system based on deep learning and fingerprinting. On the 
mobile side, we designed an Android application with received signal strength information 
(RSSI) signal reading, database storage, and real-time online positioning module functions. In 
addition, we placed a trained neural network model on the built server to achieve real-time 
positioning using the developed Android application. The deep learning framework of this paper 
uses a residual network (ResNet) and a data augmentation technique called mean and uniform 
random numbers in the preparation of the dataset. By using this data augmentation method, we 
significantly reduced the collection time of the dataset and increased the test accuracy of the 
neural network from 20.4% before the augmentation to 97.5% after the augmentation.

1.	 Introduction

	 In recent years, location-based services (LBSs) for indoor and outdoor environments have 
become an integral part of our lives, and an increasing number of LBSs have emerged.(1)  
Outdoors, people can easily access location information through the Global Positioning System 
(GPS),(2) and LBS providers can provide information about the weather, traffic, hotels, and travel 
based on the location of the user’s mobile device. However, in an indoor environment, GPS 
cannot provide high accuracy because it is sensitive to occlusion.(3) There are many technologies 
for indoor positioning, such as Wi-Fi,(4) Radio Frequency Identification (RFID),(5) Bluetooth 
Low Energy (BLE),(6) and Ultra-wideband (UWB) technologies.(7) The iBeacon technology was 
introduced by Apple in 2013 with the aim of solving the problem of indoor positioning. iBeacon 
encapsulates the upper layer protocol on the basis of BLE. As a result, iBeacon technology has 
no system limitations, and both iOS and Android terminals can use iBeacon technology.(8) 
iBeacon is widely used owing to its low power consumption, small size, low price, easy 
deployment, and high stability compared with other technologies. 
	 Traditional indoor positioning algorithms are mainly based on trilateral or triangular 
positioning algorithms, as well as fingerprinting positioning algorithms. However, the 
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performance of geometric positioning algorithms is affected by non-line-of-sight (NLOS) 
propagation, multipath propagation effects, and shadow fading,(9) and the positioning 
performance of such methods degrades in indoor environments. Fingerprinting works by saving 
the Received Signal Strength Information (RSSI) signals of the beacon at each reference point 
(RP) as a fingerprint in a fingerprint library in the offline phase. Then, in the positioning phase, 
the position coordinates are predicted and calculated by comparing the collected RSSI with the 
information in the fingerprint library, resulting in high positioning accuracy.(10) Compared with 
other positioning algorithms, the fingerprinting method has many advantages in terms of 
economy and practicality in system deployment, but its disadvantages include the noise signal in 
the fingerprint database affecting the positioning accuracy, and it is more cumbersome, 
requiring the establishment of a database with a huge amount of data in the data collection 
phase.
	 The use of machine learning techniques can overcome the noise and uncertainty in the 
fingerprint positioning process.(11) Although traditional machine learning techniques work well 
in approximating simpler input-output functions, computationally intensive deep learning 
models are able to handle more complex input-output mappings and provide superior 
accuracy.(12) 
	 In this paper, we aim to use deep learning for indoor positioning to identify the coordinates of 
mobile devices with high accuracy. We conduct experiments using iBeacon BLE transmitters. 
Multiple iBeacon transmitters are installed in the laboratory, and the coordinates of the mobile 
device are calculated using the RSSI values received from them. Deep learning is then used to 
improve the positioning accuracy. We use ResNet as the neural network model for this study. 
ResNet is a 152-layer model reported by Microsoft in 2015.(13) The gradient disappearance 
problem is solved by introducing a mechanism called Shortcut Connection, which adds the input 
from the front layer directly to the back layer. At the same time, to provide the huge data volume 
of the fingerprint database and the huge amount of data needed for neural network training, we 
use and improve a data augmentation method called mean and uniform random numbers 
(MURn).(14) 
	 The main contributions of this research are as follows: this paper constructs a system for 
indoor localization by using the fingerprinting approach and ResNet as the deep neural network. 
This system greatly reduces the data collection time as well as the construction time for building 
a local fingerprint database by using an improved MURn method. The superiority of the method 
proposed in this study is verified by conducting a comparison of experimental results by putting 
unaugmented data as well as augmented data into the produced neural network in the 
experiments.
	 The rest of the paper is structured as follows. In Sect. 2, two indoor positioning methods 
based on machine learning used in related works are presented. In Sect. 3, the framework of the 
indoor fingerprinting technique used is introduced. In Sect. 4, we describe the deep learning and 
data augmentation techniques we use and how we improve them. In Sect. 5, the proposed indoor 
positioning system is experimentally evaluated, and the experimental results are presented. 
Finally, the paper is summarized in Sect. 6.
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2.	 Related Works

	 Over the past decade, most research on indoor positioning has emphasized the use of machine 
learning. Many researchers have utilized  machine learning models, such as k-nearest neighbors 
(k-NN), decision trees (DT), naive Bayes (NB) classifier, support vector machine (SVM), and 
random forest (RF).(15,16)

	 Cong and Meng proposed an indoor positioning algorithm based on NB and Wi-Fi fingerprint 
recognition.(17) In their experiment, a router was selected as the generator of Wi-Fi signals and 
the RSSI fingerprint of the signal was collected to form a fingerprint library. The data were 
trained using a plain Bayesian model and the location was calculated using a server to achieve 
the fast positioning of smart terminals. The experimental results showed that the system and 
algorithm performed well, and the positioning accuracy was higher than 80%. 
	 Hsieh et al. presented a study of indoor positioning application using BLE-based devices 
combining  Kalman filtering and machine learning.(18) They improved the RSSI stability of 
Bluetooth transmitters by using a Kalman filtering algorithm and used iBeacon and Android 
smartphones as experimental devices to test and compare the K-NN, SVM, and RF algorithms. 
The experimental results showed that the optimal signal collection density for indoor positioning 
was about 1 m and that the accuracy reached more than 85%.
	 Recently, some researchers have introduced and applied deep learning techniques to the field 
of fingerprint localization. Chen et al. proposed a new method to train a dilated convolutional 
neural network (D-CNN) model using images formed from received signal strength (RSS) and 
to train a SVR model using the error of the D-CNN prediction results.(19) Jondhale and 
Deshpande proposed a real-time target tracking framework that applies generalized regression 
neural nets (GRNN) to indoor localization.(20) Combining smartphone and fingerprinting 
methods to determine location is more accurate and reliable, but the amount of work required to 
build the required database is huge, especially for large buildings.(21) 
	 On the basis of the above-mentioned research in related literature, an indoor fingerprint 
localization system using deep learning and data augmentation is proposed in this paper. To 
further improve the localization accuracy of the RSSI fingerprint localization method, this study 
uses the deep learning network ResNet. At the same time, to solve the problem that a large 
amount of data needs to be collected and it takes a lot of time to build the fingerprint database, 
we propose an improved MURn data augmentation method.

3.	 Proposed Indoor Positioning by Fingerprinting Method

	 In this section, the structure of the fingerprinting indoor positioning system used in this 
paper is presented, as shown in Fig.1. The fingerprinting technique is divided into two phases: 
an offline fingerprint calibration phase and an online position estimation phase.(22)

	 In the offline phase, we collect the RSSI values from all beacons at each RP and store them in 
the database. Some of the data are augmented, and the unaugmented and augmented data are 
divided into different datasets and put into the CNN model for training. In the online phase, we 
obtain the RSSI values from random RPs, process the data, and send them to the trained model 
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deployed on the server. Finally, the server sends the location information processed by the model 
to the user’s mobile terminal.

3.1	 Offline phase
	
	 The main work of the offline phase is to collect RSSI values from each RP and construct a 
location fingerprint database. For example, the mobile terminal collects a set of RSSI values 
from M beacons and samples them t times at N RPs:

	 ( ) ( ) ( ) ( ),1 ,2 ,, , , , 1,2, , ,   1
T

i i i i Mr r r r t t = … = … > τ τ τ τ τ ,	 (1)

where ri,i(τ) denotes the RSSI value collected at time τ from the j-th beacon and t is the sampling 
period. 
	 The fingerprint is sent to the server as a vector νi = (ri(τ), li), where li is the known location. 
The collected fingerprint data are referred to as radio maps,(23) which are described as

	 [ ]1 2, , , n= …V v v v .	 (2)

	 The final step in the offline phase is to send the collected radio maps to the server for training 
and to store the results of the training for use in the online phase.

3.2	 Online phase

	 In the online phase, the user uses the mobile terminal to obtain location information and 
sends this information to the server. In this process, the terminal collects RSSI from all beacons 
at this unknown location and sends it to the server. The server receives this information and 
converts it into the fingerprint form. Next, the server compares the data in the fingerprint 
database with a trained neural network model. Finally, the server returns the estimated location 
to the mobile terminal.

Fig. 1.	 (Color online) Structure of fingerprinting positioning system with online and offline phases.
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4.	 Proposed Deep Learning Model and Improved Data Augmentation Technique

	 To solve the problems of the traditional methods mentioned in Sect. 1, we propose an indoor 
positioning algorithm using deep learning with data augmentation.

4.1	 Deep learning

	 Deep learning is a method for learning deep neural networks with a multilayer structure.(24) 
A neural network is a computational model with the ability to simulate functions in the cranial 
nervous system by combining artificial neurons that simulate the nerves of a living organism. 
The artificial neurons that are part of the neural network are represented by the schematic 
diagram in Fig. 2 and have weights w = (w1,…,wn) and biases b as learning parameters. Using 
them, the following linear combination of the input x = (x1,…,xn) multiplied by the activation 
function φ is output:

	  Ty bw= +ϕ .	 (3)

4.2	 Residual network

	 In this paper, we use a 152-layer ResNet model. In deep learning, as a rule of thumb, deeper 
layers provide better performance. However, by making the layers deeper, certain layers cannot 
be updated during learning. Therefore, in ResNet, we prepare a route that connects the layers in 
series, as shown in Fig. 3, connecting the input to the output of each layer and flowing the input 
values as they are. This route allows the trained layer to understand how it differs from the input 
and to be updated when necessary. Alternatively, the route that skips layers is called Shortcut 
Connection and requires more than two layers to be skipped to learn. 
	 It has been shown that high accuracy can be achieved in image classification using ResNet. 
Therefore, even in the class classification in our method, we aim to improve the accuracy of the 
solution by using ResNet.
	 In this experiment, we use multiclass classification to determine where we are in the 
laboratory. Our method is to make the number of elements, K, of the output layer the same as the 
number of classes to be classified, and when the training data is in the k th class, the teacher data 
is [0,..., 0, 1, 0..., 0], i.e., only the k th element is 1. Each element of the output y of the neural 
network model is associated with the probability of appearance of each class, each output from 
the output element is in the range of 0 to 1, and the sum is normalized by the softmax method so 
that it is 1. 

Fig. 2.	 Diagram of artificial neuron.



3052	 Sensors and Materials, Vol. 34, No. 8 (2022)

4.3	 Model learning

	 Figure 4 shows the structure of the ResBlock used in this experiment. In the dense layer, 
normalization is performed for each mini-batch by batch normalization. In addition, all negative 
values are removed by the rectified linear unit (ReLU) activation function. 
	 Next, Fig. 5 shows the ResNet model used and Table 1 shows the parameters during training. 
The network consists of 12 processing layers. The number at the top of each processing layer and 
block in Fig. 5 indicates the number of output units. In each layer, batch normalization and 
activation functions are applied to the outputs. The activation function uses softmax for the 
output layer and ReLU for the other layers. The learning rate is 10−4.
	 The cross-entropy of Eq. (4), defined by the one-hot expression pi representing the actual 
locus and the predicted probability qi of the locus, is used as the loss function. In addition, the 
loss function is used to perform gradient descent to update the weights of the model. One epoch 
means that all the data in the dataset are used only once to update the weights, and in this 
experiment, the number of epochs for learning is set to 4000. 

	 ( ), logi i
i

H p q p q= −∑ 	 (4)

4.4	 Data augmentation

	 This experiment uses the MURn data augmentation method. The original idea of this method 
is to add information to the reference dataset by using mean and uniform random numbers. The 
total number of RSSIs in the reference dataset is increased in such a way that the overall RSSI 
remains between the minimum and average of the original RSSI values. For each RP, the average 
of the visible APs is calculated. After calculating the average, the range for generating uniform 
random numbers is calculated by subtracting the current RSSI value from the average. 
	 We improve this method by adding the most frequent occurrence S for data collected from a 
particular beacon at the same location. We add a weight to S in the generation of the uniform and 

Fig. 3.	 Features of ResNet.
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random numbers, increasing the relevance of the generated data and the verification accuracy. 
Figure 6 illustrates the pseudocode of this augmentation scheme.
	 In this study, we first stored the RSSI data received at all RPs in the developed Android 
application and then extract the data to a computer. By our own coded python program, for 
example, the augmentation number N is defined as 400 for this experiment, then the data from 
each RP is augmented to 400. This is performed by first finding the average of all RSSI values, 
M, for any beacon of a certain RP and finding the mode S. While increasing the weight of S, the 
data are generated randomly for a range of M and all RSSI values. For example, if we make the 
number of generators N = 40, the current RSSI value equal to 75, and the average value of the 
beacon in the RP equal to 61, then the potential range of uniform random numbers will be 15 (61 
to 75 inclusive), which means that the uniform random numbers will be generated 40 times at 
random for 15 numbers in the range 61–75.

Fig. 4.	 Construction of the ResBlock used.

Fig. 5.	 (Color online) ResNet model.

Table 1
Parameters during model training.
Item Parameters
Model configuration Number of mini-batches 8

Weight setting

Momentum weights for batch 
regularization, bias regularization 
Weight initialization 
Bias initialization

0.99 
L2 (10−6) 
HeNormal 

Zero

Optimization method

Algorithm 
Learning coefficient 
Learning coefficient decay 
Momentum

Nesterov accelerated gradient 
10−4 
0.0 
0.9
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5.	 Evaluation

	 In this section, we compare the raw and augmented data.

5.1	 Experimental environment

	 In the experiment, an Aplix BLE transmitter is used for indoor positioning. The mobile 
terminal that receives RSSI signals uses a TCL T770B smartphone. The specifications of these 
devices are given in Tables 2 and 3.
	 Next, Table 4 shows the configuration of the computer used in this experiment. Python 3.8 is 
used as the programming language and Keras, a TensorFlow backend, is used as the machine 
learning library.
	 In this experiment, eight BLE transmitters are installed in the ceiling of a laboratory of 10.29 
m width, 8.23 m length, and 2.90 m height. Figure 7 shows the 23 RPs and the locations of the 
BLE transmitters. During the data collection phase, the experimentalists collected RSSI data at 
23 locations approximately 1.5 m above the ground with handheld smartphones.
	 In addition, Fig. 8 shows the laboratory environment as well as the ceiling. The floor of this 
laboratory is carpet and the ceiling, south wall and east wall are made of gypsum board. The 
west side includes windows as well as reinforced concrete, and the north wall is completely 
reinforced concrete.

Fig. 6.	 Pseudocode for data augmentation with MURn.
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Fig. 7.	 Locations of BLE transmitters set in the laboratory.

Table 3
Specifications of mobile terminal used in the experiment.
Item Parameters
Device name TCL T770B
OS version Android 10
CPU Snapdragon 665
Memory 6 GB
Storage 128 GB
Bluetooth specifications Bluetooth v5.0 Low Energy
Frequency band 5 GHz
Beacon transmission interval 1000 ms

Table 2
Aplix BLE transmitter parameters.
Item Parameters
Device name Aplix MyBeacon® MB00Ac-DR1
Power supply Two dry batteries
Bluetooth specifications Bluetooth Ver.4.1
Frequency band 2.4 GHz
Output power −12 dBm
Measured power −70 dBm
Beacon transmission interval 100 ms
Transmission data Minor value, Major value, Proximity UUID

Table 4
Specifications of computer used in the experiment.
Software and hardware configuration Configuration
CPU Intel® Core™ i7-11700 
Memory 32 GB
Graphics card NVIDIA Geforce RTX 3090 
CUDA CUDA 11.2
CuDNN CuDNN 8.1
Python Python 3.8
TensorFlow TensorFlow 2.5.0
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	 As shown in Fig. 9, a self-developed Android app for RSSI data collection is used in the 
experiment. Eight beacons are collected every 10 s at 23 locations in the calibration, and a total 
of 113 data are collected, 13 of which are used as teacher data, and the remaining 100 are used as 
test data. We used the MURn data augmentation method described in Sect. 4.4 to expand the 13 
data collected from each RP to 400. The data are shown in Table 5.
	 The two data models are trained separately using the deep learning indoor positioning 
method shown in Sect. 4.2 for the raw and augmented data. Since in the preparatory experiments, 
the previous researchers experimented by using 400 training data as well as 100 test data at each 
RP and conducted the experiments. Therefore, this paper also augments the training data of the 
raw data to 400 to conduct the experiments. Then, the localization accuracy of each point is 
verified.

5.2	 Experimental results

	 Figures 10 and 11 show that the accuracy of both the training and test data improved as the 
number of epochs increased. Thus, from the figures, it can be seen that the training data are 
correctly learned. 
	 Table 6 also shows that the average accuracies are 20.4% before augmentation and 97.5% 
after augmentation, an increase of 77.1%. Before data augmentation, the accuracy of many 
positions is very poor. However, the accuracy of almost all positions becomes excellent after 
data augmentation, thus showing that the data augmentation is effective. The accuracy also 
varies with the location.
	 In addition, we can see from Table 6 that the augmented data still perform poorly in some 
locations, such as positions 7 and 15, where the accuracy rates are 93 and 90%, respectively. The 
reason for this result is mainly due to the fact that these positions have in common the proximity 
to walls and the presence of more obstacles. Besides, by looking at the model’s misestimation 
results, it is found that most of the misestimations are estimated in the neighboring positions, 
which may also be attributed to the proximity of these positions to the proximity when dividing 
the RPs. On the contrary, in some remote positions, such as position 23, these positions are likely 
more correct owing to less occlusion and the absence of neighboring positions around them.

Fig. 8.	 (Color online) Actual laboratory environment.
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Fig. 9.	 (Color online) Developed scanning signal interface for Android application.

Table 5
Datasets of the experiment.
Dataset Training data Test data
Raw data 13 100
Augmented data 400 100

Fig. 10.	 (Color online) Discrimination accuracy and loss function during training of the model before data 
augmentation.
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5.3	 Limitations of this study

	 Since this study was conducted only in this laboratory to collect data as well as to conduct 
experiments, the conclusions drawn were also limited to the environment in this research 
laboratory. In future work, we hope to conduct experiments on indoor positioning in more 

Fig. 11.	 (Color online) Discrimination accuracy and loss function during training of the model after data 
augmentation.

Table 6
Localization accuracy of each position before and after data augmentation.
Position Precision before augmentation (%) Precision after augmentation (%)
1 40 98
2 16 100
3 13 98
4 37 100
5 11 97
6 26 100
7 18 93
8 10 100
9 26 99

10 6 96
11 20 99
12 16 95
13 30 100
14 18 99
15 7 90
16 24 96
17 29 100
18 14 94
19 22 100
20 18 94
21 17 96
22 30 100
23 22 98
Average 20.4 97.5
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indoor environments with different rooms. In this way, we can study the effects on radio signals 
in different material environments. Also, during the collection phase of both training and test 
data, the experimentalists performed the collection without human presence. Therefore, 
additional work is required to support the data in the presence of additional distractors or people.

6.	 Conclusions

	 We proposed an indoor positioning system using fingerprinting techniques and deep 
learning. We also utilized data augmentation techniques to significantly reduce the time to 
collect data and build a database. We implemented and evaluated the model by testing the 
accuracies before and after data augmentation. It was shown that the localization accuracy after 
data augmentation improved by 77.1% compared with that for the raw data set. In addition, by 
comparing the accuracies of indoor positioning methods based on machine learning mentioned 
in related works, we found that the accuracy of the machine learning models tested is about 80–
90% while the accuracy of the deep learning proposed in this paper exceeded 97%.
	 Two future topics to be studied are as follows. The first is the integration of servers and 
smartphones. In this paper, real-time location measurement was achieved by creating an 
application. However, there were problems with server maintenance and communication delays 
due to the communication between the smartphone and the server. Therefore, we want to port 
the deep learning model to a smartphone. Second, it is necessary to integrate the application and 
put it into practical use with applications that detect people entering and leaving the room, and to 
consider better user interfaces and designs.
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