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	 Disappearances and falls are problems in the medical and nursing care of elderly people. 
There is also a shortage of nurses and caregivers, which increases the workload per person. A 
system that automatically monitors the movements of elderly people and alerts nurses and 
caregivers of emergencies would make it possible to solve problems safely and efficiently even 
with a small number of staff. In this study, we propose a system in which a small Bluetooth Low 
Energy (BLE) tag is continuously worn by an elderly person and BLE scanners are installed at 
various locations in medical and nursing care facilities to estimate their routes in real time with 
sufficient accuracy for practical use. To achieve this, several constraints must be overcome. 
First, the BLE beacon tags must be small enough to be worn. Second, since a tag must have 
relatively long battery life, we cannot avoid long-cycle and low-power beacon transmissions. 
Third, the locations where BLE scanners can be placed in a building are limited, resulting in 
their sparse deployment. Under these assumptions, we propose graph-based indoor localization 
for sparse scanner deployment (GILS) as a method that estimates indoor locations and movement 
paths of elderly people by incorporating the map matching technique in real time. By introducing 
heuristics to correct locations in real-time location tracking, we achieve a practical level of 
accuracy in location and movement path estimation even with sparse beacon transmission and 
scanner deployment. 

1.	 Introduction

	 In recent years, the population of many countries has been aging and the proportion of elderly 
people has been increasing, especially in Japan.(1,2) As a result, hospitals and elderly-care 
facilities are seeing an increase in the number of inpatients and residents, leading to a shortage 
of nursing and care workers. Medical and nursing care facilities are also experiencing problems 
such as elderly people wandering outdoors and going missing, or becoming ill in the middle of 
the night in restrooms, hallways, and other facilities and being unable to move because they 
cannot call for help. If these problems are not detected early, they can be life threatening. The 
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problem of going missing outdoors can be prevented if staff know when an elderly person tries 
to leave the house and take immediate action, and an elderly person who is unable to move or 
call for help can be detected early if their location is tracked.
	 One possible solution to these problems is to introduce a system that tracks the location of 
elderly people and detects their problems in real time. The system notifies mobile devices 
carried by a nurse or caregiver when an elderly person tries to go out of the house or is 
immobilized at a location for a long time. The location of the elderly person is then displayed on 
the mobile devices.
	 Although many studies on location estimation exist, (3) there are several problems with its use 
in medical or elderly-care scenarios. First, if elderly people need to wear a device (or a tag) 
continuously, it must be sufficiently small for them to forget they are wearing it, which limits 
such a device to a Bluetooth Low Energy (BLE) beacon at the current level of technology. Since 
it is costly to replace the battery frequently, the transmission power of the small beacon tag must 
be small and the transmission cycle must be long. In this case, location estimation is based on a 
small number of weak beacons, and the accuracy of location estimation is significantly reduced. 
On the other hand, the BLE scanner that receives the radio waves emitted by the small tags is 
also limited in where it can be installed within a building. The cost of scanners is also an issue, 
and their placement must be somewhat sparse. Consequently, we need a method to maintain the 
necessary position estimation accuracy even if BLE beacons are received by a small number of 
scanners.
	 To address this issue, we propose graph-based indoor localization for sparse scanner 
deployment (GILS) as a method to estimate the locations of elderly people with sufficient 
accuracy for practical use, even when the scanner placement is sparse and the beacon time 
interval is long. First, in this study, we use Raspberry Pi for a BLE scanner and equip it with four 
additional BLE interfaces to obtain five received signal strength identifier (RSSI) values from a 
single beacon. It has been observed that RSSI values obtained from multiple BLE adapters vary 
even for the same beacon, contributing to improved location estimation accuracy. To prevent 
position estimation accuracy from degrading even when the number of scanners capable of 
receiving each beacon is small, a heuristic based on a map is applied to adjust the estimated 
location in real time using the time-series consistency of the estimated location. Specifically, we 
define a graph that defines the possible locations on a map, estimate the location using RSSI 
values, and adjust the location on the basis of time-series consistency to estimate the route of 
elderly people in real time. Through evaluation, we show that the proposed method GILS 
achieves practical performance. 
	 The structure of this paper is as follows. Section 2 describes related work on estimating 
locations under sparse deployment of BLE beacons. Section 3 describes the framework of the 
proposed system. Section 4 describes the proposed location estimation method of GILS. Section 
5 evaluates the accuracy of the proposed method, and finally, Section 6 summarizes the 
contributions of this study.
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2.	 Related Work

	 There have been many studies on indoor location estimation, and methods based on several 
strategies such as channel state information, fingerprinting, angle of arrival, and time of arrival 
have been proposed. (3) Among them, the most basic method is based on the RSSI. For this 
strategy, various radio sources can be used, including Wi-Fi, Bluetooth, and cellular phones. 
However, Wi-Fi and Bluetooth are most practical because these standards are popular in indoor 
use.
	 For indoor localization in medical and elderly-care applications, Wi-Fi and Bluetooth are 
suitable from the viewpoint of cost. Since elderly people must wear tags continuously, Bluetooth 
is considered the most promising method in terms of low power consumption. Localization 
using Bluetooth is a well-investigated area of study, which includes methods using RSSI-based 
distance estimation(4) and deep learning.(5) However, these methods assume that scanners are 
densely placed in buildings, which does not apply to general medical and elderly-care settings 
because the locations where BLE scanners can be placed are severely restricted. Furthermore, 
we also have a severe limitation on the time interval and transmission power of BLE beacons 
because of the small battery capacity of small tags worn continuously by elderly people, which is 
also not acceptable in these methods. Conversely, there is a system design where beacon tags 
that can operate for a long period of time with a small battery capacity are densely placed in 
buildings, and elderly people carry BLE scanners with them. This setting may be effective for 
estimating their location with high accuracy, and such location estimation methods using 
fingerprinting(6) and dead reckoning(7) have been proposed. However, it is difficult for elderly 
people to carry large electronic devices such as smartphones with them continuously, and even 
relatively small beacon tags are often left behind in their rooms.
	 On the other hand, to complement the low accuracy of location estimation by GPS, the map 
matching technique, which uses a map to restrict the possible locations, has been proposed.(8,9) 
Also, maps have been combined with gyro sensors without using other localization methods 
such as GPS.(10) Yamamoto et al. applied the global matching method to localization with BLE 
beacons,(11) and global matching has been practically applied to cow tracking.(12) Yamamoto et 
al.(11) represented a map by a graph, where vertices represented movable positions and edges 
represented possible transitions. They computed the time series of locations (i.e., vertices) with 
the highest likelihood given the time series of RSSI values. Although this method considers the 
case where BLE scanners are sparsely located, it computes the most likely routes after the whole 
data set is obtained; thus, it is not possible to compute the location in real time. Since we need to 
detect problems in real time to generate alerts and inform nurses, their method cannot be 
applied. In addition, it does not consider the case of a time interval in which no scanner receives 
beacons, meaning that we must consider the sparser deployment of scanners; we consider the 
case where a beacon is often received by less than two scanners. In such cases, we sometimes 
must estimate locations based on proximity,(13) and in the worst case, there is no scanner that can 
receive beacons. In this paper, we propose a BLE-based real-time localization method for such 
sparse deployment of BLE scanners. 
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3.	 Framework of Proposed System

3.1	 Requirements of medical and elderly-care facilities

	 In hospitals and nursing homes, elderly people often stay for long periods of time, and 
automatic detection of their problems is required to improve the efficiency of their care. In 
hospitals, inpatients may leave the hospital without permission and, especially in cases of 
dementia, there is a risk that they may go missing. Although there are commercially available 
devices (e.g., anti-theft gates) that notify nurses when a beacon tag passes a certain location, they 
lack functionality because elderly people sometimes leave their beacon tags in their rooms. In 
many nursing homes in Japan, doors to the outside are locked and elderly people cannot leave 
without permission. However, there is a risk of falling when getting up from bed, getting into a 
wheelchair, or moving around. This means that care workers need to know when elderly people 
make certain movements. These requirements can be satisfied if the indoor location of an elderly 
person can be always monitored and the nurse or caregiver can be notified when necessary.
	 To keep track of the location of elderly people indoors, we first need them to carry a beacon 
tag continuously. Since the situation depends on the hospital or care facility, this should be done 
in a way suitable for each facility. If an elderly person always wears a name tag, it is easy to 
attach a beacon to it. However, in many cases, name tags are not worn. In some hospitals, people 
are identified by wearing a tag with a bar code printed on it around the wrist. In this case, a 
beacon tag can be attached to this tag, but it must be small. If neither a name tag nor a wrist tag 
is available, a small beacon tag should be attached to a shoe or another object.
	 On the other hand, beacon tag batteries are a major problem in actual operation. Frequent 
battery replacements are not acceptable for business operations, so it is preferable to have 
batteries that can operate for as long as possible without replacement. However, a small size 
generally means a small battery capacity, and the only way to balance size and battery capacity 
is to lengthen the time interval of the beacon transmission. In this study, Mamorio(14) was 
selected as the beacon tag to balance these factors. This small beacon tag has dimensions of 19 × 
35 × 3.4 mm and a battery life of approximately one year, and it transmits beacons with 75 dB 
power at intervals of about 3 s.
	 BLE beacon scanners that receive beacons must be installed in the building. In general, 
however, scanners can only be installed where there is a power source. In addition, from the 
standpoint of financial cost, no more than the necessary number of scanners should be installed. 
Therefore, we assume a sparse scanner arrangement where it is difficult to always capture a 
beacon with three or more scanners, and we place additional scanners in areas where accurate 
position estimation is particularly necessary. In other words, in the medical care field, it is 
necessary to achieve sufficient position estimation accuracy to determine the path of movement 
under the assumption of long beacon intervals and sparse scanner placement. 
	 We also have requirements on time delay and accuracy in the medical and elderly care field. 
Although we wrote that real-time localization is required, a certain delay of a few minutes is 
accepted in this field. In most cases, trouble with elderly people is solved if someone can arrive 
within a few minutes. On the other hand, the requirement for localization accuracy depends on 
the case. However, since we define the possible locations of elderly people as the route graph 
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associated with the indoor map, the localization results will be applicable in practice if the route 
graph is appropriately designed according to the required granularity. Appropriate placement of 
BLE scanners with respect to the route graph will provide an accurate path estimation and low 
localization error. To achieve this is the objective of this paper to satisfy the practical 
requirement. 

3.2	 Framework of the proposed system

	 An overall view of the proposed system to be used in hospitals and elderly-care facilities is 
shown in Fig. 1. The system consists of four elements: a BLE beacon tag, BLE scanners, a server, 
and mobile devices. A BLE scanner is typically implemented on a small device such as 
Raspberry Pi and is often installed near a power outlet. BLE scanners should be placed in a 
manner such that the movement history is well obtained, i.e., the system can estimate the 
position with the required accuracy. When a scanner receives a beacon, it forwards the record to 
a server. The server can be located either at the facility in which scanners are placed or outside 
the facility. The beacon reception history is stored in a database in the server. Mobile terminals 
such as smartphones or tablets are provided for use by nurses and caregivers and are placed at 
the room where they usually work. Alternatively, each person may carry a mobile phone to 
receive alerts from the system. If the server detects any problems, it sends an alert to the tablet or 
smartphone via push communication to inform the nursing staff or caregiver. If necessary, the 
server notifies the device with detailed descriptions such as the location with a map and the 
recent moving history. The person who receives the notification can respond promptly to the 
problem by taking action according to its contents.

3.3	 Equipping multiple BLE adapters on a scanner

	 As mentioned earlier, to meet the requirements of small size and long life, the beacon tags 
used in the field require a long beacon transmission cycle and low transmission power, which 
reduces the accuracy of position estimation. To address this problem, we connect multiple BLE 
adapters to the scanner. In general, Raspberry Pi is often used as a BLE scanner, which has four 
USB ports. By connecting external BLE adapters to these ports, five BLE adapters including the 
built-in BLE adapter can be installed. Figure 2 shows a photograph of the prototype system. The 

Fig. 1.	 (Color online) Overview of the proposed system.
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Raspberry Pi in the foreground is the scanner with four BLE adapters installed. Four is the 
maximum number due to the limitation of the number of USB ports, although a larger number of 
adapters will improve the localization accuracy.

4.	 Proposed Method GILS for Sparse Scanner Deployment

4.1	 Overview

	 We propose a method for estimating indoor locations and moving paths with practical 
accuracy for a sparse scanner arrangement and long beacon transmission cycle. By connecting 
multiple BLE adapters to a beacon scanner, multiple RSSI values are acquired and averaged for 
a single beacon, thereby reducing the error in the distance estimated from the RSSI values. This 
reduces the error caused by the sparse scanner placement. The proposed method restricts the 
movement paths on a graph defined on an indoor map, i.e., we assume that people move only on 
the edge of the given route graph. The distance from the scanner is estimated from the RSSI 
values of the received beacons to limit the possible locations on the moving path. We first 
compute the estimated distance from each scanner from a set of RSSI values measured by the 
scanner, and determine several possible locations on the route graph. After that, we check the 
consistency of the estimated locations in a time series to identify the route of the tag’s movement. 
Although accurate location estimation is generally not possible unless three or more scanners 
receive beacons, we achieve practical accuracy in location estimation by limiting the possible 
locations using the route graph and by checking the consistency of the estimated locations in the 
time series.
	 Specifically, in GILS, we first set time windows at regular intervals and estimate the 
positions on the route graph for each time window using the RSSI values of beacons observed by 
scanners. If the number of scanners that have observed beacons is not sufficient to determine a 
unique estimated location, multiple estimated locations are left as a set of estimated locations. 
Next, the estimated location sets in the time series are checked, and inconsistent estimated 
locations are deleted by moving backward in time. If a beacon is not observed in a time window, 
the position in the time window is added using the locations estimated before and after that time 
window. By repeating the above steps, a unique estimated movement path is finally identified. 

Fig. 2.	 (Color online) Scanner equipped with four BLE adapters.
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4.2	 Data set

	 The input of GILS is the route graph set on the indoor map and a time series of beacon 
reception records obtained by scanners. The route graph G = (V, E) is geographically matched to 
the indoor map, which represents locations that the tags can move to. Namely, each vertex v ∈ V 
has a coordinate on the map, and we assume that tags can move on edges e ∈ E. 
	 The beacon reception records of a scanner are a set of tuples generated each time a beacon is 
received by a BLE adapter attached to the scanner. Each tuple includes the reception time, 
scanner ID, beacon tag ID, BLE adapter ID, and RSSI value. In this study, each scanner is 
equipped with five BLE adapters, so for each beacon sent, each scanner receiving it generates up 
to five tuples. A time window of a few seconds is set as the unit for estimating the position. We 
let the period at which the time window starts be Ws (s) and the length of the time window be Ww 
(s). That is, the start time of time window t = 1, 2, ... is tWs and the end time is tWs + Ww.
	 For each time window, we pre-process the data. We collect a set of tuples where a BLE 
adapter of scanner s receives a beacon of beacon tag b in time window t. If the number of tuples 
is less than or equal to three, we delete them. Otherwise, we take the average of the RSSI values, 
which is added to the input data set. As a result, data set Dt for time window t contains at most 
one average RSSI value for each pair of scanner s and beacon tag b.

4.3	 Algorithm to estimate locations

	 Our proposed algorithm (Algorithm 1) focuses on a single target beacon tag to predict 
locations. This algorithm is executed each time the data set of time window t, denoted by Dt, is 
obtained. In line 1, we retrieve Dt from D, which is the family of data sets of all time windows in 
the past. In line 2, we execute step (1) to obtain the set of estimated locations Lt of time window 
t. In line 3, we insert Lt into L, which is the family of location sets of all time windows in the 
past. Finally, we execute step (2) to check the consistency of the estimated locations and estimate 
the moving path of the target tag.

4.3.1	 Procedure of step (1)

	 Function 1 describes step (1) of the proposed method. Line 2 substitutes the number of 
scanners that have received beacons with the target tag in time window t according to data set 
Dt. The procedure branches according to the value of x. In the case of x ≥ 3 (line 3), we first 
calculate the optimal coordinate l′ with the minimum square error according to the RSSI values 
of the multiple scanners included in Dt (line 4). Specifically, for each RSSI value of the scanners, 
we estimate the distance between the scanner and target tag using Friis’s equation,(15) and 
compute the optimal coordinate that minimizes the error in the distance. Since this coordinate 
may not be on an edge of graph G, we compute the nearest coordinate l on G in line 5 and 
substitute it as the set of estimated locations Lt in line 6. 
	 In the case of x = 2 (line 8), there are two scanners that have received beacons from the target 
tag. Thus, in line 9, we first compute the two intersections of the two circles with diameters 
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corresponding to the RSSI values of the two scanners as a set of estimated locations L′t. If L′t is 
empty (line 10), i.e., the two circles do not intersect, we compute the coordinate with the 
minimum square error that is on the line connecting the two coordinates of the scanners in line 
11 and assign it as a set of estimated locations L′t (not on graph G). In line 14, we compute the 
nearest locations on G for each element of L′t to obtain a set of estimated locations Lt on G.
	 In the case of x = 1 (line 16), we first calculate the estimated distance d from the RSSI value 
(in line 17) and find the coordinates on G that are the closest to distance d (in line 18). Note that 
if multiple edges on G intersect the circle, all of them are estimated locations Lt.
	 Finally, if x = 0 (line 20), we have no information to estimate the location for time window t. 
Thus, Lt should be an empty set (line 21).

4.3.2	 Procedure of step (2)

	 Function 2 describes step (2) of the proposed method. This procedure checks the family of 
estimated location sets backward in time, removing inconsistent locations or filling in missing 

Algorithm 1
Indoor Localization Algorithm
1 Dt ← D.retrieve(t) ▷  retrieve tuples for time window t
2 Lt ← computeLocationSet(Dt) ▷  obtain location set for t
3 L ← L ∪ Lt ▷  insert into location set family L
4 checkLocations(L, t)

Function 1
Step (1): Estimating Locations for Time Window
1	 function computeLocationSet(Dt)
2		  x ← Dt.numOf Scanners()
3		  if x ≥ 3 then
4			   l′ ← Dt.calcMinSqrLoc()
5			   l ← G.findLocOnGraph(l′)
6			   Lt ←{l}
7		  end if
8		  if x = 2 then
9			   L′t ← Dt.findCrossPoints()
10			   if L′t = Ø then
11				    l′t ← Dt.calcMinSqrLoc()
12				    L′t ← {l′t}
13			   end if
14			   Lt ← G.findLocOnGraph(L′t)
15		  end if
16		  if x = 1 then
17			   d ←  Dt.estimateDistance()
18			   Lt ← G.findClosestLocOnGraph(d)
19		  end if
20		  if x = 0 then
21			   Lt ← Ø
22		  end if
23	 end function
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Function 2
Step 2: Identifying Routes
1	 function checkLocations(L, t)
2	 ftrackback ← 1
3		  while ftrackback = 1 do
4			   ftrackback ← 0
5			   if |Lt| = 0 then break end if		 ▷  Skip processing t if no location
6			   /* if Lt−1 is empty, complement the past location */
7			   if  |Lt| > 0 and |Lt − 1| = 0 then
8				    k ← t − 1
9				    while Lk = 0 do k ← k − 1 end while
10				    (lt, lk) ← G.findNearestPairOnGraph(Lt, Lk)
11				    if dist(lt, lk) ≤ δ × (t − k) then
12					     L.complementLocation(k, t)
13				    end if
14				    Lk ← {lk}
15				    t ← k
16:				    ftrackback ← 1
17			   end if
18			   /* if lt is unreachable from none of Lt − 1, remove it */
19			   foreach lt ∈ Lt do
20				    if Lt − 1.noLocWithinDistance(lt, δ) then
21					     Lt.remove(lt)
22				    end if
23			   end foreach
24			   /* if lt − 1 is unreachable from none of Lt, remove it */
25			   foreach lt − 1 ∈ Lt − 1 do
26				    if Lt.noLocWithinDistance(lt − 1, δ) then
27					     Lt − 1.remove(lt − 1)
28:					    ftrackback ← 1
29				    end if
30			   end foreach
31			   /* if |Lt − 1|(> 2) will not decrease, choose one. */
32			   if |Lt| = 1 and Lt − 1 ≥ 1 then
33				    (lt, lt − 1) ← G.findNearestPairOnGraph(Lt, Lt − 1)
34				    Lt − 1 ← {lt − 1}
35				    ftrackback ← 1
36			   end if
37			   t ← −1
38		  end while
39	 end function

locations to uniquely identify the travel route of the tag. Line 2 initializes the flag fbacktrack, 
implying the need to check the estimated locations further back in the past. In line 3, if the flag 
is set, time window t is processed, and the flag is reset in line 4. In line 5, if Lt is empty, it cannot 
be checked and the while loop is broken.
	 In lines 6–17, we complement the past locations if |Lt| > 0 and |Lt − 1| = 0. Lines 7–9 find time 
index k where |Lt| > 0 and |Lk| > 0 but Lk, Lk + 1, …, Lt − 1 are all empty. Namely, we complement 
the locations of Lk, Lk+1, …, Lt − 1. Then, we find the pair of locations (lk, lt) where lk ∈ Lk, lt ∈ Lt, 
and the distance between lk and lt is the smallest in line 10. We assume that a tag can move a 
distance between two adjacent time windows. Thus, if the distance between lk and lt is less than 
× (t − k) (line 11), we complement lk + 1, …, lt − 1 as if the tag has moved from lk to lt along the 
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shortest path on G at a constant speed (line 12). In this case, we determine the location for time 
window k uniquely as lk (line 14). After substituting k for t, since Lk is modified, we should check 
further back in the past and set the flag ftrackback (line 16). Otherwise, i.e., if the distance between 
lk and lt is larger than δ × (t−k) in line 11 and we cannot complement locations, then we carry out 
the action as in lines 14–16 because we do not subsequently check time window k.
	 In lines 18–30, we check the distance between the estimated locations of adjacent time 
windows t and t − 1. First, we check locations in Lt in lines 19 – 23. If location lt ∈ Lt is further 
than  from all locations in Lt − 1, we delete lt from Lt since lt is not reachable. Next, we check 
locations in Lt − 1 similarly in lines 25 – 30. If a location lt − 1 ∈ Lt − 1 is further than  from all 
locations in Lt, we delete lt − 1 from Lt − 1 since lt − 1 is not reachable. Once Lt − 1 is modified, we 
set flag ftrackback in line 28 to check the effect on the past.
	 In lines 31–36, we reduce the number of estimated locations to one when necessary. If |Lt| = 1, 
there is no possibility in the future to remove elements of Lt − 1 upon acquiring more information. 
Thus, in this case, we choose the most likely location in Lt − 1 and remove the others. Specifically, 
we retrieve the nearest pair (lt, lt − 1) in line 33, and remove locations of Lt − 1 other than lt − 1 in 
line 34. Since Lt − 1 is modified, we set flag ftrackback in line 35. Finally, we decrease t in line 37 
and execute the while loop again if ftrackback is set.

5.	 Evaluation

5.1	 Methods 

	 The proposed system was installed in a nursing home in Wakayama City, Japan. We moved 
around the building with a BLE tag for 10 min to obtain a data set. After applying preprocessing 
as mentioned in Sect. 4.2, we evaluated the performance of GILS. In our evaluation, Mamorio 
Fuda shown in Fig. 3(a) was used as BLE tag, which is a tiny sticker-type BLE beacon of size 24 
× 36.2 × 3.4 mm3 and weight 3.4 g. [Fig. 3(b) is a same-size black tag put on a wristband, on 
which a barcode is usually printed.] For a beacon transmission cycle of 3 s and transmission 
power of 75 dB, the battery life is approximately 1 year. We implemented BLE scanners on 
Raspberry Pi 3 Model B+ with four additional Elecom LBT-UAN05C1 BLE adaptors, as shown 
in Fig. 2. Figure 4 shows the indoor map of the nursing home with the route graph and the 
locations of scanners. Note that the upper part of the map around Nodes A, C, D, E, F, and I is a 
partition-free hall where elderly people can eat, watch TV, talk, read books, and so forth. The 
size of the floor is about 80×50 m. We set 19 scanners in the floor, with scanners 1 and 2 in the 
nurse room, scanners 3, 8, and 9 in the corridor, scanners 4 – 7 in the hall, scanners 10–12 in the 
toilets, and scanners 13–19 in the shared bedrooms. Figure 5 shows the route that we walked on 
this floor. After departing from Node G, we walked slowly for 10 min on the path comprising 
Nodes G, K, J, C, G, B, A, D, E, I, F, J, K, B, G, C, A, B, K, J, F, I, E, C, G. The true location for 
each time window was calculated by recording the time at each vertex on the path and by 
complementation under the assumption that we walked between the nodes at a constant speed. 
The period of the time window was set to Ws = 3 s and the length of the time window was set to 
Ww = 6 s. That is, the two consecutive time windows overlapped by 3 s. 
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(a) (b)

Fig. 3.	 (Color online) BLE tags.  (a) Mamorio Fuda. (b) Mamorio on a wristband.

Fig. 4.	 (Color online) Indoor map with route graph and scanner locations.

Fig. 5.	 (Color online) Moving route in evaluation.
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	 We compared the proposed method of GILS with a basic method in which we simply compute 
the location by least-squares estimation. We compared GILS with this naive method because, to 
our knowledge, there is no real-time location estimation method with map matching for BLE-
based localization. The algorithm of the basic method is as follows. In each time window, we 
simply compute the most likely location from the distance estimated by the RSSI records. Then 
we compute the nearest location from it on G within distance  from the previous location as the 
estimated location. If no scanner receives beacons in a time window (remember that we remove 
the record when three or less beacons are received in the preprocessing), then the estimated 
location in the time window is missing. 

5.2	 Error reduction effect with multiple BLE adapters

	 First, we verified the effect of connecting multiple BLE adapters to a scanner. If the RSSI 
values of the same BLE beacon are almost the same in all BLE adapters, using multiple BLE 
adapters does not reduce the location estimation error. Thus, we verified the distribution of RSSI 
values for each beacon transmission. In the data set obtained in the experiment described above, 
we  identified the RSSI values for each beacon transmission and computed the standard deviation 
for each beacon transmission when there were four or more RSSI values. Figure 6 shows a 
histogram of the standard deviation of 67318 beacon transmissions, where the average is 7.10 dB. 
The result indicates that BLE adapters produce large variations in RSSI values during 
observation, and thus the use of multiple BLE adapters is effective in reducing errors in distance 
estimation. 

Fig. 6.	 (Color online) Histogram of RSSI standard deviation for each beacon transmission.
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5.3	 Evaluating accuracy of position estimation

	 Next, the accuracy of the position estimation was evaluated. Figure 7 shows the position 
estimation accuracy of GILS compared with the naive conventional method. The horizontal axis 
is the elapsed time in our experiment and the vertical axis is the error of each time window. The 
mean absolute error (MAE) is 3.54 for GILS and 4.10 for the conventional method. The error 
level is similar in many time windows, but sometimes the conventional method takes a much 
larger error. This is due to the adjustment using time-series consistency in GILS. Figure 8 shows 
the number of scanners that observed beacons of the tag in each time window, and Fig. 9 shows 
the corresponding histogram. The average number of scanners that observed beacons in a time 
window is 2.74. Less than two (less than three) scanners observed a beacon in the 6 s time 
window in 28.7% (53.0%) of cases. Since generally three or more scanners are required to 
estimate the location on the map, this value of 53.0% is rather low for location estimation.
	 Finally, we found that all moving paths were correctly estimated. Although the number of 
beacon receptions appears insufficient, the estimated moving paths on G are all correct even 
when moving through the hall of the map. This indicates that GILS performs well even with 
sparse scanner placement and with infrequent and low-power beacon transmissions. 

5.4	 Effect of the time window length

	 Localization accuracy for various window time Ww is shown in Table 1. Here, we set the 
window starting interval Ws such that 2Ws = Ww. The result shows that the value used in the main 
experiment, Ww = 6, is the best. Since the beacon interval is 3 s, it is considered that the number 
of RSSI values collected in the case Ww = 3 is insufficient. Conversely, a larger time window 
does not improve the accuracy because of the movement within the time window. 

Fig. 7.	 (Color online) Performance comparison.
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Fig. 8.	 (Color online) Number of scanners receiving beacons.

Fig. 9.	 (Color online) Histogram of scanners receiving beacons.

Table 1
Performance with various window times.
Window time Ww (s) Mean absolute error (m)
3 3.86
6 3.54
9 3.89

12 3.96



Sensors and Materials, Vol. 34, No. 8 (2022)	 3043

5.5	 Limitation of the proposed method

	 To explore the limitation of the proposed method, we examined the performance with a 
smaller number of scanners. Figure 10 shows the sparser layouts of the scanners applied. 
Figure 10 is an 11-scanner layout in which we intend to locate scanners so that each edge is 
covered by two scanners as much as possible. From this layout, we removed three scanners, 3, 4, 
and 9, to make an 8-scanner layout, where each node is covered by at least one scanner. We 
removed scanners 1 and 6 to make a 6-scanner layout. We removed scanner 2 to make a 
5-scanner layout. 
	 The result is shown in Table 2, which indicates that the localization accuracy degrades as the 
number of scanners decreases. The path estimation error also increases as the number of 
scanners decreases. Note that the path estimation errors in the 11-, 8-, and 6-scanner layouts 
occur only in the hall on the upper part of the map, e.g., the path A–D–E–I was estimated as 
A–D–C–I, or the path E–C–G was estimated as E–F–C–G. A reason for this error is that the 
hall, by nature, is prone to errors in route identification because one can walk anywhere. Another 
reason will be that scanners 1 and 6 are placed in the corner of the rooms and may have had poor 
radio reception. Anyway, the practical impact of the path estimation errors in a hall will be 
relatively small. On the other hand, the path estimation error in the 5–scanner layout occurs in 
the corridor, e.g., the path B–G–C–A was estimated as B–A. This is because there are no 
scanners to cover nodes C and G, and this error is not practically acceptable. 

Fig. 10.	 (Color online) Sparse deployments of BLE scanners (11-scanner layout). 

Table 2 
Performance with selected scanners. 
Number of scanners Mean absolute error (m) Correct path rate (%)
20 3.54 100.0
11 4.82 96.2
8 5.36 88.5
6 6.09 80.8
5 7.25 65.4
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	 From the above, we conclude that a sparse scanner layout works if a scanner adequately 
covers each node of the route graph. It was also suggested that proper placement of the scanner 
so that the scanner receives good radio reception is also essential to improve the accuracy of 
position estimation.

6.	 Conclusion

	 The size of a beacon tag must be limited for elderly people to wear it continuously, and the 
time interval and transmission power of beacon transmissions must be limited to reduce battery 
replacement. In many cases, BLE scanners should be deployed in a sparse arrangement due to 
installation costs and the location of power outlets, which will reduce the accuracy of location 
estimation based on RSSI. We presented a solution to this problem by incorporating multiple 
BLE adapters in a scanner, and we showed that the use of multiple BLE adapters can reduce 
location estimation errors. We also proposed a real-time location estimation method called GILS 
that can estimate indoor locations, even when the beacon cycle is long and scanner placement is 
sparse, by using the route graph on the map and by assuming that the elderly person moves along 
its edges. We evaluated the performance of GILS using actual devices installed in a nursing 
home. The results show that GILS provides accurate movement path estimation even under the 
sparse reception of beacons. A future task is to introduce a statistical model for more robust and 
accurate indoor localization under sparser situations.

Acknowledgments

	 We deeply appreciate the cooperation of Mr. Yukihisa Tomari and all the staff members of 
the nursing home COSUMO. This work was supported by the MEXT Innovation Platform for 
Society 5.0 Program (Grant Number JPMXP0518071489).  

References

	 1	 Statistics Bureau of Japan: https://www.stat.go.jp/data/topics/topi1131.html (accessed March 2022). 
	 2	 Cabinet Office of Japan: https://www8.cao.go.jp/kourei/whitepaper/w-2021/html/gaiyou/s1_1.html (accessed 

March 2022). 
	 3	 F. Zafari, A. Gkelias, K. K. Leung: IEEE Commun. Surv. Tutorials 21 (2019) 3. https://doi.org/10.1109/

COMST.2019.2911558.
	 4	 R. I. Hartley and P. Sturm: Comput. Vision Image Understand 68 (1997) 2. https://doi.org/10.1006/

cviu.1997.0547.
	 5	 K. Urano, K. Hiroi, T. Yonezawa, and N. Kawaguchi: J. Inf. Process. 29 (2021) 58. https://doi.org/10.2197/

ipsjjip.29.58. 
	 6	 R. Faragher and R. Harle: IEEE J. Selected Areas Commun. 33 (2015) 11. https://doi.org/10.1109/

JSAC.2015.2430281. 
	 7	 L. Ciabattoni, G. Foresi, A. Monteriu, L. Pepa, D. P. Pagnotta, L. Spalazzi, and F. Verdini: J. Ambient Intell. 

and Humanized Comput. 10 (2019) 1. https://doi.org/10.1007/s12652-017-0579-0. 
	 8	 Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang: Proc. 17th ACM SIGSPATIAL Int Conf. 

Advances in Geographic Information Systems (2009). https://doi.org/10.1145/1653771.1653820. 
	 9	 C. E. White, D. Bernstein, and A. L. Kornhauser: Transp. Res. Part C 8 (2000) 91. https://doi.org/10.1016/

S0968-090X(00)00026-7. 
	10	 Z. Xiao, H. Wen, A. Markham, and N. Trigoni: Proc. 13th Int. Symp. Information Processing Sensor Networks 

(2014). https://doi.org/10.1109/IPSN.2014.6846747. 

https://www.stat.go.jp/data/topics/topi1131.html
https://www8.cao.go.jp/kourei/whitepaper/w-2021/html/gaiyou/s1_1.html
https://doi.org/10.1109/COMST.2019.2911558
https://doi.org/10.1109/COMST.2019.2911558
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.2197/ipsjjip.29.58
https://doi.org/10.2197/ipsjjip.29.58
https://doi.org/10.1109/JSAC.2015.2430281
https://doi.org/10.1109/JSAC.2015.2430281
https://doi.org/10.1007/s12652-017-0579-0
https://doi.org/10.1145/1653771.1653820
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1109/IPSN.2014.6846747


Sensors and Materials, Vol. 34, No. 8 (2022)	 3045

	11	 D. Yamamoto, R. Tanaka, S. Kajioka, H. Matsuo, and N. Takahashi: Proc. 26th ACM SIGSPATIAL Int. Conf. 
Advances in Geographic Information Systems (2018). https://doi.org/10.1145/3274895.3274918. 

	12	 V. Bloch and M. Pastell: Sensors 20 (2020) 3841. https://doi.org/10.3390/s20143841. 
	13	 J. Krumm and K. Hinckley: Proc. 6th Int. Conf. Ubiquitous Computing (2004). https://doi.org/10.1007/978-3-

540-30119-6_17. 
	14	 Mamorio Corporation: https://mamorio.jp (accessed March 2022). 
	15	 H. T. Friis: Proc. I. R. E. 34 (1946) 254. https://doi.org/10.1109/JRPROC.1946.234568. 

About the Authors

Takuya Yoshihiro received his B.E., M.I., and Ph.D. degrees from Kyoto University in 1998, 
2000, and 2003, respectively. He was an assistant professor at Wakayama University from 2003 
to 2009 and has been an associate professor in Wakayama University from 2009. His current 
interests include graph theory, distributed algorithms, computer networks, wireless networks, 
medical applications, and bioinformatics. He is a member of IEEE, ACM, IEICE, and IPSJ. 
(tac@wakayama-u.ac.jp)

Takeshi Goya received his B.E and M.E degrees from Kyoto University, Japan, in 1999 and 
2001, respectively. He is currently working as a researcher in Wakayama University. He is 
interested in IoT system development and web-based applications. 

http://S. Ka
https://doi.org/10.1145/3274895.3274918
https://doi.org/10.3390/s20143841
https://doi.org/10.1007/978-3-540-30119-6_17
https://doi.org/10.1007/978-3-540-30119-6_17
https://mamorio.jp
https://doi.org/10.1109/JRPROC.1946.234568
mailto:tac@wakayama-u.ac.jp



