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	 With the development of single-cell RNA sequencing technology, it is very important and 
valuable to supplement and improve the mining algorithm of single-cell RNA data to understand 
the heterogeneity of single-cell RNA and the precise mechanism of the prevention and treatment 
of diseases. Machine learning and data mining are the preferred technologies for processing 
large amounts of data. The multiple fitting regression and Bayes (MFRB) method is a new 
method that combines multiple fitting regression (MFR) methods and Bayesian decision-making 
in machine learning. The probabilistic support vector machine (PSVM) method is excellent for 
data classification and has been widely used and verified. In this study, these two classification 
methods were used to detect large-scale single-cell RNA data and small-sample unbalanced 
single-cell RNA data, respectively. The performances of the two algorithms were determined 
and their classification effects were discussed. A random walking preprocessing algorithm is 
also used to improve the distribution characteristics of low-quality data. The results show that 
the two algorithms have good results only for large-scale single-cell RNA data; for small-sample 
unbalanced data sets, neither of the algorithms effectively classified single-cell RNA data.

1.	 Introduction

	 In recent years, with the progress in the application of preimplantation genetic diagnosis, 
preimplantation genetic screening (PGS),(1) and tumor target cell determination and treatment,(2) 
especially circulating tumor cell assessment and detection,(3) single-cell RNA sequencing 
technology has attracted increasing attention and development in various fields. Starting from 
Matioli electrophoresis hemoglobin separation technology,(4) Shi, Song, Geng, Wu, and Guan. 
invented patch-clamp technology(5) and Dalian Institute of Chemical Physics proposed the 
concept of the microfluidic chip,(6) both of which are powerful tools for single-cell RNA 
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sequencing technology research. After that, Bendall’s flow cytometry mass spectrometry(7) and 
Liu’s capillary zone electrophoresis tandem method(8) provided a more direct and accurate 
analysis basis for single-cell RNA sequencing technology.(9)

	 With the development of single-cell RNA sequencing technology from the first generation to 
the fourth generation, single-cell RNA sequencing technology continues to improve and 
complement.(9) Although sequencing technology has made considerable progress in increasing 
the reading length,(10) expanding flux,(11) increasing depth,(12) increasing speed, and reducing 
cost,(13) it still needs to be improved in terms of the reading length and precision.(14) Moreover, 
the heterogeneity(15) and variability of single cells(16) increase the computing power required in 
the sequencing process and have also brought more challenges to the subsequent downstream 
analysis. Chitsaz and Yee-Greenbaum proposed the SPAdes algorithm to realize the early 
diagnosis of cancer cells.(17) Miyatake  used the Exome Hidden Markov Model with non-negative 
least squares regression and other algorithms to achieve data denoising in the population sample 
mode.(18) Vinga and Almeida used Renyi continuous entropy and other methods to measure the 
complexity of information and to obtain a complete classification.(19) Koslicki used the RaceID 
algorithm to search for rare types in mixed single-cell RNA data.(20) A recent trend has been to 
combine machine learning algorithms to optimize single-cell RNA data detection tools. 
Classification is an important research topic in single-cell RNA data detection techniques. The 
classification of single-cell RNA data can not only predict unknown cell types(21) but also 
identify abnormal cell types,(22) preliminarily screen out subtypes of cell types,(23) and detect 
low-quality cells.(24) Although the existing single-cell identification methods can be of great 
guiding significance for follow-up work, owing to the heterogeneity or batch effect of the single-
cell RNA data itself, the follow-up research has been greatly limited. 
	 Using the common machine learning algorithms to fully test and explain the classification 
performance of single-cell RNA data, we take single-cell RNA data as an example to conduct an 
in-depth exploration of the application of algorithms. Machine learning methods, namely, the 
multiple fitting regression and Bayes (MFRB) and probabilistic support vector machine (PSVM) 
methods and intelligent manufacturing, realize design process, manufacturing process, and 
production equipment intelligence through intelligent perception, human–computer interaction, 
decision-making, and execution technology. In the equipment employing the MFRB and PSVM 
methods, various intelligent sensors such as robotic arms, laser detectors, and vision cameras 
provide effective data support for the decision-making and execution of intelligent 
manufacturing. These algorithms and analyses are all applied to sensors and sensor fusion 
technologies, and once these algorithms are widely applied in electronic products such as mobile 
phones, the consumer experience will be greatly improved. With the increase in user 
requirements for device detection environments, the tasks assigned to sensors have become 
increasingly complex, and these machine learning algorithms are needed to solve corresponding 
problems. Consequently, in this paper, the support vector machine (SVM) method, which is 
widely used in machine learning, was used to conduct a comparative study with the MFRB(25) 
method, which has already been used for the classification of cancer cells.  Two types of single-
cell RNA data are taken as examples: large-scale single-cell RNA data sets and small-sample 
unbalanced single-cell RNA data sets.(26) The expressions of the two classification algorithms 
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for these two types of data are analyzed, and the distribution characteristics of single-cell RNA 
data are clarified in detail.

2.	 Methods

2.1	 PSVM method

	 The SVM output is binary, which ignores the relative confidence in the classification result. 
To address this shortcoming, some researchers have modified the SVM to provide a probabilistic 
output. The most popular probabilistic SVM was proposed by Platt,(27) who adopted a sigmoid 
function to transform the SVM output into a posterior probability output.
	 Suppose N+ and N− are the numbers of positive (y = +1) and negative (y = −1) samples, 
respectively, in a data set D. The probability output of the PSVM is
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where f(x) is the SVM output given by Eq. (2), and the parameters A and B are obtained from 
minimizing the negative log-likelihood of the data set D:
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A < 0 ensures the monotonicity of Eq. (3). From the geometrical theory of the SVM, we find that 
the SVM output is proportional to the distance from the chosen hyperplane. Therefore, the 
probability output of the PSVM means that if the distance from the sample to the chosen 
hyperplane is large, then its probability of belonging to one class is higher.

2.2	 MFRB method

2.2.1	 Bi-classification MFRB method

	 Multiple fitting regression (MFR) was originally proposed for spectral multiple regression 
analysis,(28) which established a regression model to reflect the relationship between a spectrum 
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and an analytic concentration. MFR can be applied to both linear multiple regression and 
nonlinear multiple regression.
	 Given the data set { } 1, n

i iD y == ix , where ∈ n
ix R  is a feature vector and iy ∈R, the main 

purpose of MFR is to use the combination of fitting functions of various kernel functions to 
predict y. The formula is
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where ki is the ith fitting function and ai is its combination coefficient.
	 The combination coefficient of the Gaussian kernel is
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	 The combination coefficient of the linear kernel is
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where I refers to an n × n identity matrix, [ ], , T= … nY y y1 , and λ is the biased parameter. To 
achieve the best fitting effect of MFR, the parameters c and λ must be optimized with the given 
data set. Linear kernel functions are often more appropriate for large sparse matrices.
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	 We aim to use MFR for feature extraction. For bi-classification, the labels of positive and 
negative classes are set to 1 and −1, respectively. The MFR is built using the features as 
independent variables and the class labels as dependent variables. Then, the predicted values of 
positive samples fluctuate around 1 and the predicted values of negative samples fluctuate 
around −1. This enables us to separate the samples of different classes on the basis of the 
predicted values. Therefore, MFR can be used as a feature extraction method that compresses 
original multidimensional features into a 1D integrated feature. The parameters of MFR, c and 
λ, are optimized by minimizing the following objective function: 

	 ( ) 1 2

1 2
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= −  + 
,	 (10)

where μ1 and σ1 are the mean and variance of the predicted values for the positive training 
samples, and μ2 and σ2 are the mean and variance of the predicted values for the negative 
training samples, respectively. The parameters c and λ can be optimized using the simulated 
annealing algorithm or grid search technique. Equation (11) is used to extract an integrated 
feature using MFR that is highly similar within the same class and highly dissimilar in different 
classes.
	 To obtain a probability output for a soft decision, we assume that the predicted value of each 
class obeys the Gaussian distribution. The latter has a probability density function with the 
highest density in the center and decreasing density with increasing distance from the center, 
making it coincident with the distribution pattern of each class in the mapped space formed by 
MFR. The probability density function of the positive class is expressed as  

	 ( ) ( )21
1 2

1 1

ˆ1 exp
2

ˆ
2

y
p y

µ
ω

πσ σ

 − = −
 
 

,	 (11)

where ŷ is the predicted value given by MFR and 1ω  indicates the positive class. Likewise, the 
probability density function of the negative class is expressed as
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where ŷ is the predicted value given by MFR and 1ω−  indicates the negative class. The posterior 
probability of an unknown sample with prediction ŷu belonging to class ωc (either class c = 1 or 
c = −1) is given by the Bayes formula:
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	 The prior probability p(ωc) is calculated as follows:
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where I1 and I−1 indicate the numbers of positive and negative samples, respectively. The 
unknown sample is assigned to the class with the larger posterior probability as determined by 
the Bayesian decision rule. To avoid overfitting the training set, K-fold cross-validation is used, 
where the training set is split into K parts. Each of the K MFR models is trained on permutations 
of K−1 out of K parts, and ŷi   is evaluated on the remaining part. The union of all K sets of ŷi  
forms the training set to estimate the parameters μi and σi of the Bayes model (and can also be 
used to adjust the MFR model parameters c and λ).

2.2.2	 Multi-classification MFRB method

	 The MFRB method was first proposed to solve the problem of bi-classification. Of course, it 
can also be used for problems with multi-classification. In machine learning, a multi-
classification problem can often be solved by decomposing it into many bi-classification 
problems. The decomposition scheme chosen here is a one-to-many (OVA) method. In this way, 
the applicability of the MFRB method can be extended to solve the multi-classification problem. 
In the OVA method, an m-meta classification problem is decomposed into m bi-classification 
problems. One class is treated as a positive class and the other classes are treated as a negative 
class. Each binary classification problem is solved by the MFRB bi-classification method, which 
gives the probability of each test set sample belonging to each label, so the result is presented in 
the form of m posterior probabilities:
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where ( )( ) ˆip yω x  is the posterior probability of the sample of the unknown tag in the class I 
positive class MFRB classification.  Thus, we normalize the probability
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	 The unknown sample X is assigned to the category with the higher posterior probability:

	 ( )class arg max       1, ,ip i mω= = …x .	 (18)
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3.	 Comparison of Classification Effects of Two Methods on Different Types of 
Single-cell RNA Data

	 In this paper, two different types of single-cell RNA data are used for experiments, namely, 
large-scale single-cell RNA data sets and unbalanced small-sample single-cell RNA data sets. 
The advantages and disadvantages of the MFRB and PSVM methods in single-cell RNA data 
classification are analyzed. The PSVM algorithm is obtained from the LIBLINEAR toolkit and 
programmed by referring to the MFRB method. All experimental codes are implemented 
through MATLAB2016.

3.1	 Classification of large-scale data sets

3.1.1	 Experimental purpose

	 When the number of experimental samples is large, the sample data of various training sets 
will be relatively rich; thus, the training of the model will be more sufficient and the classification 
algorithm can achieve relatively good performance. For single-cell RNA data, somatic cells of 
some tissues are easy to obtain and detect, so data sets with relatively large sample sizes can be 
obtained. Therefore, in Experiment 1 (Exp 1), the data of human embryonic stem cells are 
selected from a large-scale single-cell RNA data set to test the recognition performance of the 
two algorithms.

3.1.2	 Experimental design

	 Exp 1 uses human embryonic stem cell GSE64016 data,(29) which consist of sequencing data 
of 247 H1-Fucci single cells. The data are divided into three categories: G1, G2-M, and S. 
Among them, the G2-M category has 76 samples (category label 1), the S category has 80 
samples (category label 2), and the G1 category has 91 samples (category label 3). Among the 
247 samples, the data contain 19084 genes, i.e., the dimension is 19084. During the experiment, 
70% of the samples from the data set are randomly selected from each category to form the test 
set, and the remaining 30% form the verification set. The complete experiment, including the 
process of randomly dividing the data set, is repeated 30 times. The average values of the three 
evaluation indexes of accuracy (ACC), sensitivity (SN), and specificity (SP) of the 30 
classification results are taken as the final result of the experiment. When calculating SN and SP 
of the first category, the first category is taken as the positive category, and the other categories 
are taken as the negative category. When calculating SN and SP of the second category, the 
second category is taken as the positive category, and the other categories are taken as the 
negative category. The same applies to the calculation of other categories of SN and SP. By 
looking at SN and SP of each category, we can assess the accuracy of the classifier for each 
category, or which categories the classifier tends to misidentify as the same category.
	 A linear kernel function is used in the PSVM method. The MFRB method uses Gaussian and 
linear kernel functions to generate the contrast between the two types of kernel functions. The 
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MFRB method is used to find the optimal parameters (c, λ), and the lattice search space is 
{ } { }10 9 9 10 10 9 9 1010 ,10 , ,10 ,10 10 ,10 , ,10 ,10− − − −… × … . For the MFRB method, the process of 
finding the optimal value uses fivefold cross-validation for each pair of (c, λ) parameters. For the 
PSVM method, the optimal parameter c is found in the space of { }5, 4,  3, ,3,  4,  5− − − … , and the 
rest of the parameters are the default parameters of the LIBLINEAR toolbox.

3.1.3	 Results and discussion

	 First, the distribution characteristics of three types of data are studied for the data sets. The 
T-SNE method, a nonlinear dimension reduction method commonly used in single-cell RNA 
data processing (i.e., t-distribution adjacent embedding method), is used. The programming uses 
the TSNE function in the DRToolbox toolkit of MATLAB. The results are shown in Fig. 1.
	 Figure 1 shows the profile of single-cell RNA data of human embryonic stem cells after 
dimension reduction. The red dots are G2-M cells, the blue dots are S cells, and the green dots 
are G1 cells. As can be seen from Fig. 1, the three categories are relatively distinct in space. The 
red dots refer to the category labeled 1, and the samples of the category labeled 3 are relatively 
dispersed in space. The green dots refer to the category labeled 3, and the samples of the category 
labeled 3 are relatively compact in space. There is an intersection between categories labeled 1 
and 2.
	 According to the experimental results given in Table 1, the overall classification accuracies of 
the PSVM, MFRB (Gaussian nucleus), and MFRB (linear nucleus) methods in Exp 1 were all 
above 90%, indicating that they can achieve very good results in the classification of human 
embryonic stem cell data. The linear kernel MFRB method has two percentage points higher 
classification accuracy than the other two methods, indicating better classification performance.  
For label 1, it can be seen from the SN value that the classification accuracy of the PSVM 

Fig. 1.	 (Color online) Dimension-reduced profile of single-cell RNA data of human embryonic stem cells.
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method of 94% is higher than that of 91% for the MFRB method. For the classification of label 2, 
the SN values show that the PSVM method and the Gaussian kernel MFRB method have similar 
classification performances, but the linear kernel MFRB method has superior performance to 
both of them. For the classification of label 3, it can be seen from the SN value that the 
classification performance of the MFRB method is better than that of the PSVM method, with 
the SN value increased by three percentage points. The linear kernel MFRB method and the 
Gaussian kernel MFRB method show little difference for sample data labels 1 and 3, which is 
related to the characteristics of the data itself. The classification results are consistent with the 
data distribution.

3.2	 Classification of small-sample unbalanced data sets

3.2.1	 Experimental purpose

	 Under the condition of small-sample data, the number of sample data for some categories is 
very small, and an extreme data imbalance may occur. This situation often leads to the 
overfitting of one or more of the data sets in the trained model. Although the accuracy of such 
training is not low, it may not be able to distinguish all types of data. In the single-cell RNA 
data, the number of some cells is very small, so the sample data of the training set will be 
relatively scarce, and the data set will be unbalanced when classified relative to other cells. 
Relatively speaking, it is difficult to obtain sufficient information from a limited number of 
samples to make the classification algorithm achieve relatively good results. Thus, modeling 
such single-cell RNA data is a major challenge. For example, some embryonic stem cells and 
cancer cells are relatively few, and some abnormal cells are rare. Therefore, it is of practical 
significance to study small sample sizes and unbalanced data sets. In Exp 2, on the basis of the 
characteristics of unbalanced data sets with small samples, a group of single-cell RNA data of 
epithelial cells is selected for classification.

3.2.2	 Experimental design

	 Exp 2 uses single-cell RNA data of epithelial cells.(30) Table 2 shows the information of the 
epithelial single-cell RNA data. In each experiment, 70% of the samples of the data set are 

Table 1
Results of classification of single-cell RNA data of human embryonic stem cells by three algorithms.

Category 
labels

ACC SN SP

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

1
0.92 0.92 0.94

0.94 0.91 0.91 0.93 0.95 0.96
2 0.91 0.89 0.95 0.96 0.96 0.96
3 0.92 0.95 0.95 0.99 0.96 0.99
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randomly selected from each category to form the test set, and the remaining 30% are selected to 
form the verification set.
	 The evaluation indexes of the experimental results are the same as those of Exp 1. Firstly, the 
experiment is carried out under the normal experimental classification. Considering that a lack 
of samples may lead to unsatisfactory results, the single-cell RNA data filling method is used to 
improve the data status and enhance the classification performance. Therefore, in this study, we 
use the data after migration to carry out the classification experiment. The data filling algorithm 
here adopts a random walking algorithm(31) that connects genes with a similar topological 
structure through network propagation and updates the data through iterative optimization to 
overcome the noise problem caused by the “drop out” phenomenon of the single-cell RNA data. 
Other experimental parameters, steps, and so forth are kept unchanged. The two experiments are 
repeated 30 times before and after data filling. The average values of ACC, SN, and SP of 30 
classification results are taken as the final results of the experiment.
	 Moreover, considering that the difficulty of classification may be aggravated by the small 
number of samples and a large number of categories in the data set, in this study, we remove the 
category of data with the least number of samples each time based on the original data set, so 
that it does not participate in the classification experiment, and the remaining experimental 
parameters and steps are kept unchanged. In accordance with the data sets of different categories, 
including the process of randomly dividing the training set and test set, each test is repeated 30 
times. The average values of ACC, SN, and SP of 30 classification results are taken as the final 
results of this test.	

3.2.3	 Results and discussion

	 Firstly, the distribution characteristics of the ten types of data are studied for each data set. 
The T-SNE method, which is common in single-cell RNA data processing, is used. The results 
are shown in Figs. 2 and 3.
	 Figure 2 shows the 2D spatial distribution of single-cell RNA data of epithelial cells after 
dimension reduction. Figure 3 shows the 2D spatial distribution of single-cell RNA data of 
epithelial cells processed using the random walking algorithm. Red, green, blue, turquoise, 
purple, yellow, and black dots and green, blue-green, and brown crosses represent epithelial cells 
labeled 1 to 10, respectively.
	 As can be seen from Figs. 2 and 3, most of the samples of the category labeled 1 are 
distributed sporadically, and the number of samples is small. Moreover, each category is widely 
distributed in space with almost no obvious aggregation or dividing line. Other dimension 
reduction methods also give similar distribution results. It can be seen that there is no clear 

Table 2
Information of epithelial single-cell RNA data.
Category labels 1 2 3 4 5 6 7 8 9 10
Sample size 48 14 12 14 15 24 9 7 7 10
Feature dimension 55182
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distinction between the categories of data in this data set in the case of a low number of 
dimensions.
	 As can be seen from the accuracy values in Table 3, the accuracy of the PSVM method is 
about 50%, whereas that of the MFRB method is about 30%. Compared with the MFRB method, 
the PSVM method has a better classification performance. The accuracy of the MFRB method is 
about 35% with the Gaussian kernel and 22% with the linear kernel.
	 When the random walking algorithm was not used, the observation of the SN value showed 
that the sensitivity of the PSVM method to the data of Tags 1, 4, 7, and 8 was lower than 55%. In 
particular, the specificity of Tag 1 was only about 23%, indicating that the PSVM method could 
not correctly classify these tags. The Gaussian kernel MFRB method has a sensitivity of more 

Fig. 2.	 (Color online) Dimension-reduced profile of single-cell RNA data of epithelial cells. 

Fig. 3.	 (Color online) Dimension-reduced profile of epithelial cells after random walking.
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than 60% to only the data of Tags 5 and 6, and the overall classification performance is poor. 
The linear kernel MFRB method has no more than 50% sensitivity to each category that can be 
correctly classified.
	 As can be seen from Table 4, after the random walking algorithm was used to process the 
data, the total accuracy of the PSVM method decreased by about five percentage points, whereas 
that of the MFRB method remained unchanged. This shows that the random walking algorithm 
does not affect the overall accuracy of data. The sensitivities of the PSVM and MFRB methods 
to the data after the random walking were significantly different from those before the random 
walking. By observing the sensitivity data of each category of the MFRB algorithm based on the 
Gaussian kernel after the random walking, it can be seen that filling such small-sample data with 
the random walking algorithm cannot significantly improve the distribution characteristics of all 
types of data, nor can it improve the classification results for unbalanced small-sample data.
	 As can be seen from Fig. 4, the accuracies of the PSVM method and Gaussian kernel MFRB 
method increase with decreasing number of data sets: the accuracy of the PSVM method 
increases from 0.5 to 0.55 and that of the Gaussian kernel MFRB method increases from 0.3 to 
0.38. This suggests that reducing the number of categories can improve the classification results 
when the data sets are unbalanced and the sample size is small. The accuracy of the linear kernel 
MFRB method is almost unchanged, indicating that it is not affected by the number of categories.
	 This experiment is repeated five times, with the single-cell RNA data of epithelial cells 
reduced stepwise from ten to six categories (with the category having the smallest sample size 
removed each time). The sensitivity of the PSVM method changes with the number of categories. 
Because the sample size is small, the sensitivity fluctuates, but the overall sensitivity of each 
category increases with decreasing number of categories. The classification of each category 
was improved by reducing the number of categories. From the observed change in the sensitivity 
of the MFRB method, it can be seen that the sensitivity of each category is affected differently 
by the decrease in the number of categories, with the sensitivity of some categories increasing 
significantly and that of others decreasing significantly. Even if reducing the number of 

Table 3
Results of classification of single-cell RNA data of epithelial cells by three algorithms.

Category 
labels

ACC SN SP

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

1

0.55 0.35 0.21

0.24 0.34 0.00 1.00 0.96 1.00
2 0.90 0.43 0.43 0.85 0.96 0.93
3 0.78 0.13 0.37 0.94 0.89 0.88
4 0.48 0.17 0.30 0.96 0.87 0.95
5 0.84 0.70 0.38 1.00 0.92 0.86
6 0.72 0.66 0.17 0.96 0.73 0.98
7 0.43 0.30 0.15 0.99 0.94 0.98
8 0.45 0.00 0.35 1.00 1.00 0.85
9 0.73 0.15 0.30 0.95 0.99 0.87

10 0.64 0.00 0.37 0.86 1.00 0.85
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categories can improve the problem of unbalanced data, the Gaussian kernel MFRB method will 
still be affected by unbalanced data. The sensitivity of the linear kernel MFRB method only 
fluctuates around the mean value and is not affected by the change in the number of categories. 
The effects of the two methods for each tag were described in the previous sections and will not 
be repeated here.
	 With the continuous advancement of single-cell sequencing technology, supplementing and 
perfecting single-cell data mining algorithms will help to understand the heterogeneity of single 
cells and have great significance and value for the precise prevention, diagnosis, and treatment 
of diseases. Machine learning and data mining are currently the preferred technologies for big 
data information processing. With the assistance of AI algorithms to improve the accuracy of 
single-cell sequencing data analysis, in this study, we adopt the widely used SVM method in 

Table 4 
Results of classification of single-cell RNA data of epithelial cells after random walking by three algorithms.

Category 
labels

ACC SN SP

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

PSVM
MFRB

Gaussian 
kernel

MFRB
Linear 
kernel

1

0.50 0.34 0.24

0.13 0.67 0.00 1.00 0.77 1.00
2 0.83 0.55 0.63 0.83 0.81 0.78
3 0.67 0.20 0.47 0.94 0.97 0.90
4 0.55 0.23 0.55 0.95 0.78 0.75
5 0.86 0.28 0.45 1.00 0.97 0.96
6 0.64 0.17 0.09 0.95 0.98 0.97
7 0.50 0.00 0.10 0.99 0.96 0.98
8 0.40 0.00 0.35 0.99 0.99 1.00
9 0.68 0.00 0.25 0.89 1.00 0.97

10 0.68 0.00 0.33 0.92 1.00 0.87    

Fig. 4.	 (Color online) Relationship between data set size and accuracy rate.
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machine learning and the newly developed MFRB methods(25) for comparative research. We 
take three types of single-cell data, namely, large-scale single-cell data sets, small-sample 
unbalanced single-cell data sets, and single-cell data sets with batch effects, as examples.(26) 
Therefore, in three situations, we analyze the performance of the two classification algorithms 
and gain an in-depth understanding of the distribution characteristics of single-cell data. The 
MFRB method is a new algorithm that combines the MFR method with Bayesian decision-
making in machine learning. The PSVM method performs well in data classification.

4.	 Conclusion

	 In this paper, for large-scale data sets and small unbalanced data sets, the PSVM method and 
the Gaussian kernel and linear kernel MFRB methods were used to conduct experiments to 
analyze their performance in the classification of single-cell RNA sequencing data. For the 
classification of large-scale data sets, all three methods have high accuracy. For the unbalanced 
data set used in the experiment, the addition of the random walking algorithm has a slightly 
negative impact on the experimental results. Before adding this algorithm, the PSVM method 
and the Gaussian kernel and linear kernel MFRB methods have different sensitivities to the data 
under each label, but these sensitivities are greater than 0. After the addition of the random 
walking algorithm, the sensitivity of the Gaussian kernel MFRB method drops to 0 for several 
categories, indicating that the addition of the random walking algorithm increases the effect of 
the unbalanced data set on the performance of the Gaussian kernel MFRB method. Reducing the 
number of categories can improve the accuracy of the PSVM and Gaussian kernel MFRB 
methods. The PSVM method increases the sensitivity of each tag as the number of categories 
decreases. With the decrease in the number of categories, the sensitivity of each label decreases, 
and the overall accuracy rate increases gradually. The classification results of the linear kernel 
MFRB method are not affected by the number of classes. Although the SVM method, which is 
the most commonly used method, and the newly developed MFRB methods with excellent 
performance are adopted in this study, the classification performance cannot be guaranteed to be 
the best among all existing classification algorithms. We hope to explore more types of single-
cell RNA sequencing data and classification algorithms to compare results. For unbalanced 
small-sample data, the main reason why it is difficult to achieve a high recognition rate with a 
small number of samples is still unclear, and the corresponding solution is also still unclear. 
These problems will be gradually addressed in future work.
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