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 In this research, an X-ray flat panel detector is adopted as an image collection sensor for 
evaluating left ventricular systolic functions. Typically, left ventriculography (LVG) is conducted 
in the end-diastolic and end-systolic areas by clinicians, which is time-consuming, and the 
calculated ejection fraction (EF) varies among clinicians. We propose two novel methods for EF 
measurement and regional wall motion abnormality (RWMA) assessment through LVG. Our 
methods can automatically segment the end-diastolic and end-systolic areas for clinicians and 
perform EF measurement and RWMA assessment in real time. Semantic segmentation neural 
networks were implemented for EF measurement, and image convolution neural networks were 
implemented in RWMA recognition. LVG images were collected by clinicians, but the data set 
labeling procedure was not performed by clinicians. This method may reduce the need for 
medical doctors in the data set labeling procedure. Using the proposed methods, EF measurement 
and RWMA assessment were performed with high accuracy. 

1. Introduction

 Ejection fraction (EF) is the volumetric fraction of blood ejected from a heart with each 
heartbeat. EF and regional wall motion abnormality (RWMA) are indicators of the effectiveness 
of heart pumping. Transthoracic echocardiography is widely adopted for EF measurement and 
RWMA assessment, but left ventriculography (LVG) is the gold standard for EF measurement 
and RWMA diagnosis. LVG is an invasive procedure that leaves a small wound in the patient’s 
body, whereas transthoracic echocardiography is noninvasive. Most patients choose transthoracic 
echocardiography for EF measurement and RWMA assessment. However, the low image quality 
of transthoracic echocardiography, obesity, lung disease, and chest deformity decrease the 
accuracy of EF measurement. Although the invasive procedure is a disadvantage of LVG, it more 
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accurately performs EF measurement and RWMA diagnosis. In this study, we proposed two 
neural network methods for EF measurement and RWMA assessment. The semantic 
segmentation neural network method is implemented for EF measurement, and an image 
convolution neural network classifier is implemented for RWMA assessment. Typically, EF 
measurement is conducted by clinicians, and the calculated EF varies among clinicians. Our 
proposed EF measurement method is automatic, efficient, and highly accurate. Additionally, our 
proposed method reduces manpower (medical doctor) requirements in the data set labeling 
procedure. We also proposed an image convolution neural network classifier for RWMA 
assessment, where we reused the semantic segmentation end-diastolic area and end-systolic area 
results in the LVG image in the EF measurement for RWMA classification. The proposed 
method achieved high sensitivity and specificity in RWMA diagnosis.
 The remainder of this paper is organized as follows. In Sect. 2, we outline the related 
research. In Sect. 3, we introduce our proposed methods for data set collection, EF measurement, 
and RWMA assessment. In Sect. 4, we present our accuracy results and detail the use of the 
visual explanation technique termed class activation mapping (CAM)(1) analysis. Finally, we 
provide a discussion and our conclusions in Sects. 5 and 6, respectively.

2. Related Research

 EF is widely adopted for measuring heart pumping efficiency and classifying heart failure 
types.(2) Typically, transthoracic echocardiography is adopted for EF measurement, but cardiac 
magnetic resonance imaging, cardiac computed tomography,(3,4) nuclear-medicine-based 
approaches (gated SPECT and radionuclide angiography),(5,6) and LVG are also used to measure 
EF.(7,8)

 According to the 2016 European Society of Cardiology Guidelines,(9) acute and chronic heart 
failures are divided into three categories. LVG EF of ≥50% is classified as normal or preserved 
EF, LVG EF in the range of 40 to 49% is classified as mid-range reduced EF, and LVG EF of 
<40% is classified as reduced EF.
 Cardiovascular diseases are also diagnosed by implementing deep-learning neural networks. 
A 3D convolutional neural network is employed to estimate and differentiate preserved EF 
through echocardiographic imaging.(10) A segmentation neural network has been proposed for 
left ventricle detection in echocardiographic images. Kim et al. proposed a UNet semantic 
segmentation neural network for left ventricle detection.(11) A neural edge detector method is 
also used to extract left ventricular contours using LVG.(12)

 RWMAs are defined as regional abnormalities in patients with heart disease. 
Echocardiography is widely used for RWMA assessment. Huang et al. proposed a deep-learning 
neural network for RWMA recognition through echocardiography.(13) They proposed three 
models for RWMA assessment. The first model generates the best image of four major views 
from echocardiography images (LAX, SAX, A4C, and A2C). The second model employs the 
semantic segmentation neural network approach for the segmentation of each wall. The third 
model combines two sets of images from the first and second models and performs the final 
prediction for RWMA assessment.
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 Deep-learning neural network research on EF measurement and RWMA assessment has 
focused on echocardiographic images. In this study, we adopted LVG images for deep-learning 
neural network application. A semantic segmentation neural network is a popular algorithm for 
finding contours and areas of objects.(14–16) Here, a semantic segmentation algorithm is adopted 
for finding end-diastolic and end-systolic areas and EF measurement, and an image classification 
neural network is adopted for RWMA assessment.

3. Methods

 In this study, two deep-learning neural network methods were employed to measure EF and 
classify RWMA. In the following sections, we introduce the data set collection procedure, EF 
measurement method, and RWMA classification method.

3.1 Data set collection

 We prepared two data sets for the EF deep-learning and RWMA assessment models. To 
prepare the data set for the EF measurement deep-learning model, we collected patient LVG 
video images. LVG produces a set of sequential video images stored in dicom format. To collect 
the training data set, image extraction from an LVG video was required. A package for working 
with dicom files, called Pydicom, was adopted to extract the images from the dicom files. Each 
extracted LVG image was 512 × 512 pixels. For each patient, approximately 100 LVG images 
were extracted.
 The polygonal annotation tool labelme(17) was used to annotate the training data set. For each 
extracted LVG image, we annotated only the area affected by the contrast medium. Only one 
class was annotated: the contrast medium area versus the non-contrast medium area 
(background). Figure 1 shows the annotation tool and annotated polygon of the contrast medium 
area.
 To prepare the RWMA model data set, we identified the end-diastolic and end-systolic areas 
for each patient and calculated the stroke area as the difference between the end-diastolic and 
end-systolic areas for RWMA model training. In accordance with the five myocardial segments 

Fig. 1. (Color online) Contrast medium area annotated by labelme.
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in right anterior oblique LVG (RAO-LVG), we divided the training data set into four classes, 
namely, apical anterior (LAD distal lesion), basal (RCA or LCX), septal (LAD proximal), and 
normal. Myocardial segments 234, 23, and 3 were classified as apical anterior segments. 
Myocardial segments 345, 45, and 5 were classified as basal segments. Myocardial segment 12 
was classified as a septal segment. Figure 2 shows the five myocardial segments in RAO-LVG 
and Fig. 3 shows the stroke areas.
 Finally, 5140 images were annotated for the EF measurement model training data set, and 258 
images were annotated for the RWMA model training data set.

3.2 EF measurement model

 UNet(18) with EfficientNetB4(19) was used as the backbone of the deep-learning neural 
network model for the EF measurement model. We also employed the MaskRCNN(20) model for 
EF measurement. UNet with EfficientNetB4 exhibited a high level of accuracy and mean 
intersection over union (mIoU) in EF measurement. Figure 4 shows the deep-learning neural 
network layers implemented in this research.
 LVG images were extracted from patient dicom files, and semantic segmentation prediction 
was conducted for each LVG image. After applying semantic segmentation inferences for each 
LVG image, we identified the end-diastolic area followed by the end-systolic area. Because the 
calculation of EF required the end-diastolic and end-systolic volumes instead of areas, an area-
to-volume conversion formula was required. The EF measurement formulas are shown in 
Eqs. (1)–(3), where SV denotes the stroke volume, EDV denotes the end-diastolic volume, and 
ESV denotes the end-systolic volume.

Fig. 2. Five myocardial segments in RAO-LVG.

Fig. 3. LVG stroke area classes.
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 SV EDV ESV= −  (1)

 100%SVEF
EDV

= ×  (2)

 100%EDV ESVEF
EDV
−

= ×  (3)

 According to Eq. (4), the maximum contour length of the area (diameter) L was required in 
addition to the area. The enclosing circle method shown in Fig. 5 was implemented to calculate 
L. Upon substituting Eq. (4) into Eq. (3), the EF formula was transformed into Eq. (5), where d 
denotes end-diastolic and s denotes end-systolic. Finally, EF can be obtained from the end-
diastolic area, the end-systolic area, the maximum contour length of the end-diastolic area, and 
the maximum contour length of the end-systolic area.
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Fig. 4. (Color online) EfficientNetB4 + UNet model layers.
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3.3 RWMA assessment model

 Because of the similarities among the RWMA images, we concluded that the same 
abnormalities were present in the same myocardial segments. Therefore, the classification model 
EfficientNetB3 was adopted in the RWMA assessment. Only the apical anterior, basal, septal, 
and normal classes were included in the classifier training.
 The stroke area images calculated as the difference between the end-diastolic and end-
systolic areas were employed for RWMA classifier model training. Finally, we implemented the 
model visual explanation technique called CAM to identify the areas on which the RWMA 
model was focused.

4. Results

 Two evaluation methods were implemented. In the first model, a semantic segmentation 
neural network was adopted as the inference model for EF measurement. The mIoU value was 
also used for evaluation. In the second model, a classification neural network was employed as 
the inference model for RWMA assessment. Evaluation methods for recall, precision, sensitivity, 
and specificity were included in this model.
 Two segmentation neural networks were used in the evaluation procedure, namely, 
MaskRCNN and EfficientNetB4 + UNet. In total, 5140 LVG images were included in the data 
set, and 10% of the LVG images were spliced as testing data. Examples of inference results are 
shown in Fig. 6.
 The MIoU evaluation results from MaskRCNN and EfficientNetB4 + UNet are included in 
Table 1. The mIoU values of MaskRCNN and EfficientNetB4 + UNet were 0.8942 and 0.9215, 
respectively. Therefore, EfficientNetB4 + UNet was more accurate than MaskRCNN.
 Typically, clinicians calculate EF measurements, but EF results vary among clinicians. 
Therefore, no absolute EF value exists for a patient. EF measurement results with ±10% error 
rates are considered reliable. In our study, 54 cases were employed to measure accuracy. Table 2 
shows the EF measurement accuracy with different error rates. EfficientNetB4 + UNet was 
more accurate than MaskRCNN.

Fig. 5. (Color online) Identification of the enclosing circle and diameter L.
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Fig. 6. (Color online) Examples of LVG images and semantic segmentation prediction results.

Table 1
MIoU evaluation results.
Model Name mIoU
Mask R-CNN 0.8942
EfficientNetB4 + UNet 0.9215

Table 2
EF measurement accuracy with different error rates.

Model Name Error < 10%
(cases)

Error > 10%
(cases)

Accuracy 
(%)

Error < 15%
(cases)

Error > 15%
(cases)

Accuracy 
(%)

Mask R-CNN 23 31 42.6 35 19 64.8
EfficientNetB4 + UNet 30 24 55.6 40 14 74.1
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 Recall, precision, sensitivity, and specificity were included in the RWMA assessment model, 
and they were 0.826, 0.817, 0.826, and 0.966, respectively. The results are presented in Table 3.
 CAM was implemented to identify the area in which the RWMA model was focused. 
Figure 7 shows the CAM results of the RWMA model for each class. The CAM apical/anterior 

Table 3
Recall, precision, sensitivity, and specificity evaluation results.

Apical
anterior Basal Septal Normal Average

Recall 0.947 0.857 0.5 1 0.826
Precision 0.857 1 0.5 0.909 0.817
Sensitivity 0.947 0.857 0.5 1 0.826
Specificity 0.909 1 0.98 0.976 0.966

Fig. 7. (Color online) CAM results of the RWMA model.
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area was focused on myocardial segments 2, 3, and 5 (blue and green areas). The CAM basal 
area was focused on myocardial segments 3, 4, and 5 (blue and green areas). The CAM septal 
area was focused on myocardial segments 1 and 2 (blue and green areas). The normal area was 
focused on the end-systolic area (blue and green areas).

5. Discussion

 Echocardiography is widely adopted for EF measurement and RWMA assessment. Deep 
neural networks are also implemented in RWMA recognition. However, LVG is the gold 
standard for clinical diagnosis. The implementation of EF measurement through the adoption of 
semantic segmentation neural networks improves the measurement performance and provides 
automated EF measurement results. The state-of-the-art RWMA assessment method proposed in 
this study improved the RWMA recognition accuracy.

6. Conclusions

 In this study, we proposed a novel method in which semantic segmentation neural networks 
were implemented for EF measurement. This method provided efficient and automated EF 
measurements for clinical diagnosis. Data set labeling and collection without clinicians are 
advantages of our proposed method. The mIoU value of our method had a maximum of 0.9215.
 We also proposed a high-accuracy prediction method for RWMA assessment. Four classes 
(apical/anterior, basal, septal, and normal) were adopted. The sensitivity and specificity values 
were 0.826 and 0.966, respectively.
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