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 Porous bone structures with different lattices have great potential application in medical 
tissue engineering as they exhibit excellent mechanical properties. In this study, we utilize the 
optical microscope system as the optical sensor and imager to achieve real-time detection and 
categorization of pores bone materials based on machine learning techniques. The initial bone 
images are pictured using an industrial camera, and the image processes are compiled for 
defining the superficial shapes of the bone configuration. The image segmentation approaches 
contain Canny edge detection, k-means clustering, and binarization. The initial bone surface 
images are transformed into the gray-scale mode, and k-means clustering is utilized to normalize 
the gray-scale mode for enhancing binarization precision. The erosion and dilation of the 
opening operation are used to extract image noises and improve the pores characteristics. The 
profiles and the dimensions of the pores characteristics are precisely obtained by using Canny 
edge detection. The Gaussian blur method is performed to acquire obvious surface profiles of 
the pores configurations without background noise. The experimental results show that the 
geometric sizes of artificial pores implants can be clearly examined by this optical microscope 
system after metal additive manufacturing. 

1. Introduction

 In bone construction technology, therapeutic scaffolds with varied pores lattices are 
important to maintain the carrying of oxygen and nourishment and good organism and tissue 
ingrowths.(1–3) Medical implants always undergo different mechanical stresses, including 
compression, tension, and torsion. Artificial implants with sufficient porosity should have a 
shape recoverable property.(4) Therefore, bone characteristics, such as pores size, pores size 
distribution, pores morphology, pores orientation, and surface area-to-volume ratio, should be 
tailored for bone-tissue engineering applications.(5) The mechanical qualities of artificial 
implants are improved by uniting micrometer-scale pores configurations into the scaffolds.(6) The 
micrometer-scale pores structures also improve the cell adherence on the surface of the scaffold. 
Recently, three-dimensional printing (3DP) has been used to construct microscale metal pores 
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structures by additive manufacturing.(7) The micrometer-scale metal pores configurations with 
interconnected pores, intended dimension, and form can be immediately fabricated by 
employing 3DP. Hence, the categorization of pore dimension and form after 3DP is a major issue 
for configuration corrections and the accuracy of medical applications. 
 Digital image processing is a significant field in medical therapy and treatment.(8) In clinical 
applications, the accurate segmentation of biomedical images is a fundamental step for 
monitoring, diagnosis, and therapy planning.(9) In addition, accurate image segmentation is a 
critical method for pattern identification. The initial images are separated into various 
classifications on the basis of some standards that are utilized to obtain the location of interest. 
However, general segmentation by hand is a tedious operation and wastes time. A rapid 
automatic segmentation method with high resolution is needed for the treatment of a large 
number of therapeutic images. In 2009, the adaptive segmentation method with various 
thresholds was investigated for the definition and quantitative examination of natural and 
artificial pores structures.(10) The direct image-derived porosities are clearly measured by the 
adaptive segmentation method. Furthermore, the geometrical parameters of metal cellular 
structures are evaluated by the segmentation and the skeletonization of the original images.(11) A 
suite of modules within the framework of the open-source image analysis program is used for 
the characterization of periodic pores structures.
 In this work, the optical microscope system as the optical sensor and imager is used to 
achieve real-time detection and categorization of pores bone materials based on machine 
learning techniques. Multiple image segmentation methods are integrated with different 
advantages to categorize the raw pictures of the pores bone configurations. These image 
segmentation methods comprise Canny edge detection, binarization, and k-means clustering. 
The enhancement of image contrast based on erosion and dilation is implemented for the 
morphology of the pores bone structures.(12) In these images, dilation attaches pixels to the pores 
borders, erosion withdraws pixels on the pores borders, and the noise in the pores images is 
eliminated by opening operation. Finally, the pores contours and diameters are pictured by 
utilizing the mathematical morphology of image segmentation methods. 

2. Measurement Scheme and Methods

 Figure 1(a) shows the experimental optical microscope system for capturing the initial 
surface pictures of the pores bone configurations. The optical microscope system includes a 
12 mm objective lens (HM2012-10M) and a professional camera (Hayear HY-5200) with 4608 × 
3456 pixels. The distance between the bone structure and the objective lens is about 90 mm. The 
pores surface of the bone structures is full of soft brightness by using a ring light (Hayear HY-
209-144B). Uniform incidence of the ring light is advantageous for rugged surface imaging that 
completely excludes multiple reflections and metal surface shadows. The 24-bit captured images 
are saved in JPG format with 600 × 600 pixels. The dimension of the pixel in raw images is 
approximately 33.3 μm. Three pores bone configurations are sketched through Materialise 
3-matic with varied lattices and manufactured via direct laser metal sintering. In the 3DP 
manufacturing process, titanium alloy powder of Ti6Al4V is utilized with a 38 μm average grain 



Sensors and Materials, Vol. 34, No. 5 (2022) 1641

Fig. 1. (Color online) (a) Scientific optical microscope system for image acquisition. Selective porous metal bone 
configurations: (b) square array, (c) gyroid, and (d) random lattices.

diameter. Figures 1(b)–1(d) show the pictures of the pores metal bone configurations with three 
lattices. The pores sizes and diameters of the bone structures are in the range from 100 to 1600 
μm. The nominal pores diameter is 500 μm. The pores metal bone configurations are 
manufactured without heating. The top surface of the bone structure is inspected by utilizing the 
optical microscope system. The computer program for image processing is based on Python 3.6. 
The computer equipment contains an Intel Core i7 central processing unit and 32 GB of random-
access memory. The computation time of the image segmentation is 7.5 ms. The calculation 
program supplies a comfortable technique to implement the image segmentation and calculates a 
batch of raw pictures in a simple step. 
 Figure 2 shows the flowchart of the principal operations for the initial images. The purpose of 
the image operations is to determine the pores location and compute the pores diameter. The 
contours of the pores structure are separated from the background by image segmentation. The 
opening algorithms contain the morphological dilation and erosion. The Gaussian blur is used to 
eliminate the background noise. The final operation executes the statistical measurements for 
the whole surface of the pores configuration. The target of the image segmentation is to select 
the features of interest from the raw picture. Because the pores surface is abnormal and reflects 
light waves along chaotic directions, pores borders cannot constantly be distinguished. The 
cluster calculation is a graphic work of the principal analytic technique for mining data that 
identify the homogenous class of the object. This k-means calculation is a conventional data-
clustering technique.(13–15) The k-means clustering is exercised to categorize the gray gradient 
for gray-scale images. The processes of k-means clustering are as follows.
(1) Resolve the k weights and collect information into k categories. 
(2) Choose k points randomly as a centroid from the dataset. 
(3) Compute the length between every centroid and point. 
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Fig. 2. (Color online) Flow diagrams of image processing.

(4) Separate every point inside the category nearest a centroid. 
(5) Re-examine calculation to pick a new centroid while every centroid is clustered around a 

preset quantity of points. 
(6) Compare old and new centroids. If the length among old and new centroids is larger than a 

certain threshold, the location of the centroid is unstable. We need to iteratively execute the 
first to the third steps. 

(7) Conclude the calculation. If the length between old and new centroids is smaller than a 
certain threshold, the location of the remeasured centroid is stable. 

 The image binarization is subjected to black–white transformation from a gray-scale image 
after k-means clustering calculation.(16) If the gray value is larger than a certain threshold, the 
pixels are changed to white in the image. Likewise, if the gray value is smaller than a certain 
threshold, the pixels are changed to black in the image. The binarization accuracy is promoted 
after the execution of k-means clustering.
 The opening operation combines the dilation and erosion in the same structuring component, 
which mainly removes the slight noises in the image and isolates the borders of neighboring 
pores.(17) The pores borders in the images are recognized by using Canny edge detection.(18,19) This 
execution of Canny edge detection is shown as follows.
(a) Resolve the gradient orientation and magnitude at every pixel in a raw picture.
(b) If the gradient volume of one pixel is larger than those at two neighboring pixels in the 

gradient orientation, this pixel can be labeled as a border. Otherwise, this pixel is labeled as 
background.

(c) Erase impotent borders through hysteresis thresholding.
 The Gaussian blur is a low-pass filter for minimizing high-frequency noise.(20,21) The noise 
degree is decreased, and effectiveness in the border detection is ameliorated.
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Fig. 3. (Color online) Experimental effects of the porous metal bone in square lattice: (a) initial image, (b) gray 
scaling, (c) k-means clustering, (d) binarization, (e) erosion, (f) dilation, (g) Canny edge detection, (h) Gaussian blur, 
(i) profile decision, and (j) dimension decision.

3. Measurement Outcomes and Discussion

 The presented method is utilized to measure three pores metal configurations. Figures 3 to 5 
show the serial results of the image procedure for the pores bone configurations with three 
lattices. From Figs. 3(a), 4(a), and 5(a), it is observed that the initial raw images of these pores 
configurations have different strengths. The immediate thresholding of the initial images is 
required for binarization. The image segmentations are performed for the gray scaling. The 
intensities of the pixel in the gray scale correspond to the strut height. It can be seen in Figs. 3(b), 
4(b), and 5(b) that the frameworks have neatly varying heights, but the pores configurations are 
expressed in random and high-frequency varieties. In Figs. 3(c), 4(c), and 5(c), the pixels 
belonged to pores, and frameworks are discriminated by k-means clustering calculations. A 

Fig. 4. (Color online) Experimental effects of the porous metal bone in gyroid lattice: (a) initial image, (b) gray 
scaling, (c) k-means clustering, (d) binarization, (e) erosion, (f) dilation, (g) Canny edge detection, (h) Gaussian blur, 
(i) profile decision, and (j) dimension decision.
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certain threshold could be simply applied to binarize the pixel values. Figures 3(d), 4(d), and 5(d) 
show the binarization of the images. It can be clearly seen that the pores locations are fairly 
bright when the background is dark. The results of the morphological erosion for the pores 
regions are shown in Figs. 3(e), 4(e), and 5(e). The results of the morphological dilation for the 
pores regions are shown in Figs. 3(f), 4(f), and 5(f). A succession of dilation and erosion 
eliminates the small-scale irregularities of the pores shapes. Figures 3(f), 4(f), and 5(f) show the 
gradient magnitudes of the pores regions. The images illustrate the gradients involving bright 
homogeneous borders in a black background.
 A Canny edge detector with non-maximum oppression is used for obtaining pores edges, as 
shown in Figs. 3(g), 4(g), and 5(g). The pores edge contours are obtained by holding the minor 
borders that unite the major borders. As can be observed, the masses of the proper pores borders 
are identified from the binary images; however, a small quantity of the borders is lost owing to 
the division of the border boundaries. Figures 4(i) and 5(i) depict the discontinuities of the pores 
borders in the gyroid and random structures. Even if the image noises are insignificant and the 
pores borders are quite well described, the Canny edge detector loses a few features of the pores 
borders owing to the complicated profiles of random and gyroid configurations. Three pores 
configurations are tested for the execution of Canny edge detection. Although the quality of the 
pores borders has some deviations, the border contours are practically distinguished. 
Furthermore, the inscribed circles of the border contours are utilized to define the pores 
diameters. Figures 3(j), 4(j), and 5(j) depict the determinations of pores diameter. Every 
diameter of the pore is well clarified.
 Figure 6 shows the classifications of the pores space and pores diameter of the square array 
configuration. As mentioned earlier, the circle diameter of the border contour is the length of the 
square lattice. It can be observed that 68% of the diameter values of the pores are in the range 
from 0.55 to 0.7 mm, and 80% of the area values of the pores are in the range from 0.6 to 
0.75 mm2. This aspect of the size distribution could be considered as a benchmark for the 

Fig. 5. (Color online) Experimental effects of the porous metal bone in random lattice: (a) initial image, (b) gray 
scaling, (c) k-means clustering, (d) binarization, (e) erosion, (f) dilation, (g) Canny edge detection, (h) Gaussian blur, 
(i) profile decision, and (j) dimension decision.
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following analysis of real structures. Figure 7 shows statistic histograms of pores space and 
diameter values in the gyroid configuration. The space distribution of the gyroid configuration 
shows two peaks nearly centered on 0.5 and 0.2 mm2. By comparison, the diameter classification 
of the gyroid structure exhibits one peak around 0.35 mm. Figure 8(a) shows an exponential 

Fig. 6. (Color online) Classifications of (a) porous space and (b) pores diameter of the square array configuration.

Fig. 7. (Color online) Classifications of (a) porous space and (b) pores diameter of the gyroid configuration.

Fig. 8. (Color online) Classifications of (a) porous space and (b) pores diameter of the random configuration.
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decay of the space distribution for the random pores configuration. The average zone of the 
random configuration is 0.324 mm2, and then the average diameter is 0.332 mm. Note that the 
lower peak of space classification for the random configuration agrees with the small pores 
diameters. The random borders are detected by high-accuracy image segmentation and opening 
operation methods. In previous studies, nondestructive imaging methods such as scanning 
electron microscopy (SEM) and X-ray computed tomography (CT) yielded high-resolution, 
three-dimensional measurements of periodic pores structures.(10,11) However, adequate image 
segmentation methods for the conversion of gray-scale CT images should be developed for the 
quantitative characterization of pores features and subsequent modeling. In comparison with 
SEM and CT technologies, the presented system is less costly in terms of both price and 
computation speed.

4. Conclusions

 In conclusion, an optical microscope system based on machine learning techniques is 
proposed for evaluating the geometrical properties of pores metal bone configurations produced 
by additive manufacturing. A suite of computation modules within the framework of the 
homemade code implements the inspection and classification of the pores types. To illustrate, 
the image segmentation is performed in the metal bone structures with three pores lattices. The 
pores borders are described visually, and the geometrical characteristics on a cluster of 
frameworks and pores are estimated at once. We achieved simultaneous image acquisition, 
classification, and exhibition of pores bone structures at a speed of 0.3 s. In comparison with 
general manual measurement methods, the geometries of porous areas and pores diameters are 
statistically quantified with a high degree of precision. The experimental results measured by 
our method may directly compare with the specifications of 3D patterns by computer-aided 
design. Moreover, this measurement arrangement can also be utilized for complex inspections of 
other medical productions.
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