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 An image assistive communication system with a real-time fuzzy-controlled image Morse 
code input (FCIMCI) function was developed to help severely disabled people, such as those 
with cerebral palsy (CP) or spinal cord injury (SCI), communicate with other people or machines 
by using lip shape image recognition without using any apparatus. The real-time FCIMCI 
system offers the functions of text input and mouse control, replacing the traditional keyboard 
and mouse. The self-developed image recognition techniques include skin color detection, face-
shape confirmation, lip location, and opened/closed lip status identification for Morse code 
conversion. In this paper, we apply the adjustable fuzzy recognition algorithm to tune the 
threshold values automatically for identifying Morse code. The experimental results of real-time 
lip image recognition show an average accuracy rate higher than 94% under various 
environmental conditions. Meanwhile, the average accuracy rate of image Morse code 
recognition experiments is more than 93.85%. According to the experimental results and a case 
study of SCI, we demonstrate that the FCIMCI system has real-time performance and good 
recognition efficiency. It is a novel assistive communication system based on image Morse code 
techniques and has the practicality and feasibility to help severely disabled people communicate 
with others.

1. Introduction

 The rapid growth of IT has led to the widespread use of PCs. Keyboards and mice are the 
necessary peripherals of a PC. However, many quadriplegics still cannot operate computers by 
using traditional keyboards or mice since these devices are not designed for disabled people. 
Therefore, it is extremely important to design a simple computer input device to replace the 
traditional keyboard and mouse so that disabled people, especially quadriplegics, can operate 
their computers. Many assistive input systems for PCs have been developed for disabled people 
over the past decades. In the past, disabled people used to hit a switch to scan a matrix of letters, 
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symbols, words, or phrases for inputting text and other data. Later, a dynamically adapting 
matrix row and column scan method was proposed to increase the text entry rate of users. 
However, it was still not fast enough to meet user demands. To further help disabled people, 
specialized assistive computer input devices have been proposed in recent years, including 
voice-controlled devices,(1) tongue computer interfaces,(2) eye-controlled devices,(3) inductive 
head-controlled devices,(4) IR-controlled devices,(5) and brain–computer interface (BCI)-
controlled devices.(6)

 An eye-controlled device(3) based on electrooculography (EOG) was developed to replace 
mouse control. However, it caused discomfort to users and induced noise interference since there 
were five electrodes mounted on the user’s face. A head-controlled device(4) employed two tilt 
sensors placed in a headset to determine the head position. It functioned as a simple head-
operated computer mouse but it caused dizziness to users. An IR-controlled device(5) with two 
large keyboard panels and one mouse control panel utilized an IR-transmitting module to select 
the characters and control the mouse from the three panels. These complicated devices were also 
unsuitable for quadriplegics since they cannot move their head easily. A voice-controlled 
device(1) can control a mouse or a keyboard by voice recognition. This device is user friendly, 
but the user’s voice has to be clear with little environmental noise. For inductive tongue computer 
interfaces,(2) the inductor must be mounted on the palatal plate and the magnetic material has to 
be placed directly on the tongue, which is neither comfortable nor hygienic. A BCI-controlled 
device(6) based on an electroencephalogram (EEG) produces a tri-state Morse code scheme, 
which can be translated into the English alphabet. The power spectral density (PSD) value of 
mental tasks in EEG can be used to classify the tri-state Morse code. This device can be used by 
people regardless of their disability, provided they have no intellectual disability. However, this 
device has several drawbacks, including complexity, a slow response time, and a high cost. It is 
also not easy to control the device using an EEG without practice. 
 As mentioned above, some of the devices are unsuitable and inconvenient for quadriplegics 
since most of the assistive systems require sensors or apparatus to be attached to disabled people. 
In this paper, we propose and develop a system that can realize real-time image Morse code 
input and compensate for the weaknesses of previous devices.
 Morse code is useful in assistive technology (AT), augmentative and alternative 
communication (AAC), rehabilitation, and education.(7) Since 1996, several Morse code 
recognition algorithms have been proposed to raise the recognition rate in fields such as adaptive 
signal processing (adaptive variable-ratio threshold prediction algorithm,(8) the least mean 
squares algorithm(9)) and neural networks (backpropagation network,(10) fuzzy theory,(11) support 
vector machine(12) statistics, and learning vector quantization(13)). Traditional Morse code input 
is given using a switch or other related hardware components. In this paper, we propose a novel 
image Morse code input system that does not require any appurtenance to be worn for image 
recognition.
 We describe image tracking and analysis techniques of the face and lips, which identify the 
opened or closed status of lips. After performing lip image recognition, we transfer the opened/
closed status of the lips into image Morse code. We apply an adjustable fuzzy recognition 
algorithm to modify the threshold values of identifying a dot and dash in Morse code. This fuzzy 
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algorithm follows the rate of change of the user’s lips to input text under non-familiar Morse 
code conditions automatically and efficiently. We integrate image recognition technology and 
the fuzzy recognition algorithm of Morse code to effectively implement a PC-based assistive 
communication system, which we call a fuzzy-controlled image Morse code input (FCIMCI) 
system.
 Quadriplegics suffer from conditions such as spinal muscular atrophy (SMA), amyotrophic 
lateral sclerosis (ALS), and SCI. People with SMA cannot voluntarily control movement. People 
with ALS have a group of progressive neurological disorders that destroy cells controlling 
essential muscular activities such as speaking, walking, breathing, and swallowing. People with 
SCI suffer from paralysis of the arms, hands, trunk, and legs as their high cervical nerves (C1–
C4) are damaged. We also discuss a case study of SCI in this paper.
 The FCIMCI system architecture, as shown in Fig. 1, includes the following three major 
parts: face image processing, lip image recognition and translation into Morse codes, and a 
Morse code fuzzy recognition algorithm. After the Morse code fuzzy recognition is completed, 
the Morse codes are translated into ASCII codes using Windows API calls to complete text input 
or mouse control functions. The rest of the paper describes these parts in more detail.

2. Methods

 The FCIMCI system offers real-time functions such as text input and mouse control by 
replacing the traditional keyboard and mouse. The self-developed image recognition techniques 
include skin color detection, face recognition, lip location, and opened/closed lip status 
recognition for Morse code conversion. We apply the adjustable fuzzy recognition algorithm to 
modify the threshold values of identifying Morse code. A flowchart of the image processing and 
recognition procedure of the FCIMCI system is shown in Fig. 2.

Fig. 1. (Color online) FCIMCI system architecture.
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2.1 Face image processing

 In the facial image detection and tracking process, skin color area is a key parameter in the 
facial image recognition algorithm. However, if any object in the background contains similar 
skin colors, there is a possibility of a system failure. Consequently, other facial features in 
addition to skin color need to be taken into account (such as making sure the skin color is that of 
a human face). Moreover, the efficiency of the image recognition algorithm is an important 
factor in enhancing the effectiveness of optimal facial feature extraction and real-time facial 
image tracking.
 If an algorithm has a high accuracy of facial feature extraction and a long computation time, 
it may result in a low frame rate and the algorithm being unable to operate in real time. On the 
basis of the above considerations, system adaptability and system execution time are key 
constraints to consider in face tracking and recognition systems.
 There are four important conditions for system adaptability: the size of the face region, the 
face position, the background complexity, and the brightness (luminance) change in the 
environment. In addition, there are three important conditions to consider for the system 
execution time constraints: the input image size, the computer performance, and the algorithm 
efficiency for image processing.
 As shown in Fig. 2, the algorithm of face detection and tracking for the image processing 
architecture in the FCIMCI system requires the face area to be located, which is achieved by the 
following five steps (a)–(e):

Fig. 2. (Color online) Image processing and recognition procedure of FCIMCI.
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(a) RGB to hue, saturation, and lightness (HSL) conversion
 The brightness information in an RGB image is affected by the light irradiation angle and 
intensity, which may result in recognition failure during the image processing procedure. In 
general, an image in RGB color space format is converted into a non-light-sensitive image,(14) for 
example, an image in the normalized RGB format [Eq. (1)] or HSL format [Eqs. (2)–(4)]. Here 
we adopted the HSL format since the image is less impacted by light in the HSL color space and 
is suitable for morphological logic operations.
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(b) Skin area extraction
 In the HSL image model with less influence of brightness, every color in the RGB color 
space has a set of corresponding hue, saturation, and lightness values in the HSL color space. 
Any region of interest (ROI) can be extracted by considering the hue and saturation palettes, 
regardless of the luminance palette, which includes the skin color. Therefore, the skin color, Skin 
Colorj, of an object can be extracted by using only hue and saturation palettes limited by the 
threshold values and is defined as
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where Hj and Sj are the hue value and saturation value of skin color pixel j, respectively. Hl, Hu, 
Sl, and Su are the lower and upper threshold values of the skin color for hue and saturation, 
respectively. In experiments conducted under a luminance of approximately 360 lux, we 
observed that the optimal threshold ranges of hue and saturation are from 24 to 243 and from 11 
to 142, respectively. These values are used throughout the paper. After color space conversion 
and threshold operation, the binary hue palette and saturation palette of the original image are 
generated. The inverted hue palette is operated with the binary saturation palette by using logic 
AND operations to extract the initial skin color ROI of the original image.
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(c) Face location analysis
 In the feature-invariant approach, the skin color distribution is the basic condition used to 
extract the facial area and determine whether the input image contains facial features. Since the 
image color can be easily affected by environmental illumination, the face color of the subject 
can be similarly affected. The original RGB image captured by a camera is often converted to 
another color space that has less illumination sensitivity, for example, normalized RGB, HSL, 
HIS, HSV, YIQ, YUV, or YCrCb.
 After the extraction of skin color objects from the original image (denoted as I), there may 
still be some objects with similar skin color in the background, which can make it difficult to 
locate the face ROI accurately. We can remove small objects with similar skin color by using 
open operations (denoted as SO), close operations  (denoted as SC), and morphology operations 
until the largest skin area (i.e., the face) is found. The open and close operations are defined as  

   ,O s sS I E D= Θ ⊕  (6)

and

   ,C s sS I D E= ⊕ Θ   (7)

where Θ and ⊕ denote erosion and dilation, respectively. Es and Ds are the structure element 
matrices for erosion and dilation, which can be defined as
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 Given the experimental design, since the subject’s face is about 60–70 cm away from the 
LCD screen, the largest skin area in the image should be the subject’s face.
(d) Convex hull for face ROI
 Although we can obtain the location of the face ROI (denoted as A) from the original image, a 
face ROI with many holes and disconnected particles is still not a complete solid block. 
Therefore, further morphological convex hull operations are required to fill the face area with 
the same binary value for each pixel. The convex hull operation is expressed as
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Si is the ith structuring element array and defined as
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where c is the corresponding point and × is an arbitrary value. i
kP  is the convergence result of the 

convex hull for the ith structuring element array at the kth iteration and 0 =iP A. ⊗ is the 
morphological hit-or-miss transform,(15) which can be used to look for particular patterns of 
foreground and background pixels in an image. An example of a convex hull operation is shown 
in Fig. 3.
(e) Match with original RGB image
 The complete face ROI boundary is defined clearly using a convex hull operation called the 
binary face ROI. To accomplish a lip pattern match for lip recognition, we extract the original 
RGB image at the corresponding location of the binary face ROI to locate the face RGB image. 
The original face RGB image and the lip image pattern can be transferred into gray level images 
from RGB images for normalized gray cross-correlation analysis as shown in Fig. 4.

Fig. 3. (Color online) Convex hull operation of face ROI: (a) original image, (b) binarization, and (c) convex hull 
processing.

(a) (b) (c)

(a) (b) (c)

Fig. 4. (Color online) Face ROI block matches with the skin color area of the original RGB image: (a) original 
image, (b) convex hull for the skin color, and (c) superimposition of (a) and (b).
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2.2 Lip image recognition and translation into Morse codes

(a) Creation of lip image pattern
 As shown in Fig. 2, prior to system operation, the RGB lip image of the subject is clipped 
manually by a USB camera for use as the pattern for subsequent lip extraction analysis.
(b) Lip pattern matching and locating process
 In general, brightness easily affects RGB images. We employ gray cross-correlation analysis 
to reduce the impact of brightness changes during the process of lip pattern matching. The size 
of the captured image always depends on the distance between the camera and the subject. To 
maintain consistency in the cross-correlation calculation, the normalized gray cross-correlation 
analysis for the RGB image is adopted. To find the correct location of the lips, the normalized 
gray cross-correlation algorithm is used to compare the lip image pattern with the original facial 
RGB image. The gray cross-correlation coefficient, R, can be defined as
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where w(u, v) is the position of one pixel of the lip pattern image. L and K are the width and 
height of the lip pattern image, respectively. f(i,  j) is the gray intensity at position (i, j). w and f  
are the average gray intensity of the lip pattern image and target image, respectively.
 A schematic diagram of gray cross-correlation computation is shown in Fig. 5. Following the 
lip pattern matching procedure mentioned above, we searched for and found the most similar lip 
area with the maximum gray cross-correlation value in the original face image, i.e., block (a) in 
Fig. 5.
(c) Lip profile calculation
 As a result of the lip pattern matching procedure,(16) we can locate the position of the lips. 
Next, we start the recognition procedure of the opened/closed status of the lips, as shown in Fig. 

Fig. 5. (Color online) Gray cross-correlation computation for locating the position of the lips.
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6. By observing the pixels of lips, we find that the color of lips ranges from dark red to purple 
under normal light conditions (360 lux). We need to extract the lips from facial skin of any color 
to account for people from different races.(17) According to this observation for different faces, 
the color distribution of the lips and the surrounding skin should be distinguishable. It shows that 
the lip colors are distributed in the lower part of the crescent area defined by the skin colors on 
the r-g plane. We also define another quadratic polynomial discriminant function of lip pixels for 
the more rapid extraction of lip colors.
 From the distributions of lip colors, we find the quadratic polynomial of the lower boundary 
flower(r). However, the color of the dark area between the upper lip and lower lip when the lips 
are opened should be darker than the lower limitation of the lip color as shown in Fig. 7. 
Therefore, we adopt the lower limitation of lip colors flower(r) as the upper limitation of the color 
of the area between the upper and lower lips as shown in Eq. (13).

  flower(r) = −0.776r2 + 0.5601r + 0.1766 (13)

Fig. 6. (Color online) Recognition procedure of lip status.

(a) (b) (c)

Fig. 7. (Color online) Comparison of the color discrimination among the upper lip, the lower lip, and the area 
between the upper and lower lips: (a) original RGB lip image, (b) binary lip image, and (c) height and width of the 
binary lip block profile.
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 The key point in distinguishing the opened/closed status of lips is to find the dark pixels in 
the dark area between the upper and lower lips when the subject opens his/her mouth. Thus, the 
color of the area between the upper and lower lips is applied to detect the pixels inside the dark 
area between the upper and the lower lips. The detection rule (Lc) is 

 
0,if  0 , 20,  20,and 20,
1, otherwise,

lower
c

g f R G B
L

≤ ≤ ≤ ≤ ≤
= 


 (14)

where R, G, and B are the intensity values in the red, green, and blue channels, respectively. 
Lc = 0 and Lc = 1 mean that the pixel is inside and outside the mouth, respectively.
 There are many particles in the detected dark area between the upper and lower lips. 
Morphological operations including erosion, dilation, open, close, and convex hull operations 
are applied to delete the small particles until the largest particle or block is left. Finally, the 
profile of the largest block is used to identify the opened/closed status of lips.
 As mentioned above, the profile of the opened/closed lip block is extracted. We utilize the 
boundary of this profile to determine whether the lips are opened or closed. First, we define the 
threshold value of the vertical height in the center of the binary lip block image in Fig. 7(c) 
according to the subject’s condition. Next, the opened/closed status of the lips is recognized on 
the basis of the threshold value of the binary lip block image. Finally, the opened/closed status of 
the lips is transferred into the tone and silence state of Morse code. The input Morse code, Ls, is 
defined as

 
0,       when  mouth is opened,
1,       when mouth is closed.   sL


= 


 (15)

 The subject controls the duration of opening or closing the lips to input a dot tone or dash 
tone (similarly, dot silence or dash silence) of Morse code.

2.3 Morse code fuzzy recognition algorithm

 A Morse code sequence includes tones and silences. A tone is defined as the pressing time of 
a switch and a silence is defined as the releasing time of the switch. Tones can be divided into 
long tone (dash, “-”) and short tone (dot, “*”) elements according to the duration of the 
processing time of the status switch, as is the case for silences. Different long/short tone Morse 
code combinations can represent different characters,(18) and part of the characters used in this 
study are shown in Table 1. The ratio of the long to short elements (tones or silences) by 
definition is always 3:1. However, the Morse code input rate may not be consistent even for users 
familiar with inputting Morse code. Thus, it is very difficult for disabled people to maintain a 
stable 3:1 ratio for long and short elements. When the long-to-short ratio becomes highly 
irregular, adaptive recognition fails frequently, especially for disabled persons. Therefore, the 
adjustable FCIMCI system with a fuzzy recognition algorithm can solve this problem. 
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 To improve the recognition rate, a long-short separation fuzzy recognition algorithm was 
developed to trace the variation of a Morse code sequence. This algorithm, used for tracing the 
variation of long (lk) and short (sk) elements by employing two predicting loops to recognize long 
and short elements separately, is shown in Fig. 8.
 The recognition procedure is described as follows: 
Step 1. Obtain a long (lk) or short (sk) element from an input Ik using the function fT in Eq. (16).
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Step 2. Calculate the prediction error ek as
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Table 1
Table of Morse codes corresponding to characters “A”–“Z”.

Fig. 8. Fuzzy recognition algorithm for long-short Morse code separation.
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 In the fuzzy algorithm, a linguistic fuzzy rule is utilized to calculate the modified error e′k. 
Five linguistic rules are given as follows: 
Fuzzy rule 1: if ek is LN, then e′k is LN (highest speed)
Fuzzy rule 2: If ek is SN, then e′k is SN (high speed)
Fuzzy rule 3: If ek is ZE, then e′k is ZE (normal speed)
Fuzzy rule 4: If ek is SP, then e′k is SP (low speed)
Fuzzy rule 5: If ek is LP, then e′k is LP (lowest speed)
LN, SN, ZE, SP, and LP are negative large, negative small, zero, positive small, and positive 
large, respectively.
Step 3. Update the predicted output value at each loop by Eqs. (18) and (19). 

 1 ,  in  loop k k k kly ly e l− ′= +  in lk loop (18)

 1 ,    in  loopk k k ksy sy e s− ′= +  in sk loop (19)

Step 4. Update the threshold value, the mean values (ml, ms), and the standard deviations (stdl, 
stds) in each loop from inputs Ik−3, Ik−2, Ik−1, Ik and the predicted output lyk or syk. For example, 
ml and stdl in the lk loop are given as follows:
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 In the same derivation for a short element, ms and stds can be obtained by replacing lk−i and 
lyk in Eqs. (20) and (21) with sk−i and syk, respectively. Threshold Tk is obtained by calculating 
the middle value between the lowest border of long elements (ml − stdl) and the highest border of 
short elements (ms + stds), i.e.,

 [ ]1 ( ) ( ) .
2 l l s sk m std m stdT − + −=  (22)

 By repeating steps 1–4, the system adjusts the threshold value adaptively in response to the 
typing speed variation and the varying ratio of long-element duration to short-element duration.
 Once both the opened/closed lip status recognition and the fuzzy Morse code recognition are 
completed, the text/character can be inputted in accordance with a Morse code table (Table 1). 
An example of  text input by a subject is shown in Fig. 9. In the Windows operating system, 
LabVIEW software is used to call up keyboard and mouse application programming interface 
(API) functions, which assist applications in achieving the actions of opening windows, 
depicting graphics, and using peripheral devices, to achieve text processing ability. 
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3. Results

 The performance of the system is demonstrated successfully from several aspects as 
described in the following sections.

3.1 Face and lip tracking

 As shown in Fig. 10, the face tracking results successfully verified the effectiveness of the 
face recognition algorithm, and the recognition results of the opened/closed status of the mouth 
with/without hand interference in the background were accurately identified by the lip 
recognition algorithm regardless of whether it was daytime or nighttime. The image processing 
strengthens color characteristics in the image and reduces the impact of light. The face tracking 
algorithm not only tracks but also extracts human faces effectively under variation in the light 
and environment. The overall average accuracy rate was 97.87% in the lab (360 lux) and 94.44% 
in a home environment (280 lux). Hence, the image recognition algorithm is not sensitive to light 
interference in different environments.

3.2 Accuracy analysis of lip recognition

 After the face recognition and tracking process, the algorithm starts the process of lip image 
recognition. The steps of the opened/closed lip image recognition procedure are labeled as (A) to 
(E) on the left of Fig. 11, and the corresponding lip image recognition results are shown on the 
right of Fig. 11. Twenty healthy subjects were subjected to 50 time cycles of opened/closed lip 
image testing. The average recognition accuracy and standard deviation of the test results for the 
20 subjects reached up to 98.3 ± 2.27%.

Fig. 9. (Color online) Morse code generation depending on the opened/closed lip status of the subject.
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3.3 FCIMCI system performance test

 To identify the FCIMCI system performance, we  completed experiments with the FCIMCI 
system operated by three types of subject: an expert who is familiar with Morse codes, a person 
with SCI, and a person with CP. These three  subjects were asked to enter Morse codes from “A” 
to “Z” ten times. Figure 12 shows the long and short elements of the Morse code tone sequence 
(“A” to “Z”) inputted by the subjects. The best test result is in Fig. 12(a), in which the threshold 

Fig. 11. (Color online) Procedure of lip image recognition and the corresponding logic output for opened/closed lip 
status.

Fig. 10. (Color online) Results for tracking the face and lips of the subject and recognizing the opened/closed status 
of lips (mouth) with/without a hand in the background.
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value line is very smooth, showing high stability and a high input speed, and the worst test result 
is in Fig. 12(c), in which the threshold value line fluctuates considerably, indicating low stability, 
and the input speed is lowest. Although Fig. 12 shows different stabilities and input speeds for 
different subjects, the FCIMCI system still achieves 100% recognition accuracy in some system 
performance experiments.
 The system performance was evaluated on the basis of the data typed by the different 
subjects. Thirty datasets were given to the subjects, with ten datasets typed by an expert, ten 
datasets typed by a user with SCI, and the other ten datasets typed by a teenager with CP. Figure 
13 shows the recognition results for the data typed by the expert, the data typed by the person 
with SCI, and the data typed by the person with CP. As shown in Fig. 13, the average recognition 
rates for the data typed by the expert, the person with SCI, and the person with CP are 99.67, 
98.35, and 99.15%, respectively. In a scenario with an unstable typing pattern, the fuzzy 
recognition algorithm for image Morse code maintains high recognition accuracy. These results 
demonstrate that the proposed fuzzy recognition algorithm is suitable for recognizing unstable 
Morse code patterns.

3.4 Case study

 To further evaluate the overall FCIMCI system performance, we collaborated with a 28-year-
old subject with SCI who had Morse code training experience and conducted an experiment over 

Fig. 12. (Color online) Fuzzy recognition results of tone Morse code for inputting “A” to “Z” by (a) expert, (b) 
person with SCI, and (c) person with CP. The blue dashed line (−·) represents the fuzzy-controlled threshold values 
for distinguishing the dot (●) and dash (+) in Morse code.
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3 months, during which we trained and tested the subject every other week. The SCI subject was 
required to type the letters “A” to “Z” ten times in each test to assess the performance of the 
FCIMCI system as shown in Fig. 14. We conducted six tests in one complete experiment. The 
accuracies for the six tests were between 90 and 97.14% as shown in Fig. 15. As shown by the 
positive trend of the curve, the system accuracy increased with additional training of the subject.

Fig. 15. (Color online) Accuracy of FCIMCI system performance test for subject with SCI.

Fig. 13. (Color online) Recognition results of FCIMCI system operated by three subjects: an expert, a person with 
SCI, and a person with CP.

Fig. 14. (Color online) FCIMCI system operated by a subject with SCI.
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4. Discussion and Conclusions

 To help severely disabled people input text by mouth action, we designed an FCIMCI system 
based on contactless mouth image recognition. From the experimental results, the overall 
performance of the FCIMCI system was demonstrated to be successful in executing digital 
image processing techniques and in achieving facial tracking, lip image location, extraction, 
processing, and recognition. The FCIMCI system successfully combined opened/closed lip 
image recognition techniques with fuzzy control Morse code techniques to provide a 
communication service for severely disabled people as a convenient communication assistive 
device in daily life. The image recognition algorithm can accurately detect the human face and 
lip status with average accuracy rates of 94.44% in a home environment and 97.87% in a lab and 
is not sensitive to light interference. An image Morse code based on the lip image recognition 
algorithm can be correctly inputted into the FCIMCI system in real time. High accuracy rates 
were achieved for fuzzy Morse code recognition for experts, subjects with SCI, and subjects 
with CP, with average recognition rates of 99.67% for data typed by an expert, 98.35% for data 
typed by a person with SCI, and 99.15% for data typed by a person with CP. The FCIMCI system 
was shown to have accuracies between 90 and 97.14%, with an average accuracy of about 
93.85% in six tests conducted on a subject with SCI. The recognition speed of the FCIMCI 
system reached 119.89 ± 39.32 ms/per recognition cycle under the employed image resolution 
(480 × 360), providing strong evidence for the real-time function of the FCIMCI system. 
Moreover, the FCIMCI system is inexpensive and can be easily implemented as a communication 
assistive device for severely disabled people. It comprises simple hardware (only one PC and one 
camera) without requiring any appurtenance attached to the subject, eliminating subject 
discomfort. 
 In conclusion, we accomplished a practical communication assistive device for severely 
disabled people by integrating image and Morse code fuzzy recognition algorithms. Despite the 
advantages of the FCIMCI system, such as cost-effectiveness, simple hardware, real-time 
response, and high accuracy, further improvements are possible in the future. Since most 
functions of the system are implemented in software, for example, the image recognition and 
Morse code fuzzy recognition algorithms, the kernel of the FCIMCI system can be upgraded by 
implanting improved new software algorithms and hardware (such as an embedded system with 
firmware and a monitor). Such improvements will result in a better quality of life for people with 
severe disabilities.
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